
4/27/22

1

Deep Learning and Its
Application to Signal and
Image Processing and
Analysis
CLASS I I וֹ - SPRING 2022
TAMMY RIKLIN RAVIV, ELECTRICAL AND COMPUTER ENGINEERING

1

Today’s topics
• Stochastic Gradient Descent

• Backpropagation

•Vanishing/Exploiding gradients

• Optimization & Optimizers

•Training, Evaluation & Test

• Batch Normalization

•Dropout

2

4/27/22

2

Deep Neural Network: Segmentation
Conv 1x1x1,
ReLU

Down
Sampling

Up Sampling

Copy and
crop

conv

conv

conv

conv conv

conv

conv

3D U-Net

Conv 3x3x3+
ReLU +Conv
3x3x3 + ReLU

conv

Network’s
3D input

Network’s
3D output (𝑝!)

TRAINING – Feed Forward

Ground Truth (𝑦!)

LOSS

TRAINING – Back Propagation

Weights optimization…

Optimization OVEREVALUATION

Feed Forward…Network’s performance: ?
Ronneberger et al ‘U-Net: Convolutional networks for biomedical image segmentation’,

2015

3/17

<latexit sha1_base64="oC8oI6+H7Skd+B6ArVc+B/EoOjw=">AAACHXicbVA9SwNBFNzz2/gVtbRZDIIWCXcS1EYRbCwsIpgo5MLxbrOJi3t7x+47QzjyR2z8KzYWiljYiP/GTXKFRgcWhpl57HsTJlIYdN0vZ2p6ZnZufmGxsLS8srpWXN9omDjVjNdZLGN9E4LhUiheR4GS3ySaQxRKfh3enQ3963uujYjVFfYT3oqgq0RHMEArBcVqL0B6THtBhmVvQMs+T4yQsaK+glBC0PMjwFsGMrsY7OapvaBYcivuCPQv8XJSIjlqQfHDb8csjbhCJsGYpucm2MpAo2CSDwp+angC7A66vGmpgoibVja6bkB3rNKmnVjbp5CO1J8TGUTG9KPQJoe7mklvKP7nNVPsHLUyoZIUuWLjjzqppBjTYVW0LTRnKPuWANPC7krZLWhgaAst2BK8yZP/ksZ+xTuoVC+rpdOTvI4FskW2yS7xyCE5JeekRuqEkQfyRF7Iq/PoPDtvzvs4OuXkM5vkF5zPb1zqoX0=</latexit>

wt = wt�1 � ✏rwL(wt�1)

3

Optimization for training Deep Models

Optimization problem: find the parameters that reduce a cost function . ✓
<latexit sha1_base64="VRbFNfU2yJrhxTioHNG9u2eQ22g=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2m3btZhN2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilVg9HHGm/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGz+bVTcmaVAQljbUshmau/JzIaGTOJAtsZURyZZW8m/ud1Uwyv/UyoJEWu2GJRmEqCMZm9TgZCc4ZyYgllWthbCRtRTRnagEo2BG/55VXSqlW9i2rt/rJSv8njKMIJnMI5eHAFdbiDBjSBwSM8wyu8ObHz4rw7H4vWgpPPHMMfOJ8/pUWPLA==</latexit>

J(✓)
<latexit sha1_base64="V3svjDSIYfC/h7hpFXUpVSkwXAo=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYhDiJexGQY9BL+IpgnlIsoTZyWwyZGZ2mekVQshXePGgiFc/x5t/4yTZgyYWNBRV3XR3hYngBj3v21lZXVvf2Mxt5bd3dvf2CweHDROnmrI6jUWsWyExTHDF6shRsFaiGZGhYM1weDP1m09MGx6rBxwlLJCkr3jEKUErPd6VOjhgSM66haJX9mZwl4mfkSJkqHULX51eTFPJFFJBjGn7XoLBmGjkVLBJvpMalhA6JH3WtlQRyUwwnh08cU+t0nOjWNtS6M7U3xNjIo0ZydB2SoIDs+hNxf+8dorRVTDmKkmRKTpfFKXCxdidfu/2uGYUxcgSQjW3t7p0QDShaDPK2xD8xZeXSaNS9s/LlfuLYvU6iyMHx3ACJfDhEqpwCzWoAwUJz/AKb452Xpx352PeuuJkM0fwB87nDwT5j+U=</latexit>

Deep Learning algorithms: J(✓) = E(x,y)⇠p̂data
L(f(x; ✓), y)

<latexit sha1_base64="gLovB+1LAy2aBJLPFyT12KS2VBI=">AAACOnicbVDBShxBFOwxGs3GJJt4zKVxCYwQlhkjKARBIoIEDwquCjvL8qb3jdvYPTN0v5HdDPNdXvwKbx68eEgIXv0Ae9c5GE1BQ1HvVXdXxbmSloLg2pt5NTv3en7hTePt4rv3H5ofPx3ZrDACOyJTmTmJwaKSKXZIksKT3CDoWOFxfLY9mR+fo7EySw9pnGNPw2kqEymAnNRvHvz0IxoiwcpmpIGGcVzuVP3SH30dr0RW6mgIVOZOiXScjcrICiNzsvIX8gEQVFW15yf+6Ht9iXP1m62gHUzBX5KwJi1WY7/fvIoGmSg0piQUWNsNg5x6JRiSQmHViAqLOYgzOMWuoylotL1yGr3iX5wy4Elm3EmJT9WnjhK0tWMdu81JPPt8NhH/N+sWlGz0SpnmBWEqHh9KCsUp45Me+UAaFKTGjoDrxP2ViyEYEOTabrgSwueRX5Kj1Xb4rb16sNba+lHXscA+s2Xms5Ctsy22y/ZZhwl2wW7Yb/bHu/Ruvb/e3ePqjFd7ltg/8O4fAI6Krno=</latexit>

Empirical
Distribution Predicted output

when the input is x
<latexit sha1_base64="hL+FaLtOT9luwfLW3Ut08xl3Pcw=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOeHjQA=</latexit>

Per example
Loss function

Optimization is performed with respect to the training data

4

4/27/22

3

Optimization for training Deep Models

Optimization problem: find the parameters that reduce a cost function . ✓
<latexit sha1_base64="VRbFNfU2yJrhxTioHNG9u2eQ22g=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2m3btZhN2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilVg9HHGm/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGz+bVTcmaVAQljbUshmau/JzIaGTOJAtsZURyZZW8m/ud1Uwyv/UyoJEWu2GJRmEqCMZm9TgZCc4ZyYgllWthbCRtRTRnagEo2BG/55VXSqlW9i2rt/rJSv8njKMIJnMI5eHAFdbiDBjSBwSM8wyu8ObHz4rw7H4vWgpPPHMMfOJ8/pUWPLA==</latexit>

J(✓)
<latexit sha1_base64="V3svjDSIYfC/h7hpFXUpVSkwXAo=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYhDiJexGQY9BL+IpgnlIsoTZyWwyZGZ2mekVQshXePGgiFc/x5t/4yTZgyYWNBRV3XR3hYngBj3v21lZXVvf2Mxt5bd3dvf2CweHDROnmrI6jUWsWyExTHDF6shRsFaiGZGhYM1weDP1m09MGx6rBxwlLJCkr3jEKUErPd6VOjhgSM66haJX9mZwl4mfkSJkqHULX51eTFPJFFJBjGn7XoLBmGjkVLBJvpMalhA6JH3WtlQRyUwwnh08cU+t0nOjWNtS6M7U3xNjIo0ZydB2SoIDs+hNxf+8dorRVTDmKkmRKTpfFKXCxdidfu/2uGYUxcgSQjW3t7p0QDShaDPK2xD8xZeXSaNS9s/LlfuLYvU6iyMHx3ACJfDhEqpwCzWoAwUJz/AKb452Xpx352PeuuJkM0fwB87nDwT5j+U=</latexit>

Deep Learning algorithms:

Predicted output
when the input is x

<latexit sha1_base64="hL+FaLtOT9luwfLW3Ut08xl3Pcw=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOeHjQA=</latexit>

Per example
Loss function

J⇤(✓) = E(x,y)⇠pdata
L(f(x; ✓), y)

<latexit sha1_base64="1m5CUyCynGkUfyeSIHipFTdR+08=">AAACOHicbVBNSxxBEO0xxuiamE1y9NK4CGMIy4wJJBACkhAQEVRwVdjZLDW9NW5j98zQXRN2M8zPyiU/I7eQiwdFvPoL7F3n4NeDhtfvVVV3vThX0lIQ/PNmnsw+nXs2v9BYfP5i6WXz1esDmxVGYEdkKjNHMVhUMsUOSVJ4lBsEHSs8jE++TfzDn2iszNJ9GufY03CcykQKICf1mztbP976EQ2RYO1LpIGGcVx+r/qlP3o3Xous1GXubpGOs1EZWWFkTlb+Qj4Agqqqtv3EH32uB7iOfrMVtIMp+EMS1qTFauz2m3+jQSYKjSkJBdZ2wyCnXgmGpFBYNaLCYg7iBI6x62gKGm2vnC5e8VWnDHiSGXdS4lP1dkcJ2tqxjl3lZDV735uIj3ndgpJPvVKmeUGYipuHkkJxyvgkRT6QBgWpsSPgMnF/5WIIBgS5rBsuhPD+yg/JwXo7fN9e3/vQ2vhaxzHPltkK81nIPrINtsl2WYcJ9pv9Z2fs3PvjnXoX3uVN6YxX97xhd+BdXQNV/61V</latexit>

Data generating
distribution

E(x,y)⇠p̂data
L(f(x; ✓), y)

<latexit sha1_base64="R7hnrcloYjCtCIUZgpn1EBS+Ah0=">AAACMXicbVBdSxtBFJ3VfsT0K7aPvgyGQoQSdq1goS+hUsiDDwpGhWwIdyd3zeDM7jJzt2Rd9i/54j8RX/LQIr76J5zEfWi1BwYO59zDnXuiTElLvj/3VlZfvHz1urHWfPP23fsPrfWPxzbNjcCBSFVqTiOwqGSCA5Kk8DQzCDpSeBKd7y38k19orEyTIyoyHGk4S2QsBZCTxq1+qIGmUVT+rMZlZ/al2Aqt1GU4BeKZk0IdpbMytMLIjKy8QD4Bgqqq9jtxZ/Y9pCkSbLnYuNX2u/4S/DkJatJmNQ7GretwkopcY0JCgbXDwM9oVIIhKRRWzTC3mIE4hzMcOpqARjsqlxdX/LNTJjxOjXsJ8aX6d6IEbW2hIze5uM8+9Rbi/7xhTvG3USmTLCdMxOOiOFecUr6oj0+kQUGqcARcJ+6vXEzBgCBXctOVEDw9+Tk53u4GX7vbhzvt3o+6jgbbYJuswwK2y3qszw7YgAl2yW7Yb/bHu/Lm3q139zi64tWZT+wfePcPh5Sq9g==</latexit>

Empirical risk

5

Empirical Risk Minimization

No. of training examples

Main problem: Subject to overfitting

6

4/27/22

4

Optimization
Cost functionCost function values: the discrepancies between

the outputs (NN estimations)
and the training set data points.

Goal : find the set of weights for which a global minimum
Is obtained

In reality the cost function is not convex.

the cost function is parameterized by the network’s weights 
— we control our loss function by changing the weights.

7

Optimization
Cost functionCost function values: the discrepancies between

the outputs (NN estimations)
and the training set data points.

Goal : find the set of weights for which a global minimum
Is obtained

In reality the cost function is not convex.

the cost function is parameterized by the network’s weights 
— we control our loss function by changing the weights.

8

4/27/22

5

Optimization
Cost functionCost function values: the discrepancies between

the outputs (NN estimations)
and the training set data points.

Goal : find the set of weights for which a global minimum
Is obtained

In reality the cost function is not convex.

the cost function is parameterized by the network’s weights 
— we control our loss function by changing the weights.

9

Optimization –
Why is it difficult?

1. There is no simple equation that can be solved analytically

2. High-dimensional function

3. Function might have many local minima & maxima

Common approach:

Iterative optimization algorithms, e.g. gradient descent

10

4/27/22

6

Gradients
1D

nD

Numerical evaluation

11

Gradients
1D

nD

Numerical evaluation

12

4/27/22

7

Numerical vs. analytic gradient

13

Gradient descent

W : = W � ↵rWL(W)

W : = W � ↵
@L(W)

@W
Update rule

Learning rate

Learning rate: An important hyperparameter
too small – very slow convergence or gets stuck in local minima
Too Big – may “skip” the target minimum; may go in the wrong direction

14

4/27/22

8

Backpropagation to train multilayer
architectures
The backpropagation procedure to computes the gradient of an objective function with respect
to the weights of a multilayer stack of modules.

Practical application of the chain rule.

The key insight is that the gradient of the objective with respect to the input of a module can be
computed by working backwards from the gradient with respect to the output of that module
(or the input of the subsequent module) .

The backpropagation equation can be applied repeatedly to propagate gradients through all
modules, starting from the output at the top (where the network produces its prediction) all the
way to the bottom (where the external input is fed).

Once these gradients have been computed, it is straightforward to compute the gradients with
respect to the weights of each module.

16

Chain rule of calculus
- a real number

and - functions mapping from a real number to a real
number.

x

f() g()

chain rule:

17

4/27/22

9

Chain rule – vector notation

g : Rm ! Rn f : Rn ! R

z 2 Rand

18

Jacobian Matrix

19

4/27/22

10

Backprop

20

Backprop

21

4/27/22

11

Backprop

22

Backprop

23

4/27/22

12

Backprop

24

Backprop

25

4/27/22

13

Backpropagation - Limitations
v Gradient descent with backpropagation is not guaranteed to find the global minimum of the

error function, but only a local minimum

v It has trouble crossing plateaux in the error function landscape.

vThis issue, caused by the non-convexity of error functions in neural networks, was long thought

to be a major drawback, but in a 2015 review article, Yann LeCun et al. (Deep Learning, Nature)

argue that in many practical problems, it is not.

v Backpropagation learning does not require normalization of input vectors; however,

normalization could improve performance

29

Modes of learning
There are two modes of learning to choose from: stochastic and batch.

Stochastic learning: each propagation is followed immediately by a weight update.

Batch learning: many propagations occur before updating the weights, accumulating errors over

the samples within a batch.

Stochastic learning introduces "noise" into the gradient descent process, using the local gradient

calculated from one data point; this reduces the chance of the network getting stuck in a local minima. Yet

batch learning typically yields a faster, more stable descent to a local minima, since each update is

performed in the direction of the average error of the batch samples. In modern applications a common

compromise choice is to use "mini-batches", meaning batch learning but with a batch of small size and

with stochastically selected samples.

30

4/27/22

14

Training data collections
Online learning is used for dynamic environments that provide a continuous
stream of new training data patterns.

Offline learning makes use of a training set of static patterns.

31

Internal Covariate Shift
Internal Covariate Shift is defined as the change in the distribution of network

activations due to the change in network parameters during training.

Batch normalization is a method

intended to mitigate internal covariate

shift for neural networks.

https://medium.com/analytics-vidhya/internal-covariate-shift-an-
overview-of-how-to-speed-up-neural-network-training-3e2a3dcdd5cc

32

4/27/22

15

Internal Covariate Shift
Internal Covariate Shift is defined as the change in the distribution of network

activations due to the change in network parameters during training.

Deeper networks are more affected by the internal covariate shift.

Key idea: stabilize the input values for each layer (defined as z = Wx + b, where

z is the linear transformation of the W weights/parameters and the biases).

33

Internal Covariate Shift

https://learnopencv.com/batch-normalization-in-deep-networks/

• Covariate shift: when the mini-batches have images that are not uniformly sampled from the

entire distribution

• Solution for the input layer is to randomize the data before creating mini-batches.

What about the hidden layers?

• In a neural network, each hidden unit’s input distribution

changes every time there is a parameter update in the previous layer.

• Called internal covariate shift

• Makes training slow and requires a very small learning rate and a good parameter initialization

• Solution: Batch Normalization

38

4/27/22

16

Batch Normalization
• Introduced by two researchers at Google, Sergey Ioffe and Christian Szegedy in their paper

‘Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate

Shift‘ in 2015.

• They showed that batch normalization improved the top result of ImageNet (2014) by a

significant margin using only 7% of the training steps

• Today, Batch Normalization is used in almost all CNN architectures.

39

(Other?) benefits to BatchNorm
• Allows higher learning rate without vanishing or exploding gradients.

• Have a regularizing effect such that the network improves its generalization
properties

• The network becomes more robust to different initialization schemes and
learning rates.

As z increases the
derivative goes to
zero

40

4/27/22

17

(Other?) benefits to BatchNorm
• Allows higher learning rate without vanishing or exploding gradients.

• Have a regularizing effect such that the network improves its generalization properties

• The network becomes more robust to different initialization schemes and learning
rates.

•While it is widely accepted idea it is unclear how batch normalization relates to

internal covariate shift.

How Does Batch Normalization Help Optimization?

Santurkar et al 2019

https://arxiv.org/pdf/1805.11604.pdf

o Improves optimization landscape

41

In-layer normalization techniques for deep
learning

Source: https://theaisummer.com/normalization/

42

4/27/22

18

Batch Normalization
Batch Normalization (BN) normalizes the mean and standard deviation for each

individual feature channel/map.

bringing the features of the image in the same range.

43

Batch Normalization
we demand from our features to follow a Gaussian distribution

with zero mean and unit variance.

44

4/27/22

19

Batch Normalization

The spatial dimensions, as well as the image batch, are averaged.

45

Layer Normalization
In ΒΝ, the statistics are computed across the batch and the spatial dims.

In contrast, in Layer Normalization (LN), the statistics (mean and variance)

are computed across all channels and spatial dims. Thus, the statistics are

independent of the batch. This layer was initially introduced to handle vectors

(mostly the RNN outputs).

46

4/27/22

20

Layer Normalization

47

Instance Normalization
Instance Normalization (IN) is computed only across the features’ spatial

dimensions. It is independent for each channel and sample.

48

4/27/22

21

Instance Normalization

49

Instance Normalization
The affine parameters in IN can completely change the style of the output

image. As opposed to BN, IN can normalize the style of each individual sample

to a target style (modeled by γ and β). For this reason, training a model to

transfer to a specific style is easier.

50

4/27/22

22

Which Optimizer to choose?

56

Stochastic Gradient Descent (SGD)

↵ =
k

⌧
<latexit sha1_base64="QF5hSmiHn8Kl3NK8V7wCx+FuYig=">AAACAHicbVBNS8NAEN3Ur1q/oh48eFksgqeSVEEvQtGLxwr2A5pQJttNu3SzCbsboYRc/CtePCji1Z/hzX/jts1BWx8MPN6bYWZekHCmtON8W6WV1bX1jfJmZWt7Z3fP3j9oqziVhLZIzGPZDUBRzgRtaaY57SaSQhRw2gnGt1O/80ilYrF40JOE+hEMBQsZAW2kvn3kAU9GgK+xF0og2TjPPA1p3rerTs2ZAS8TtyBVVKDZt7+8QUzSiApNOCjVc51E+xlIzQinecVLFU2AjGFIe4YKiKjys9kDOT41ygCHsTQlNJ6pvycyiJSaRIHpjECP1KI3Ff/zeqkOr/yMiSTVVJD5ojDlWMd4mgYeMEmJ5hNDgEhmbsVkBCYIbTKrmBDcxZeXSbtec89r9fuLauOmiKOMjtEJOkMuukQNdIeaqIUIytEzekVv1pP1Yr1bH/PWklXMHKI/sD5/AJuGlm0=</latexit>

Itaration

57

4/27/22

23

Momentum
• Accelerate learning, especially in the face of high curvature, small but

consistent gradients, or noisy gradients.

• Accumulates an exponentially decaying moving average of past

gradients and continues to move in their direction.

• Addresses ill-conditioning, i.e., when SGD gets “stuck” in the sense

that even very small steps increase the cost function

58

Momentum
Velocity

Hyperparameter - determines how quickly the

contributions of previous gradients exponentially decay

59

4/27/22

24

SGD with Momentum

The size of the step depends on how large and how aligned a sequence of gradients are

60

Nesterov Momentum

If the value of the momentum is too high, our model can

even cross the minima and again start going up.

Solution: take into account the gradient in the next time step

which gives a better idea whether to slow down or not.

61

4/27/22

25

Nesterov Momentum

• The gradient is evaluated after the current velocity is applied

• Add a correction factor to the standard method of momentum.

• Improves the rate of convergence in Convex batch gradient case

62

SGD with Nesterov momentum

63

4/27/22

26

Algorithms with Adaptive Learning Rates
• Assumption: directions of sensitivity are somewhat axis aligned

• Use a separate learning rate for each parameter

• Automatically adapt these learning rates throughout the course of learning

64

AdaGrad (Duchi et al.,2011)

• Individually adapts the learning rates of all model parameters by scaling them inversely

proportional to the square root of the sum of all the historical squared values of the gradient

• Parameters with the largest partial derivative of the loss have correspondingly rapid decrease

in their learning rate

• Parameters with small partial derivative of the loss have correspondingly small decrease in their

learning rate

• The net effect is greater progress in the more gently sloped directions of parameter space

•Can be inefficient

65

4/27/22

27

The AdaGrad Algorithm

66

RMSProp (Hinton, 2012)
• AdaGrad is designed to converge rapidly when applied to a convex function.

• When applied to a nonconvex function to train a neural network, the learning trajectory may

pass through many different structures and eventually arrive at a region that is a locally convex

bowl.

• AdaGrad shrinks the learning rate according to the entire history of the squared gradient and

may have made the learning rate too small before arriving at such a convex structure

The

• RMSProp algorithm modifies AdaGrad to perform better in the nonconvex setting

67

4/27/22

28

RMSProp (Hinton, 2012)

• Changes the gradient accumulation into an exponentially weighted moving average.

• Discard history from the extreme past so that it can converge rapidly after finding a convex

bowl, as if it were an instance of the AdaGrad algorithm initialized within that bowl.

The

• RMSProp algorithm modifies AdaGrad to perform better in the nonconvex setting

68

RMSProp Algorithm

69

4/27/22

29

RMSProp algorithm with Nesterov
momentum

70

Adam Optimizer (Adaptive Moment)

• A variant on the combination of RMSProp and momentum with a few important distinctions.

•Momentum is incorporated directly as an estimate of the first-order moment

(with exponential weighting) of the gradient.

•Momentum is applied to the rescaled gradients

• Includes bias corrections to the estimates of both the first-order moments (the momentum

term) and the (uncentered) second-order moments to account for their initialization

at the origin

71

4/27/22

30

ADAM
Algorithm

72

NADAM
Nadam is an extension of the Adam version of gradient descent that incorporates Nesterov

momentum

73

4/27/22

31

Which Optimizer to choose?

74

