4/27/22

Deep Learning and Its
Application to Signal and
Image Processing and
Analysis

CLASS Il = SPRING 2022
TAMMY RIKLIN RAVIV, ELECTRICAL AND COMPUTER ENGINEERING

Today’ s plan

1) Activation functions

Logistic regression
SoftMax function
2) Loss functions
3) Optimization
4) Overfitting/Underfitting — Bias-Variance tradeoff

5) Regularization

4/27/22

Topics to be covered offline

* Stochastic Gradient Descent

* Backpropagation
*Vanishing/Exploiding gradients
* Optimization & Optimizers
*Training, Evaluation & Test

* Batch Normalization

*Dropout

Q2

Network’s

3D input

Conv 3x3x3+
Deep Neural Network: Segmentation Sii‘i;f‘ézu

Conv 1x1x1,
RelLU
Network’s

TN GUASONIRwagdtion

o

Y Y Y

o

conv

3D U-Net NetWeigkispetioimtorce: |

3D output (p;) ‘ Down
Sampling

Up Sampling

Copy and
crop

Ronneberger et al ‘U-Net: Convolutional networks for biomedical image segmentation’,
2015

Grl_Jund Truth (y;)
Wy = Wi—1 — €V L(We—1

4

4/27/22

. . . = . f ‘ =
Activation functions o

The activation function is a mathematical “gate” in between the input feeding the current neuron and its

output going to the next layer.

Binary Step function does not allow multi-value output
Linear function / cannot work with backpropagation (the derivative is constant)
/
/” collapses into a single layer

/'/(

. . . = ' f . =
Activation functions S

Rectified linear unit Computational efficient
RelLU .
Non-linear
f(z) = max(0, 2) Dying ReLU problem
Leaky o
RelU Prevents dying ReLU problem

Results are not consistent

mad 1 * x)

Parametric ReLU

f(z) = max(az,z) a€(0,1)

Allows the negative slope to be learned

4/27/22

Activation functions

Logistic function (sigmoid)
—1
¢(x) = (1 +exp(—x-w — b))
TanH / Hyperbolic Tangent

sinh z

tanh(z) = P

_ oxp(2) — exp(~2)
exp(z) + exp(—2)

Smooth gradient
Output values bound
Clear predictions

Vanishing gradient

Outputs [not] zero centered.

Activation functions

Activation Function

Sigmoid
1
o(z) = __exp(z)
1+exp(—z) exp(z)+1

Hyperbolic tangent

tanh(z) = sinhz _ exp(z) —exp(—2)
WM T oshz exp(z) + exp(—=z)

exp(2) exp(—2)

~ oxp(z) +exp(—2) exp(z) + exp(—2)

1 1
T 1+4exp(—22) 1+exp(22)

=0(22) —o(—22)

4/27/22

Activation functions

Sigmoid

o(z) = 1 __exp(z) 1—0(2) =0(—2)
1+exp(—z) exp(z)+1 /
d d _

o'(2) = —0(2) = (1 +exp(=2)) "
_ exp(—=z) _ exp(—2) 1
(1 + exp(—=2))? 1 +exp(—z) 14 exp(—2)
1 1

T 1texp(z) 1+exp(—z) o(z)o(—z)

10

Activation functions - Softmax

multinomial logistic regression generalizes logistic regression to a multiclass problem
Sigmoid

1 exp(z)
o(z) =

T 1+ exp(—z) exp(z)+1

Multinomial logistic regression function — Softmax

o (5) = exp(2k) 5 — zlk € {1,2,Z,I,<_,K;{
ZJK:;[eXp(zj) Yttt classes
Pr(L(x) = k) = softmax(k, wix, ..., WX, ..., WgX)

4/27/22

The multinomial logistic function

* Multinomial logit model for K possible outcomes: L(X)
* Run K-1 independent binary logistic regression models - network prediction of an input x
e Chose outcome K as a “pivot”

* The other K-1 outcomes are separately regressed against the pivot outcome

! 5:(%(%):?) =wyx == Pr(L(x)=2)=Pr(L(x) = K)exp(wax)
In Pr](DLr(;cL)(:) (f};)l)) = W(x_1)X == Pr(L(x)=(K—1))=Pr(L(x) = K)exp(W(x_1)X)

The multinomial function

K-1
Pr(L(x)=K)=1-— Pr(L(x) =k)
k=1
K—1
=1- Pr(L(x) = K) exp(wgx)
k=1

1
1+ Zf:_ll exp(w;X)

exp(wWgX)
- K1
14> ., exp(w;x)

12

= Pr(L(x)=k)

4/27/22

The Softmax function - generalization

* The formulation of binary logistic regression as a log-linear model can be directly extended to multi-way

regression.

* We formulate probabilities using the partition function Z:

K
S PrLx)=k) =1 Pr(L(x) = k) = - exp(wix)
1=1

Z
K K 1 1 K
> PrLx)=k) =) Z exp(Wix) = - > exp(wix) = 1
k=1 k=1 k=1
K
== Z=>) oxp(WiX) == Pr(L(x)=c) = %
k=1 > k=1 €XP(WiX)

14

Activation functions- Swish

Swish: a Self-Gated Activation Function

z

4/27/22

Loss functions

Also termed a cost function or the objective L. = LGT(fﬂi)
Measure our unhappiness with outcomes)-: .
n A\ y’L (]
> imi i — Ui)

_ i=1\"1
MSE — n Network prediction

Mean squared error

n

Mean absolute error

15
Loss functions: Binary Classification
Ch Co < p(t|z) = p(Cilz)"p(Cola) "
S ﬁb pltlz) = §(1 —)0
£ R 00 ;) : ’Binomial distribution — Bernoulli distribution ‘
t=1 if x ¢ Cl
t=01i z€Cs Sssuming the data pontsre drewn independently from
(C ‘.’L’) this distribution, is then given by:
1
N (t) 1—t;
1 — g = p(Cy|z) [)
16

4/27/22

Loss functions: Binary Classification

HA(t) (1 ti)
G
t=1if z€C BCE = =) tilng; + (1 - t;)In(1 - 5;)
t=0 if z e’y i
g =p(Ci|z)

~ minimize the dissimilarity between the empirical distribution
]- - (CQ | T) defined by the training set and the model distribution

17

’ Binary Cross Entropy function ‘

Information, Entropy and Cross Entropy

Information: quantifies the number of bits required to encode and transmit an event &

h(P) = —log P(x)

Entropy: quantifies the number of bits required to transmit a randomly selected event

from a probability distribution:
E P(x)log P(x)

[Degree of surprise] veX

Cross entropy: quantifies the average number of bits needed to encode data coming

from a source with distribution P when we use model Q:

H(P ZP)log Q(x)

reX

18

4/27/22

Cross Entropy & KL Divergence

Kullback—Leibler (KL) divergence is a a measure (statistical distance) of how

a probability distribution Q is different from a reference probability

distribution P . For discrete probability distributions it is defined by:

D (P Q) =3 Pa)tos(g3)= - 3 P (ngo

zeX zeX

KL divergence calculates the relative entropy between two probability distributions.

Cross-entropy can be thought to calculate the total entropy between the distributions.

19

Categorical cross entropy loss

\ ,~ '~

=
(1,0,0) ﬁ = - Three independent linear
classifiers v
Y » —— _,_- ’ ‘ might not be the best idea \
01,0 f& L - /
~ -

(0,0,1)] airplane classiﬁe/ &
Y A

deer classifier

20

10

4/27/22

Categorical cross entropy loss

K

(1,0,0) a p(tl\xz) = H(’gz)gl)k Categorical distribution

y k=1
(0,1,0) &
‘/ (@z)k = PT(L(Xz') = k)
(0,0,1) ~ -

21

Optimization

Cost function values: the discrepancies between Cost function

the outputs (NN estimations)
and the training set data points.

Goal : find the set of weights for which a global minimum
is obtained

the cost function is parameterized by the network’s weights
— we control our loss function by changing the weights.

In reality the cost function is not convex.

25

11

4/27/22

Optimization

Cost function values: the discrepancies between
the outputs (NN estimations)
and the training set data points.

Goal : find the set of weights for which a global minimum
Is obtained

the cost function is parameterized by the network’s weights
— we control our loss function by changing the weights.

In reality the cost function is not convex.

Cost function

Optimization

Cost function values: the discrepancies between
the outputs (NN estimations)
and the training set data points.

Goal : find the set of weights for which a global minimum
Is obtained

the cost function is parameterized by the network’s weights
— we control our loss function by changing the weights.

In reality the cost function is not convex.

27

Iw)

Cost function

12

4/27/22

28

Optimization —

Why is it difficult?

1. There is no simple equation that can be solved analytically

2. High-dimensional function

3. Function might have many local minima & maxima

Common approach:

Iterative optimization algorithms, e.g. gradient descent

Gradients
1D Numerical evaluation
df@) _ . f@+h) - f@)
dx h —0 h
- approximate

- very slow to evaluate

nD

13

4/27/22

Gradients
1D Numerical evaluation
w_2
df() _ . f@+h) - f) r 1
dx h —0 h
- approximate
- very slow to evaluate | E===5 .# —
| / . . origina
nD negative gradient direction
- of af
Vf= o e + + oz, e,

30

Numerical vs. analytic gradient

Numerical gradient: approximate, slow, easy to write

- Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check
implementation with numerical gradient. This is called a
gradient check.

31

14

4/27/22

Gradient descent

AL(W)
W: =W — 7 Update rule
“Tow

W: =W — aVy L(W)
~

Learning rate

Learning rate: An important hyperparameter
too small — very slow convergence or gets stuck in local minima
Too Big — may “skip” the target minimum; may go in the wrong direction

32

Optimization and Generalization

Standard optimization —Find a model that will fit the known data

1

— ”X(train),w _ y(train) ”%

Machine learning - Find a model that will fit the unseen data — Generalize

X (st — g0

33

15

4/27/22

Generalization

Generalization- main challenge of machine learning algorithms

perform well on new, previously unseen inputs.
i.i.d. assumption: The train dataset and the test dataset are independent of each other and
each dataset is identically distributed, drawn from the same probability distribution as each
other.

In theory: the expected training error of a randomly selected model should be equal to the

expected test error of that model.

In practice: since we set the parameters based on the training and then use the test — the
test error is higher.

34

Capacity, overfitting and underfitting

Our aims: (1) make training error small (2) make test error as small as the training.

Underfitting occurs when the model is not able to obtain a sufficiently low error value on

the training set.

Overfitting occurs when the gap between the training error and test error is too large.
We can control whether a model is more likely to overfit or underfit by altering
its capacity.

Informally, a model’s capacity is its ability to fit a wide variety of functions.

35

16

4/27/22

Classification example

Back to machine learning ...

Why we don’t like it?

Andrew NG

36
Regression example
/..< /\
LineaJr Quadratic ;unction degree‘-JQ predictor
37

17

4/27/22

Regression example

Underfitting Appropriate capacity Overfitting
e®
= /< - =
(] ®
Zy z z,
Linear Quadratic function degree-9 predictor

38

Capacity —an observation

Underfitting Appropriate capacity Overfitting

finding the best function within this family is a very

difficult optimization problem /"< /\ ,

In practice, the learning algorithm does not actually Linear Quadratic function degree-3 predictor
find the best function, but merely one
that significantly reduces the training error.

39

18

4/27/22

Occam's Razor (low of parsimony)

Among competing hypotheses, the one with the fewest

assumptions should be selected.

Other things being equal, simpler explanations are

generally better than more complex ones.

Occam's Razor (low of parsimony)

Among competing hypotheses, the one with the fewest

assumptions should be selected.

Other things being equal, simpler explanations are

generally better than more complex ones.

Everything should be made as simple as possible, but not simpler
Albert Einstein

41

19

4/27/22

The Bias-Variance Tradeoff

The true function we want to approximate: f = f(X)
The dataset for training: [= {(Xl, tl), (Xg, tg), e (XN, tN)}

where t = f+€ and E(E)ZO

Given [), we train an arbitrary neural network to approximate f by

Y= g(X,W)

http://www.inf.ed.ac.uk/teaching/courses/misc/Notes/Lecture4/BiasVariance.pdf

42

The Bias-Variance Tradeoff

N
) . . 1
The mean-squared error of this networksis: \[SE — = 2 1:(ti - yi)z
1=

To assess the effectiveness of the network, we want to know the expectation of
the MSE if we test the network on arbitrarily many test points drawn from the

unknown function.

B{MSE} = B{5 > (t: —)?)

http://www.inf.ed.ac.uk/teaching/courses/mlsc/Notes/Lecture4/BiasVariance.pdf

43

20

4/27/22

The Bias-Variance Tradeoff
E{(li _yi)z} - E{(I’ —hit/ _y’)z}
= E{(t, - £ }+ E{(£ - ») }+2E{(5 - 3)(0 - £)}

= E{e*}+ E{(-) }+ 2B} - B} - B)+ E))
Note : E{ f,.t,.} = /7 since f is deterministic and E{I,.} = f.

: E{ff} = /7 since f is deterministic

. E{yiti} — E{V,(f, + 8)} = E{.Viﬁ 25 yis} — E{yij;} +0

I E{(,-) _He}s E{(-3)} —

44

The Bias-Variance Tradeoff

E{(t,. -y,)2}= Ele’}+ E{(f,. —y,)z}

The MSE can be decomposed in expectation into the variance of the noise

and the MSE between the true function and the predicted values.

http://www.inf.ed.ac.uk/teaching/courses/misc/Notes/Lecture4/BiasVariance.pdf

45

21

4/27/22

The Bias-Variance Tradeoff

E{,-y)}= E{e }+E{f)}
B~} = B - B} + B, -]
= E{(f - E) |+ E{(E(v } - 0) o 2B{(ED} -) - 0D
= bias® + Var{yi}+2(E{fE(y 1} - E{ED Y - By, +E{.v,-E{.v,»}})

Note : L{fL{\ }} JE{y,} since f is deterministic and E{E{z}} =z
; l:'{lf{y,}z} = l'.'{y',}2 since E{E{z}} =z
: Ii{_\',f,} = f,I{\,}

B - R

46

The Bias-Variance Tradeoff

E{(t Y, } E{e }+E{f v)}
E{(f-5)}= E{(ﬁ -E{v}+E{v}, - M—)’}
= E{(£ - By)’ }+ E{(E{n } - o) 2B {(ED -0 - B D)}

= bias® + Var{y,} + Z(EN}} - E\'{‘E{v\,}z} —}{‘\(}, + IMM}})

{1 3"} = bias* + varly)

E{(t,. - y,.)z} = Var{noise} + bias® + Var{y,}

47

22

4/27/22

The Bias-Variance Tradeoff

E{(t,. - yA)z} = Var{noise} + bias® + Var{y,}

1

Note that the variance of the noise can not be minimized; it is independent of the

neural network.

Thus in order to minimize the MSE, we need to minimize both the bias and the variance.

However, this is not trivial —

e.g. if we set the output to be constant — the variance will be zero but the bias b{(j, _ E{_V,.})z}
will be high.

Alternatively, we could train the network to predict the training — the bias will be zero but the

variance E{(E{yi} = _vl.)'} will be equal to the variance of the noise.

48

Bias-Variance tradeoffs

Bias: how much the average model over all training sets differs
from the true model.
° Error due to inaccurate assumptions/simplifications made by the model.

e - E{n})'}

Variance: how much models estimated from different training sets
differ from each other.

E(E{y}-»)}

49

23

4/27/22

Bias-Variance Trade-off

E(MSE) = noise? + bias? + variance

Unavoidable \ \

error Error due to
Errordueto variance of training
incorrect samples
assumptions

<http://www.inf.ed.ac.uk/teaching/courses/mlisc/Notes/Lecture4/BiasVariance.pdf

50

No Free Lunch Theorem

© Original Artist \)
Reproduction rights obt‘ainable fram I
WYY, (;3'a.ﬂonn8tock:com

24

http://www.inf.ed.ac.uk/teaching/courses/mlsc/Notes/Lecture4/BiasVariance.pdf

4/27/22

52

No free lunch theorem

Averaged over all possible data generating distributions, every classification
algorithm has the same error rate when classifying previously unobserved

points.

No free lunch theorem

Averaged over all possible data generating distributions, every classification

algorithm has the same error rate when classifying previously unobserved points.

This means that the goal of machine learning research is not to seek a universal
learning algorithm or the absolute best learning algorithm. Instead, our goal is to
understand what kinds of distributions are relevant to the “real world” that an Al
agent experiences, and what kinds of machine learning algorithms perform well

on data drawn from the kinds of data generating distributions we care about.

53

25

4/27/22

Underfitting and Overfitting

Underfitting: model is too “simple” to represent all the relevant
class characteristics

> High bias (few degrees of freedom) and low variance

° High training error and high test error

Overfitting: model is too “complex” and fits irrelevant
characteristics (noise) in the data
> Low bias (many degrees of freedom) and high variance

o Low training error and high test error

54

55

Generalization Error Effects

Underfitting: model is too “simple” to represent all the relevant
class characteristics
° High bias (few degrees of freedom) and low variance

> High training error and high test error y A

ACCESS

Sample 2

26

4/27/22

Generalization Error Effects

Overfitting: model is too “complex” and fits irrelevant
characteristics (noise) in the data

> Low bias (many degrees of freedom) and high variance

° Low training error and high test error ACCESS

y Sample 2

Bias-Variance Trade-off

Models with too few parameters are
4 inaccurate because of a large bias.
* Not enough flexibility!

Underfitting zone Overfitting zone

Generalization

: -—
error Variance

—
= - g —

Optimal Capacity
capacity

Models with too many parameters are
inaccurate because of a large variance.
* Too much sensitivity to the sample.

57

27

4/27/22

Bias-variance tradeoff

. Underfitting Overfitting
E{(e E{y,})'}
Bias
E(E{y}-»)}
Vaiance E 1est error

Training error

High Bia_s Com ilexiti i L(_)w Bias_

Bias-variance tradeoff

Test Error

High Bias i Low Bias
Low Variance Com p|EX|ty High Variance

28

4/27/22

Effect of Training Size

Fixed prediction model

Error

| oelieidiiZdauull il

Number of Training Examples

60

How to reduce variance?

Choose a simpler classifier

Regularize the parameters

Get more training data

61

29

4/27/22

Capacity & VC dimension

Vapnik-Chervonenkis (VC) dimension is a measure of the capacity of a space of

functions that can be learned by a statistical classification algorithm.

It is defined as the cardinality of the largest set of points that the algorithm can shatter.

(Vapnik and Chervonenkis, 1971; Vapnik, 1982; Blumer et al., 1989; Vapnik, 1995)

62

Capacity & VC dimension

Vapnik-Chervonenkis (VC) dimension is a measure of the capacity of a space of

functions that can be learned by a statistical classification algorithm.

It is defined as the cardinality of the largest set of points that the algorithm can shatter.

+ + - \ any 3 points that are not collinear can be
i /) _ shattered by a linear classifier (perceptron).

not all set of 4 points can be shattered

3 points shattered 4 points impossible

(Vapnik and Chervonenkis, 1971; Vapnik, 1982; Blumer et al., 1989; Vapnik, 1995)

63

4/27/22

Error

Capacity and generalization error

The discrepancy between training error and

— - Training error

Overfitting zone g]
S B —— Generalization error

Underfitting zone generalization error is bounded from above by a

quantity that grows as the model capacity grows

but shrinks as the number of training examples

increases.
D a—— I(;c""'mu““"" i (Vapnik and Chervonenkis, 1971; Vapnik, 1982;
(I) Optimal Capacity Blumer et al., 1989; Vapnik, 1995).

Capacity

Pr (twt error < training error + \/% [D (log(%) + 1) - log(%)]) =1-n,

Valid when D — VC dimension is much smaller than N training examples

64

66

Generalization — another philosophical
note

Can any Machine Learning algorithm generalize well from a finite training set of
examples?

To logically infer a rule describing every member of a set,
One must have information about every member of that set.

31

4/27/22

Generalization —a philosophical note

Can any Machine Learning algorithm generalize well from a finite training set of
examples?

Machine learning promises to find rules that are probably correct about most

members of the set they concern.

67

Preference and Regularization

The no free lunch theorem implies that we must design our machine learning
algorithms to perform well on a specific task. We do so by building a set of preferences
into the learning algorithm. When these preferences are aligned with the learning
problems we ask the algorithm to solve, it performs better.

Specifically, we can give a learning algorithm a preference for one solution in its

hypothesis space to another. This means that both functions are eligible, but one

is preferred. The unpreferred solution will be chosen only if it fits the training data

significantly better than the preferred solution.

68

32

4/27/22

Regularization

Reduce Test error on the expense of increasing Training error.

|

Generalization

Many forms of regularization:

Adding extra constraints on the model

Adding extra constraints to the objective function
Encoding prior knowledge

Express preference to a simpler model

69

Regularization for Deep Learning

Regularization estimators:
Trading increased bias for reduced variance.

An effective regularizer is one that makes a Erofitable trade, reducing variance
significantly while not overly increasing the bias.

Three regimes — where the model family being trained either

excluded the true data generating process—corresponding to underfitting and
inducing bias
matched the true data generating process

included the ﬁenerati_ng process but also many other possible generating
processes—the overfitting regime where variance rather than bias dominates
the estimation error

70

33

4/27/22

Regularization for Deep Learning

L1 —regularization
L2 —regularization
Early stopping
Bagging

Dropout

Main resource:

Deep learning book, chapter 7
Goodfellow and Bengio and Courville
MIT Press, 2016

71
Regularization
Refers to a process of introducing additional information in order to solve an ill-posed problem
or to prevent overfitting.
- pata {x;,y;}
) L (waw) Objective J — rn]}nz L(f(x:), i)
Y i/
s Loss
X
72

34

4/27/22

73

Regularization - by norm penalty function

Refers to a process of introducing additional information in order to solve an ill-posed problem

or to prevent overfitting.

Data {QE‘,L', yl}

<
~

+] N Objective J = m}n Z L(f(xz)> yi) —f—/\R(f)

'/ /

Loss Regularization

0s

Regularization —parameter norm penalties

Regularization can be explicit or implicit
Explicit: Limit the model capacity by adding a parameter norm penalty to the

objective function: J(f;X,y) = J(f; X,y) + AR(f)

where A €[0,00] ,isa hyperparameter that weights the relative contribution of

the norm penalty term, R , relative to the standard objective function J .

In NN we usually choose R that penalizes only the weights and leaves the biases

unregularized. R may be different for each layer.

74

35

4/27/22

L? Parameter Regularization

1

R(f) = 5 Il

Commonly use
Drive the weights closer to the origin

Known as weight decay, ridge regression or Tikhonov regularization.

75

L2 Parameter Regularization

1

R(f) = 3 lwlf}
objective function j(wX y) = éwTw + J(w; X, y)
) 9 2) 9
with the corresponding parameter gradient \V4 j(wX y) —\w+V J(w'X y)
w I) - w) Y

To take a single gradient step to update the weights, we perform this update
w4 w — e(Aw + VyJ(w; X, y))
Written another way, the update is: Shrink

w < w(l —eX) + eV, J(w; X, y))

76

36

4/27/22

L' Parameter regularization

Formally, L' regularization on the model parameter W is defined as:

R(f) = [lwlls = wil

i
The regularized objective function is given by:

J(w; X, y) = A|w[ly + J(w; X, y)
with the corresponding gradient:

Vi (w; X, y) = Asign(w) + Vi, J (w; X,)

77

L1 and Sparsity

Ll encourages sparsity

Sparsity in this context refers to the fact that some parameters have an
optimal value of zero.

== Feature selection mechanism

78

37

4/27/22

Bayesian point of view

likelihood

P}Y|X) L\Prlor

Posterior probability

many regularization techniques correspond to imposing certain
prior distributions on model parameters.

85

Bayesian point of view

likelihood
|
P(Y|X) x P(X|Y)P(Y)

\

Posterior probability Prior

many regularization techniques correspond to imposing certain
prior distributions on model parameters.

86

38

4/27/22

Early stopping

Early stopping can be viewed as regularization in time. Intuitively, a training
procedure like gradient descent will tend to learn more and more complex
functions as the number of iterations increases. By regularizing on time, the
complexity of the model can be controlled, improving generalization.

In practice, early stopping is implemented by training on a training set and
measuring accuracy on a statistically independent validation set. The model is
trained until performance on the validation set no longer improves. The model is

then tested on a testing set.

87

Bagging and Other Ensemble Methods

Bagging (bootstrap aggregating) is a technique for reducing generalization error by combining
several models (Breiman, 1994). The idea is to train several different models separately, then have

all of the models vote on the output for test examples.
Models using averaging techniques are called ensemble methods

The reason that model averaging works is that different models will usually not make all the same

errors on the test set.

On average, the ensemble will perform at least as well as any of its members, and if the members

make independent errors, the ensemble will perform significantly better than its members

88

39

