

2

Parameters for analytic curves		
Analytic Form	Parameters	Equation
Line	ρ, θ	$x\cos\theta + y\sin\theta = \rho$
Circle	x ₀ , y ₀ , ρ	$(x-x_0)^2+(y-y_0)^2=r^2$
Parabola	x ₀ , y ₀ , ρ, θ	$(y-y_0)^2 = 4\rho(x-x_0)$
Ellipse	x_0, y_0, a, b, θ	$(x-x_0)^2/a^2+(y-y_0)^2/b^2=1$

Hough transform conclusions

Good

- Robust to outliers: each point votes separately
- Fairly efficient (much faster than trying all sets of parameters)
- · Provides multiple good fits

Bad

- Some sensitivity to noise
- Bin size trades off between noise tolerance, precision, and speed/memory
 - Can be hard to find sweet spot
- Not suitable for more than a few parameters
 grid size grows exponentially

Common applications

- · Line fitting (also circles, ellipses, etc.)
- Object instance recognition (parameters are affine transform)
- Object category recognition (parameters are position/scale)

Finding feature points and their correspondences

• Two main approaches:

 Find features in one image that can be accurately tracked using a local search technique, such as correlation or least squares

Nearby viewpoints

 Independently detect features in all the images under consideration and then match features based on their local appearance

Large distance, appearance change

- Feature detection (extraction)
- Feature description
- Feature matching
- Feature tracking

- Feature detection (extraction)
- Feature description
- Feature matching
 efficiently searches for likely matching candidates in other images.
- Feature tracking

Feature detection and matching

- Feature detection (extraction)
 - each image is searched for locations that are likely to match well in other images.
- Feature description
 - each region around detected keypoint locations is converted into a more compact and stable (invariant) descriptor that can be matched against other descriptors.
- Feature matching
 - efficiently searches for likely matching candidates in other images.
- Feature tracking
 - alternative to the third stage that only searches a small neighborhood around each detected feature and is therefore more suitable for video processing.

Comparing two image patches

$$E_{\text{WSSD}}(\boldsymbol{u}) = \sum_{i} w(\boldsymbol{x}_{i}) [I_{1}(\boldsymbol{x}_{i} + \boldsymbol{u}) - I_{0}(\boldsymbol{x}_{i})]^{2}$$

Weighted Sum Square Differences (WSSD)

- I_0, I_1 two images being compared
- $\mathbf{u} = (u, v)$ displacement vector
- $w(x_i)$ Spatially varying weighting function

Auto-correlation surfaces

The auto-correlation matrix A can be written as

$$oldsymbol{A} = w st egin{bmatrix} I_x & I_x I_y \ I_x I_y & I_y^2 \end{bmatrix} = egin{bmatrix} \sum_{(x,y)\in W} I_x^2 & \sum_{(x,y)\in W} I_x I_y \ \sum_{(x,y)\in W} I_x I_y & \sum_{(x,y)\in W} I_y^2 \end{bmatrix}$$

As first shown by Anandan (1984; 1989) that the inverse of the matrix A provides a lower bound on the uncertainty in the location of a matching patch.

It is therefore a useful indicator of which patches can be reliably matched. See examples

SIFT Results: Recognizing objects in clutter scenes

Feature Descriptors (other than SIFT) Multiscale Oriented Patches (MOPs). Scale invariant feature transform (MSERs) PCA-SIFT Gradient location-orientation histogram (GLOH). Histograms of Oriented Gradients (HOGs) Speeded Up Robust Features (SURF) and many others ... (e.g. BRISK)

MSER

Binary regions are computed by thresholding the image at all possible gray levels

This operation can be performed efficiently by

first sorting all pixels by gray value and then incrementally adding pixels to each connected component

As the threshold is changed, the area of each component (region) is monitored; regions whose rate of change of area with respect to the threshold is minimal are defined as maximally stable.

Matal et al, 2004

Histogram of Oriented Gradients Descriptors (Hogs)

- Local object appearance and shape within an image are described by the distribution of intensity gradients or edge directions.
- The image is divided into small connected regions called cells, and for the pixels within each cell, a histogram of gradient directions is compiled.
- The descriptor is the concatenation of these histograms.
- · For improved accuracy, the local histograms are
- contrast-normalized by calculating a measure of the intensity across a larger region of the image, called a block, and then using this value to normalize all cells within the block.
- This normalization results in better invariance to changes in illumination and shadowing.

L2-norm:
$$f=\displaystylerac{v}{\sqrt{\|v\|_2^2+e^2}}$$

L1-norm:
$$f=rac{v}{(\|v\|_1+e)}$$
L1-sqrt: $f=\sqrt{rac{v}{(\|v\|_1+e)}}$

Feat	ures in Matlab S, VALID_POINTS] = extractFeatures(I, POINTS, Name, Value)	
Class of F	POINTS Descriptor extraction method	
 SURFPoir MSERRegi cornerPo BRISKPoi M-by-2 m coordina 	nts object - Speeded-Up Robust Features (SURF) Lons object - Speeded-Up Robust Features (SURF) Dints object - Fast Retina Keypoint (FREAK) Ints object - Fast Retina Keypoint (FREAK) Matrix of [x y] - Simple square neighborhood around [x y] point location	
Method	Feature vector (descriptor)	
'BRISK' 'FREAK' 'SURF' 'Block' 'Auto'	Binary Robust Invariant Scalable Keypoints (BRISK) Fast Retina Keypoint (FREAK) Speeded-Up Robust Features (SURF) Simple square neighborhood Selects the extraction method based on the class of input points. See the table above.	
	Delautt: Auto	

FP: false positives, proposed matches that are incorrect;

TN: true negatives, non-matches that were correctly rejected.

Performance quantification of matching algorithms

• true positive rate (TPR),	$TPR = \frac{TP}{TP+FN} = \frac{TP}{P};$
• false positive rate (FPR),	$FPR = \frac{FP}{FP+TN} = \frac{FP}{N};$
• positive predictive value (PI	PV),
	$PPV = \frac{TP}{TP+FP} = \frac{TP}{P'};$
• accuracy (ACC),	$ACC = \frac{TP+TN}{D+N}.$

