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DIGITAL IMAGE 
PROCESSING
Lecture 5
DCT & Wavelets
Tammy Riklin Raviv
Electrical and Computer Engineering
Ben-Gurion University of the Negev

Spatial Frequency Analysis

images of naturally occurring scenes or objects (trees, rocks, 

bushes, etc.) tend to contain information at many different spatial 

scales, from very fine to very coarse.

see the forest for the treesCan’t
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Spatial Frequency Analysis

Campbell-Robson contrast sensitivity curve

http://www.psy.vanderbilt.edu/courses/hon185/SpatialFrequency/SpatialFrequency.html

This class

Why transform?

Discrete Cosine Transform

Jpeg Compression

Wavelets
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Why transform?

• Better image processing
• Take into account long-range correlations in space

• Conceptual insights in spatial-frequency information. 
what it means to be “smooth, moderate change, fast change, …”

• Denoising

Why transform?
• Better image processing

• Take into account long-range correlations in space

• Conceptual insights in spatial-frequency information. 
what it means to be “smooth, moderate change, fast change, …”

• Denoising

• Fast computation: convolution vs. multiplication
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• Obtain transformed data as measurement in radiology images 
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Why transform?
• Better image processing

• Take into account long-range correlations in space
• Conceptual insights in spatial-frequency information. 

what it means to be “smooth, moderate change, fast change, …”
• Denoising

• Fast computation: convolution vs. multiplication

• Alternative representation and sensing 
• Obtain transformed data as measurement in radiology images (medical 

and astrophysics), inverse transform to recover image

• Efficient storage and transmission
• Energy compaction
• Pick a few “representatives” (basis)
• Just store/send the “contribution” from each basis

?
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Is DFT a Good (enough) Transform? 
• Theory

• Implementation

• Application

The Desirables for Image Transforms
• Theory

• Inverse transform available
• Energy conservation (Parsevell)
• Good for compacting energy
• Orthonormal, complete basis
• (sort of) shift- and rotation invariant

• Implementation
• Real-valued
• Separable
• Fast to compute w. butterfly-like structure
• Same implementation for forward and inverse 

transform
• Application

• Useful for image enhancement
• Capture perceptually meaningful structures in 

images

DFT ???
X 
X
?
X
X
x 
X 
X
X

X
?X
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Discrete Cosine Transform - overview

One-dimensional DCT

Orthogonality

Two-dimensional DCT

Image Compression (grayscale, color)

Discrete Cosine Transform (DCT)

• A variant of the Discrete Fourier Transform – using only 

real numbers

• Periodic and symmetric

• The energy of a DCT transformed data (if the original 

data is correlated) is concentrated in a few coefficients –

well suited for compression.

• A good approximation to the optimal Karhunen-Loeve

(KL) decomposition of natural image statistics over a 

small patches
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1-D  DCT 

F (k) =
N�1X

i=0

cos
⇣ ⇡

N
(i+

1

2
)k
⌘
f(i)

1-D  DCT   with Matlab
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1-D  DCT   with Matlab

1-D Inverse DCT in Matlab

m = 20
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1-D Inverse DCT in Matlab

m = 10

1-D Inverse DCT in Matlab

m = 8
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1-D Inverse DCT in Matlab

m = 7

1-D Inverse DCT in Matlab

m = 6



11/18/20

11

1-D Inverse DCT in Matlab

m = 5

1-D Inverse DCT in Matlab

m = 4
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1-D Inverse DCT in Matlab

Orthogonality and Orthonormality

a · b = kakkbk cos ✓

Two vectors, and , with respective lengths                

are orthogonal if and only if their dot product 

is zero.

a b kak, kbk

In addition, two vectors in an inner product space are 

orthonormal if they are orthogonal and both of unit length.
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DFT vs. DCT
1D-DFT

real(a) imag(a)
1D-DCT

C(k, i) =

r
2

N
cos

⇣ ⇡

N
(i+

1

2
)k
⌘

C(0, i) =

r
2

N

k = 0

k = 7
C(k, i) = e�j2⇡ ik

N

= cos(2⇡
ik

N
) + j sin(2⇡

ik

N
)

k = 0

k = 7

DCT Properties

is real and orthogonal:

The rows of       form an orthogonal basis.

is not symmetric!

DCT is not the real part of unitary DFT!

C

C

C
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The Advantage of Orthogonality
is orthogonal.C CTC = I

C�1 = CT

Makes matrix equation solving easy: 

CTCXCT

The discrete cosine transform, C, has one basic 
characteristic: it is a real orthogonal matrix.
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From 1D-DCT to 2D-DCT

2D DCT

F (k, l) =
N�1X

i=0

N�1X

j=0

cos
⇣ ⇡

N
(i+

1

2
)k
⌘
cos

⇣ ⇡

N
(j +

1

2
)l
⌘
f(i, j)

Like the 2D Fast Fourier Transform, the 2D DCT can be 
implemented in two stages, i.e., first
computing the DCT of each line in the block and then 
computing the DCT of each resulting column. 

Like the FFT, each of the DCTs can also be computed in 
O(N logN) time.
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DCT in Matlab

DCT in Matlab
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DCT in Matlab

23.45%

DCT in Matlab
100

1.33%
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2D - DCT
• Idea 2D-DCT:  Interpolate the data with a set of 
basis functions

• Organize information by order of importance to 
the human visual system

• Used to compress small blocks of an image 
(8 x 8 pixels in our case)

Why blocks?

2D DCT
Use One-Dimensional DCT in both    horizontal and 

vertical directions.  

First direction  F = C*XT

Second direction G = C*FT

We can say 2D-DCT is the matrix:
Y = C(CXT)T
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2D DCT (Matlab)
Bk,l = ckcl cos

⇣ ⇡

N
(i+

1

2
)k
⌘
cos

⇣ ⇡

M
(j +

1

2
)l
⌘

i = 0, . . . N, j = 0, . . .M

ck=0 =
1p
N

ck>0 =
2p
N

cl>0 =
2p
M

cl=0 =
1p
M

basis images: DFT (real) vs DCT

DFT DCT
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Image Compression
• Image compression is a method that reduces the 

amount of memory it takes to store in image.

• We will exploit the fact that the DCT matrix is based on 
our visual system for the purpose of image 
compression.

• This means we can delete the least significant values 
without our eyes noticing the difference.

Image Compression
• Now we have found the matrix Y = C(CXT)T

• Using the DCT, the entries in Y will be organized based 
on the human visual system.

• The most important values to
our eyes will be placed in the 
upper left corner of the matrix.

• The least important values 
will be mostly in the lower 
right corner of the matrix.
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Common Applications
• JPEG Format
• MPEG-1 and MPEG-2
• MP3, Advanced Audio Coding, WMA

• What’s in common?
• All share, in some form or another, a DCT method for 

compression.

JPEG = Joint Photographic Experts Group

Lossy Image Compression (JPEG)

Block-based Discrete Cosine Transform (DCT)
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Using DCT in JPEG 
• The first coefficient B(0,0) is the DC component, the 

average intensity
• The top-left coeffs represent low frequencies, the bottom 

right – high frequencies

Image compression using DCT
• DCT enables image compression by concentrating most 

image information in the low frequencies

• Loose unimportant image info (high frequencies) 

• The decoder computes the inverse DCT – IDCT 
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Block size in JPEG 

• What Should be the Optimal Block size?
• small block

• faster 
• correlation exists between neighboring pixels

• large block
• better compression in smooth regions

• It’s 8x8 in standard JPEG

Image Compression
8 x 8 Pixels Image
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Image Compression
• Gray-Scale Example:
• Value Range  0 (black) --- 255 (white)

63   33   36   28   63   81   86   98
27   18   17   11   22   48  104 108 
72   52   28   15   17   16   47   77 
132 100 56   19   10    9    21   55 
187 186 166 88   13   34   43   51 
184 203 199 177 82   44   97   73 
211 214 208 198 134 52   78   83 
211 210 203 191 133 79   74   86 

I

Image Compression
• 2D-DCT of matrix

-304  210  104  -69  10   20   -12  7
-327 -260   67   70  -10  -15   21  8  

93   -84  -66  16    24   -2    -5   9
89    33  -19  -20  -26   21   -3   0
-9     42   18   27   -7   -17  29  -7
-5     15  -10   17  32   -15   -4   7

10       3  -12    -1    2     3    -2  -3
12     30     0    -3   -3    -6   12  -1

J Abs(J)
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Image Compression

J(abs(J)<20) =0 abs(J)

Reconstructing the Image
• New Matrix and Compressed Image

55   41   27   39   56 69 92 106 
35   22     7   16   35 59 88 101
65   49   21     5     6 28 62  73

130 114   75   28    -7 -1  33  46 
180 175 148   95   33 16 45  59
200 206 203 165   92 55 71  82
205 207 214 193 121 70 75  83
214 205 209 196 129 75 78  85
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Can You Tell the Difference?
Original   Compressed

Image Compression

Original   Compressed
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PSNR – Class work
• Define what is PSNR
• Read and image and present it.
• Deform the image as you wish. e.g., apply low-
pass filter, add noise, compress and expand 
again …

• Present the deformed image
• Calculate the PSNR between the images

Linear Quantization
• We will not zero the bottom half of the matrix.

• The idea is to assign fewer bits of memory to 
store information in the lower right corner of the 
DCT matrix.
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Linear Quantization
Use Quantization Matrix (Q)

qkl = 8p(k + l + 1)   for 0 < k, l < 7

Q = p *   8  16  24  32  40  48   56    64
16  24  32  40  48  56   64    72
24  32  40  48  56  64   72    80
32  40  48  56  64  72   80    88
40  48  56  64  72  80   88    96 
48  56  64  72  80  88   96  104
56  64  72  80  88  95  104 112
64  72  80  88  96 104 112 120  

Linear Quantization
• p is called the loss parameter

• It acts like a “knob” to control compression

• The greater p is the more you compress the 
image
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Linear Quantization
We divide the each entry in the DCT matrix by the 
Quantization Matrix

-304  210  104  -69  10   20   -12  7
-327 -260   67   70  -10  -15   21  8  

93   -84  -66  16    24   -2    -5   9
89    33  -19  -20  -26   21   -3   0
-9     42   18   27   -7   -17  29  -7
-5     15  -10   17  32   -15   -4   7
10       3  -12    -1    2     3    -2  -3
12     30     0    -3   -3    -6   12  -1

8  16  24  32  40  48   56    64
16  24  32  40  48  56   64    72
24  32  40  48  56  64   72    80
32  40  48  56  64  72   80    88
40  48  56  64  72  80   88    96
48  56  64  72  80  88   96  104
56  64  72  80  88  95  104 112
64  72  80  88  96 104 112 120

Linear Quantization
p = 1 p = 4

-38  13  4 -2   0   0   0   0
-20 -11  2  2   0   0   0   0

4   -3 -2  0   0   0   0   0
3    1  0  0   0   0   0   0 
0    1  0  0   0   0   0   0 
0    0  0  0   0   0   0   0 
0    0  0  0   0   0   0   0 
0    0  0  0   0   0   0   0 

-9    3   1 -1   0   0   0   0
-5   -3   1  0   0   0   0   0   
1   -1   0  0   0   0   0   0
1    0   0  0   0   0   0   0 
0    0   0  0   0   0   0   0 
0    0   0  0   0   0   0   0 
0    0   0  0   0   0   0   0 
0    0   0  0   0   0   0   0 
0    0   0  0   0   0   0   0 

New Y: 14 terms New Y: 10 terms
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Linear Quantization
p = 1 p = 4

Linear Quantization

Compressed with P=1 Compressed with P=4
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Linear Quantization
p = 1

Linear Quantization

P= 4
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Quantization Example

Further Compression
• Run-Length Encoding (RLE)
• Huffman Coding
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Memory Storage
• The original image uses one byte (8 bits) for each pixel.  

Therefore, the amount of memory needed  for each 8 x 8 
block is:

• 8 x (82) = 512 bits

Is This Worth the Work?
• The question that arises is “How much memory 
does this save?”

p Total bits Bits/pixel
X 512 8
1 249 3.89
2 191 2.98
3 147 2.30

Linear Quantization
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JPEG Imaging
• It is fairly easy to extend this application to color 
images.
• These are expressed in the RGB color system.
• Each pixel is assigned three integers for each 
color intensity.

RGB Coordinates
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The Approach
• There are a few ways to approach the image 

compression.
• Repeat the discussed process independently for each 

of the three colors and then reconstruct the image.
• Baseline JPEG uses a more delicate approach.

• Define the luminance coordinate to be:
• Y = 0.299R + 0.587G + 0.114B

• Define the color differences coordinates to be:
• U = B – Y
• V = R – Y

More on Baseline
• This transforms the RGB color data to the YUV 
system which is easily reversible.

• It applies the DCT filtering independently to Y, U, 
and V using the quantization matrix QY.

B

G

R

V

U

Y
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JPEG Quantization

QY = 
p { 16   11   10   16   24   40   51   61

12   12   14   19   26   58   60   55

14   13   16   24   40   57   69   56

14   17   22   29   51   87   80   62

18   22   37   56   68  109 103  77

24   35   55   64   81  104 113  92

49   64   78   87  103 121 120 101

72   92   95   98  112 100 103  99}

Luminance:

JPEG Quantization

QC = 
{ 17  18   24   47  99   99   99   99

18   21  26   66  99   99   99   99

24   26  56   99  99   99   99   99

47   66  99   99  99   99   99   99

99   99  99   99  99   99   99   99 

99   99  99   99  99   99   99   99

99   99  99   99  99   99   99   99

99   99  99   99  99   99   99   99}

Chrominance:
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Luminance and Chrominance

• Human eye is more sensible to luminance 
(Y coordinate).

• It is less sensible to color changes 
(UV coordinates).

• Then: compress more on UV !

• Consequence: color images are more compressible than 
grayscale ones

Reconstitution
• After compression, Y, U, and V, are recombined and 

converted back to RGB to form the compressed color 
image:

B= U+Y
R= V+Y
G= (Y- 0.299R - 0.114B) / 0.587
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Comparing Compression
Original p = 1

p = 4 p = 8

Up Close
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JPEG compression comparison

89k 12k

See also

https://en.wikipedia.org/wiki/JPEG

Wavelets - overview

• Why  wavelets?
• Wavelets  like  basis  components.
• Wavelets  examples.
• Fast  wavelet  transform .
• Wavelets  like  filter.
• Wavelets  advantages.
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Fourier Analysis

n Breaks down a signal into constituent 
sinusoids of different frequencies

In other words: Transform the view of the 
signal from time-base to frequency-base.

What’s wrong with Fourier?
n By using Fourier Transform , we loose 

the time information : WHEN did a 
particular event take place ?

n FT  can  not locate drift, trends, abrupt 
changes, beginning and ends of events, 
etc.

n Calculating  use  complex   numbers. 
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Time  and  Space  definition
• Time – for  one  dimension   waves  we  start  point  

shifting  from  source to  end in  time  scale .
• Space – for  image  point  shifting  is  two  dimensional  .
• Here  they  are  synonyms .

Kronneker  function

•

Can exactly show the time of appearance 
but have not information about frequency 
and shape of signal.

( ) ( )
tk
tk

tt kk ¹
=

ïî

ï
í
ì

== ,0
,1dy
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Short Time Fourier Analysis
n In order to analyze small section of a 

signal, Denis Gabor (1946), developed a 
technique, based on the FT and using 
windowing : STFT

STFT (or: Gabor Transform)
n A compromise between time-based and 

frequency-based views of a signal.
n both time and frequency are 

represented in limited precision.
n The precision is determined by the size 

of the window.
n Once you choose a particular size for 

the time window - it will be the same for 
all frequencies.
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What’s wrong with Gabor?

n Many signals require a more flexible 
approach - so we can vary the window 
size to determine more accurately either 
time or frequency.

What is Wavelet Analysis ?

n And…what is a wavelet…?

n A wavelet is a waveform of effectively 
limited duration that has an average value 
of zero.



11/18/20

44

Wavelet's   properties
• Short time localized waves with zero integral value.

• Possibility of time shifting.

• Flexibility.

The Continuous Wavelet
Transform (CWT)
n A mathematical representation of the 

Fourier transform:

n Meaning: the sum over all time of the 
signal f(t) multiplied by a complex 
exponential, and the result is the Fourier 
coefficients F(w) .

ò
¥

¥-

-= dtetfwF iwt)()(
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Wavelet Transform (Cont’d)
n Those coefficients, when multiplied by a 

sinusoid of appropriate frequency w, 
yield the constituent sinusoidal 
component of the original signal:

Wavelet Transform
n And the result of the CWT are Wavelet 

coefficients . 
n Multiplying each coefficient by the 

appropriately scaled and shifted wavelet
yields the constituent wavelet of the 
original signal:
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Scaling
n Wavelet analysis produces a time-scale

view of the signal.
n Scaling means stretching or 

compressing of the signal.
n scale factor (a) for sine waves:

f t a

f t a

f t a

t

t

t

( )

( )

( )

sin( )

sin( )

sin( )

= =

= =

= =

  ;   

  ;   

  ;   

1

2 1
2

4 1
4

Scaling (Cont’d)

n Scale factor works exactly the same 
with wavelets:

f t a

f t a

f t a

t

t

t

( )

( )

( )

( )

( )

( )

= =

= =

= =

Y

Y

Y

  ;   

  ;   

  ;   

1

2 1
2

4 1
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Wavelet  function 1D -> 2D

( ) ( )a
by

a
bx

abba
yx

yxyx
--Y=Y ,1, ,,

• b – shift  
coefficient

• a – scale  
coefficient

• 2D function

( ) ( )a
bx

xba
-Y=Y

a
1

,

CWT
n Reminder: The CWT Is the sum over all 

time of the signal, multiplied by scaled 
and shifted versions of the wavelet 
function 

Step 1:
Take a Wavelet and compare
it to a section at the start 
of the original signal
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CWT
Step 2:
Calculate a number, C, that represents 
how closely correlated the wavelet is
with this section of the signal. The 
higher C indicates higher similarity.

CWT

n Step 3: Shift the wavelet to the right and 
repeat steps 1-2 until you’ve covered 
the whole signal
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CWT
n Step 4: Scale (stretch) the wavelet and 

repeat steps 1-3

Wavelets  examples
Dyadic  transform

• For easier calculation we can discretize  
a continuous  signal.

• We have a grid of discrete values that 
called dyadic grid . 

• Important: wavelet functions are compact 
(e.g. no overcalculatings) .

j

j

kb
a

2
2

=

=
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Haar Wavelets

Haar Wavelets Properties  I
Any continuous real function with compact support can be 

approximated uniformly by linear combination of:

and their shifted functions

�(t),�(2t),�(4t), . . . ,�(2nt), . . .
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Haar Wavelets Properties  II
Any continuous real function on [0, 1] can be approximated 

uniformly on [0, 1] by linear combinations of the constant 

function

and their shifted functions

 (t), (2t), (4t), . . . , (2nt), . . .

Haar transform
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Haar Wavelets Properties  III

Orthogonality

Haar Wavelets Properties
Functional relationship:

It follows that coefficients of scale n can be calculated by 
coefficients of scale n+1:
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Haar Matrix

Wavelet  functions examples

• Haar  function

• Daubechies 
function
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Properties of Daubechies 
wavelets
I. Daubechies, Comm. Pure Appl. Math. 41 (1988) 909.

n Compact support
¨ finite number of filter parameters / fast

implementations 
¨ high compressibility
¨ fine scale amplitudes are very small in regions where 

the function is smooth / sensitive recognition of 
structures

n Identical forward / backward filter parameters
¨ fast, exact reconstruction
¨ very asymmetric

Mallat* Filter Scheme

n Mallat was the first to implement this 
scheme, using a well known filter design 
called “two channel sub band coder”, 
yielding a ‘Fast Wavelet Transform’
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Approximations and Details:

n Approximations: High-scale, low-
frequency components of the signal

n Details: low-scale, high-frequency 
components

Input Signal

LPF

HPF

Decimation

n The former process produces twice the 
data it began with: N input samples 
produce N approximations coefficients and 
N detail coefficients.

n To correct this, we Down sample (or: 
Decimate) the filter output by two, by simply 
throwing away every second coefficient.



11/18/20

56

Decimation (cont’d)

Input 
Signal

LPF

HPF

A*

D*

So, a complete one stage block looks like:

Multi-level Decomposition

n Iterating the decomposition process, 
breaks the input signal into many lower-
resolution components: Wavelet 
decomposition tree:
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Wavelets and Pyramid

pyramid—each wavelet level stores 3/4
of the original pixels (usually the horizontal, vertical, and mixed gradients), so that the total
number of wavelet coefficients and original pixels is the same.

2D Wavelet Decomposition
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2D Wavelet Decomposition

2D Wavelet transform
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2D Wavelet transform

2D Wavelet transform – Jpeg2000
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Orthogonality

• For 2 vectors

• For 2 functions

0*, ==å nnwvwv
n

( ) ( ) ( ) ( ) 0*, == ò dttgtftgtf
b

a

Why  wavelets  have  orthogonal  base ?
• It  easier  calculation.
• When  we  decompose  some  image  and  calculating  

zero  level  decomposition  we  have  accurate  values .
• Scalar  multiplication  with other  base  function  equals  

zero.  
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Wavelet reconstruction

n Reconstruction (or synthesis) is the 
process in which we assemble all 
components back 

Up sampling
(or interpolation) is 
done by zero 
inserting  between 
every two 
coefficients

Wavelets like filters
Relationship of  Filters to Wavelet 
Shape
n Choosing the correct filter is most 

important.
n The choice of the filter determines the 

shape of the wavelet we use to perform 
the analysis.
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Example
n A low-pass reconstruction filter (L’) for 

the db2 wavelet:

The filter coefficients (obtained by Matlab dbaux 
command:
0.3415   0.5915   0.1585   -0.0915
reversing the order of this vector and multiply every 
second coefficient by -1 we get the high-pass filter H’:
-0.0915   -0.1585   0.5915   -0.3415 

Example (Cont’d)

n Now we up-sample the H’ coefficient 
vector:

-0.0915   0   -0.1585   0    0.5915   0    -0.3415   0
n and Convolving the up-sampled vector 

with the original low-pass filter we get:
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Example (Cont’d)

n Now iterate this process several more 
times, repeatedly up-sampling and 
convolving the resultant vector 

with the original 
low-pass filter, 
a pattern
begins to 
emerge:

Example: Conclusion

n The curve begins to look more like the db2
wavelet: the wavelet shape is determined 
entirely by the coefficient Of the 
reconstruction filter

n You can’t choose an arbitrary wavelet 
waveform if you want to be able to 
reconstruct the original signal accurately!

https://www.mathworks.com/examples/wavelet
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https://www.mathworks.com/examples/wavelet

Wavelets in Matlab

Compression Example

n A two dimensional (image) 
compression, using 2D wavelets 
analysis.

n The image is a Fingerprint.
n FBI uses a wavelet technique to 

compress its fingerprints database.
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Fingerprint compression

Wavelet: Haar
Level:3

Results

Original Image Compressed Image

Threshold: 3.5
Zeros: 42%
Retained energy:
99.95%
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Next Class
More Transforms; More on Transforms


