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2D Fourier transform and its applications

* Fourier transforms and spatial frequencies in 2D
» Definition and meaning

* The Convolution Theorem
» Applications to spatial filtering

* The Sampling Theorem and Aliasing

Much of this material is a straightforward generalization of
the 1D Fourier analysis with which you are familiar.
A. Zisserman

!ean Eapgls!e !osep” !ouner ! | !g!- |g!5!

. ...the manner in which the author arrives at these ™
A bOld Idea (1 807) equations is not exempt of difficulties and...his
Any univariate function ca analysis to integrate them still leaves something
be rewritten as a weighted to be desired on the score of generality and even
sum of sines and cosines o

rigour.
different frequencies.
- Don’t believe it?

—Neither did Lagrange,
Laplace, Poisson and
other big wigs

—Not translated into
English until 1878!
- But it's (mostly) true!
—called Fourier Series

—there are some subtle
restrictions
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r /" "/
A sum of sines and cosines

Our building block: R L
Asin(ax)+ Beos(wx) it o
o :_ITarget : o fo :

Add enough of them to
get any signal g(x) you
want!

f(target)=

f1 + f2+ f3...+ fn+...

Hay9

Reminder: 1D Fourier Series

Example %
NAWARRYIVYY
VVVVVY

flz) = sina:—l—%sin?)a:—k...

A. Zisserman




11/11/20

Fourier Series of a Square Wave

2 SN
Flz) = — sinnx
n=1, ,5,...n

frequency

A. Zisserman

Fourier Series: Just a change of basis
M f(x) = F(e)
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A. Zisserman




Inverse FT: Just a change of basis

M- F(w) = f(x)

iz

i€
Asuanbay |

A. Zisserman

1D Fourier Transform

Flu)= [ f(z)e " da,
f@@)= [ Fwe™™ du

A. Zisserman
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1D Fourier Transform

Flu)= [ f(z)e ™ da,
f@) = [ Fwe™ du

Example

_[Llel<3
r-{eEl5E

fx) F(u)
Fu)= [~ f(z)e*™dg

_ X/2 —j2ruz d
= -] T
-X/2

_J X u i —_1'21r'u[e

X 22X _psin(mXu) .
=X Xy Xsine(wXu).

LN e 1 —jemuX/2 _ ej21ruX/2]

Fourier Transform




Example: Music

- We think of music in terms of frequencies at different
magnitudes

voice waveform example Spectrum of a voice signal (15 seconds)

9 95 10 105 1 15 500 1000 1500 2000 2500 3000 3500 4000
seconds hertz

Slide: Hoiem

Fourier Analysis of a Piano

https://www.youtube.com/watch?v=6SR81Wh2cqU
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Fourier Analysis of a Piano

Magnitude

10°
Frequency (Hz)

Phase (rad)

10! 10? 10° 10*
Frequency (Hz)

r /" "/
Discrete Fourier Transform Demo

http://madebyevan.com/dft/

f(x) = gaussian(x)

Sonal in sparial domain

A

Evan Wallace
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2D Fourier Transform

Do not take in for granted! | switched one pair of FT —can you guess which?

2D Fourier Transform

11/11/20
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2D Fourier Transform

Definition
Flu,0)= [ [~ f(z,y)e ) dz dy,
f(z,y) = /_0:0 /_0:0 F(u, v)e? @) gy dy

where u and v are spatial frequencies.

Also will write FT pairs as f(z,y) © F(u,v).

A. Zisserman

2D Fourier Transform

e F'(u,v) is complex in general,
F(u,v) = Fx(u,v) + jFi(u,v)

o |F(u,v)| is the magnitude spectrum
earctan(Fi(u,v)/Fr(u,v)) is the phase angle spectrum.
e Conjugacy: f*(z,y) © F(—u,—v)

e Symmetry: f(z,y)is evenif f(z,y) = f(—z,—y)

A. Zisserman
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Sinusoidal Waves

In 1D the Fourier transform is based on a decompostion into func-
tions €/*™* = cos 2rux + jsin 2ruz which form an orthogonal basis.
Similarly in 2D

P2 uTHY) — cog O (ux + vy) + j sin 27 (uz + vy)

The real and imaginary terms are sinusoids on the z,y plane. The
maxima and minima of cos 27 (uz + vy) occur when

21 (uz + vy) = nw

Sinusoidal Waves

write uz + vy using vector notation with u = (u,v)",x = (z,y)" then
27(ux + vy) = 2Tu.X = n7w

are sets of equally spaced parallel lines with normal u and wave-

length 1/v/u? + v°.

A. Zisserman

11/11/20
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Sinusoidal Waves

To get some sense of what
basis elements look like, we
plot a basis element --- or
rather, its real part ---

as a function of x,y for some
fixed u. v. We get a function

e

that is constant when (ux+vy)
is constant. The magnitude of
the vector (u. v) gives a
frequency. and its direction

o—in(uztuvy)
. u

N
. . . . .
gives an orientation. The
function is a sinusoid with this

frequency along the direction.

ejﬂ-(um_"vy)

and constant perpendicular to
the direction.

r

..
slide: B. Freeman

Sinusoidal Waves

edm(uz+vy)

f
Here u and v are larger than
in the previous slide.
Y]
eI (uz+vy)
. f
u
: //

slide: B. Freeman

11/11/20
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Signals can be composed

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering
More: http://www.cs.unm.edu/~brayer/vision/fourier.html

Fourier Transform

Stores the amplitude and phase at each frequency:

For mathematical convenience, this is often notated in terms of real
and complex numbers

Related by Euler’s formula

Hays

11/11/20
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Euler’s formula

ImA . _
; e'’=cos ¢ +isin g
sin @
¢
O|cos ¢ 1 Re
Fourier Transform

- Stores the amplitude and phase at each frequency:
- For mathematical convenience, this is often notated in terms of real

and complex numbers
- Related by Euler’s formula

- Amplitude encodes how much signal there is at a particular

frequency

Amplitude: A:iJRdwf+hMQY

- Phase encodes spatial information (indirectly)

Phase: ¢ =tan

4 Im(w)
Re(w)

Hays

11/11/20
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FouﬂerBases

Green = cosine

=27

This change of basis is the Fourier Transform !
ays

Fourier Bases
11

Fourier domain with
complex amplitude: a+jb

e Fourier Transform 13

Hays

16



Important Fourier Transform Pairs

f(z,y) = é(z,y) = 6()d(y)

F(u,v) = / / 6(z, ;1/)(1_].2”(“""{'"”) dxdy

= 1

flz,y) = (6(z,y —a) +é(z,y +a))

DO =

F(u,v) = %/ / (0(z,y —a) + 6(z,y + a)) e~i2m(uztvy) dxdy

1 Doy ; R
= = (E' j2mar - 67'127"”) = Ccos 2mav

> A. Zisserman

Important Fourier Transform Pairs

rectangle centred at origin
with sides of length Xand Y

! v

fxy) |F(u,v)|

A. Zisserman

11/11/20
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Important Fourier Transform Pairs

F(u,v) =/ff(ac, y)e P2t dydy, Jxy) |F(u,v)|
X/2
= lxp

e_j2‘7"-’ X/2 e—j?.mry Y/2
[ ] [— j27er

i Yo, 2o
e Pz [ ey, separability

—Jj2muf_x v
- 1 [e—qu - equ]

T —j2ru

_j27ru [e-—an - eij] ’

_xy [sin(ﬂ'Xu)] [sin(?n’Yv)]

mXu wYv

= XYsince(nXu)sine(7YV).

/7]
Important Fourier Transform Pairs
Gaussian centred on origin EEN

1 2 2
flr) = 5—e™

2mo?

o838 BEEE

58

where r? = 2% + 9.

25252

F(u,v) = F(p) = e "

where p? = u’+v”

* FT of a Gaussian is a Gaussian

* Note inverse scale relation A. Zisserman

11/11/20
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Important Fourier Transform Pairs

Circular disk unit height and
radius a centred on origin

1, |r| < a,

flz,y) = {0, Ir| > a.

F(u,v) = F(p) = aJi(map)/p

where J(z) is a Bessel function.

g.5bB88888¢8

* rotational symmetry

* a ‘2D’ version of a sinc
A. Zisserman

Important Fourier Transform Pairs

fz,y) = é(z,y) = 6(x)d(y)

F(u,v) = //6(w,y)e_j2ﬁ("1"+uy) dzdy

= 1

fs) Fiwy)

A. Zisserman

11/11/20
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2D Fourier Decomposition

The spatial function f(z,y)
flz,y) = /_ O:O /_ O:O F(u, v)e?>™ M) doy dy

is decomposed into a weighted sum of 2D orthogonal basis functions
in a similar manner to decomposing a vector onto a basis using scalar

products.
+y V//

Jxy)
A. Zisserman

Basis reconstruction

Full image First 1 basis fn First 4 basis fns

First 9 basis fns First 16 basis fns First 400 basis fns
Danny Alexander

11/11/20
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2D Fourier Transform of Real Images

What does it mean to be at pixel x,y?
What does it mean to be more or less bright in the Fourier decomposition
image?

2D Fourier Transform of Real Images

Image with periodic structure

|F(u,v)|

FT has peaks at spatial frequencies of repeated texture

A. Zisserman

21
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Low/High Pass Filters

original low pass high pass

-

Low and High Pass filtering

L ARCOSL.TGA _[O] x| FFT of ARCOSL.TGA | _[o] x| ARCDSL TGA 1
| B -

A. Zisserman

JFFT of ALBMP TALBMP 1 M= B

22
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Removing frequency bands

Removing frequency bands

23



Removing frequency bands

Example — Forensic application

Periodic background removed

remove
peaks

A. Zisserman

Removing frequency bands

Lunar orbital image (1966)

|F(u,v)| remove join lines
peaks removed

A. Zisserman

11/11/20
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]
Editting frequencies

Magnitude vs. Phase
|F(u,v)

_ cross-section

Jx.y)

* |f(u,v)| generally decreases with
higher spatial frequencies

A. Zisserman

25



Magnitude vs. Phase
F(u,v)

~ cross-section

phase F(u,v)

Jtxy)

* |f(u,v)| generally decreases with
higher spatial frequencies

* phase appears less informative

A. Zisserman

The Importance of Phase

=1

A. Zisserman

11/11/20
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The Importance of Phase

A. Zisserman

Phase and Magnitude- Another Example

A. Zisserman

27



11/11/20

The Importance of Phase

A. Zisserman

Phase and Magnitude- Yet Another
Example

Efros

28



Phase and Magnitude- Yet Another
Example

Amplitude Phase

Efros

Phase and Magnitude- Yet Another
Example

3

Efros

11/11/20
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]
What about phase?

Amplitude

Efros

Cheebra
Zebra phase, cheetah Cheetah phase, zebra
amplitude amplitude

Efros

11/11/20
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Phase and Frequency

Rotation by
90°

Efros

Bonus question for next week

- Surprise us with hybrid images that are mixture of phase

and amplitude of different images.

- Manipulate phase and frequency (e.g., by rotation) of the

same image to generate interesting artifacts.
- There will be a competition!

- Extra bonus point to the winner!

11/11/20
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Phase and Frequency

- The frequency amplitude of natural images are quite
similar
- Heavy in low frequencies, falling off in high frequencies
- Will any image be like that, or is it a property of the world we live
in?
- Most information in the image is carried in the phase, not
the amplitude
- Not quite clear why

Efros

Properties of the Fourier Transform

As in the 1D case FTs have the following properties

* Linearity
af(z,y) + By(z,y) & aF (u,v) + BG(u,v).

* Similarity w v

1
flaz,by) & %F(E’ 5)-
This applies, for example, when an image is scaled
* Shift f(z —a,y —b) & >R (y, v)

This might apply, for example, if an object moved.

11/11/20
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Properties of Fourier Transforms

In 2D can also rotate, shear etc

Under an affine transformation: x — Ax u—ATu
Example

How does F(u,v) transform if fix,y) is rotated by 45 degrees?

fix,y) F(u,v)

IfA=RthenA~T =R.

i.e. FT undergoes the same rotation.

%
4
Properties of Fourier Transforms

- Fourier transform of a real signal is symmetric about the

origin

- The energy of the signal is the same as the energy of its

Fourier transform

See Szeliski Book (3.4)

11/11/20
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The Convolution Theorem

http://jclahr.com/science/psn/wielandt/node8.html

]
Filtering Vs. Convolution in 1D

gla) =3 f(x+ (i) filtering f(x) with h(x)

f(x) | 100]200100]200| 90| 80| 80| 100100

hix) |14)12]1/4 molecule/template/kernel
gx) [ qmsol 1 1 111 1]

g(z) = / f(u)h(z —u)du convolution of f(x)and h(x)
— Nu(_.\ 4.,/ after change of
/f(a; +u)h(—w) du variable u' = u—-—2x
= > f(z+i)r(—i)

11/11/20
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]
Filtering Vs. Convolution in 1D
glx) =3 f(x+ (i) filtering f(x) with h(x)

g(z) = /f(u)h(m —u)du convolution of f(x) and h(x)
_ Nw(_.\ 4.,/ after change of
/f(w +u)h(-u)du variable u’ = u—-—2x
= Y f(z+i)h(—i)

]
Filtering Vs. Convolution in 1D

g(z) = Z f(z + i)h(i) filtering f(x) with h(x)

f(x) | 100]200|100]200| 90| 80| 80| 100|100

h) 141214 molecule/template/kernel
gx) | qwsol 1 11|

g(z) = /f(’u,)h,($ —u)du convolution of f(x) and h(x)
— /f(a: 1+ u/)h(—u)d!  2fter change of
variable ¢ = u — 2
= > f(z+i)r(—i)

35



]
Filtering Vs. Convolution in 1D

glx) =3 f(x+ (i) filtering f(x) with h(x)

g(z) = /f(u)h(gg —u)du convolution of f(x) and h(x)
— /f(a: + uYh(—u') du’  3fter change of
variable ¢/ = u —
= Y f(z+i)r(—i)
* note negative sigh (which is a reflection in x) in convolution

* hi(x) is often symmetric (even/odd), and then (e.g. for even)

g(x) = > f(z+ih(i)

Filtering Vs. Convolution in 2D

convolution g9(z,y) = h(z,y)* f(z,y) = f(a,y) * h(z,y)
= //f(u, v)h(z —u,y —v) dudv

Froj gl

filtering image fy) —w80

filter / kernel A(x,y)
N\t

1
LITRLIPHLIEY

~a— by |hy |hy3

by Jhag s | -

11/11/20
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Filtering Vs. Convolution in 2D

convolution g9(z,y) = h(z,y)* f(z,y) = f(z,y) x h(z,y)

= //f(u,v)h(a: —u,y —v)dudv

filtering

gxy) = huf(i—1,j-1) + hof(i—1j) + hsf(i—1,7+1)+
hoy f(i,5 —1) + ha f(i,7) + hoy f(i,5+1) +
hat f(i+1,5—1) + hepf(i+1,5) + haf(i+1,j+1)

for convolution, reflect filter in x and y axes

Convolution

+ Convolution:
— Flip the filter in both dimensions (bottom to top, right to left)

k k
gli,sl = > > hluvlfli —u,j -]
u=—-kv=-k
convolution with h y

slide: K. Grauman

11/11/20
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Filtering vs. Convolution in 2D Matlab

2D filtering f=image
e g=filter2(h,f); h=filter

glm,n]= Zh[k,l] fIm+k,n+I]
K

2D convolution
e g=conv2 (h, f);

glm,n]= Zh[k,l] flm—k,n-1]

Convolution Theorem

flz,y) « h(z,y) < F(u,v)H(u,v)

Space convolution = frequency multiplication

In words: the Fourier transform of the convolution of two
functions is the product of their individual Fourier transforms

Why is this so important?

Because linear filtering operations can be carried out by simple
multiplications in the Fourier domain

38



The Importance of Convolution Theorem

It establishes the link between operations in the frequency
domain and the action of linear spatial filters

Example smooth an image with a Gaussian spatial filter

Gaussian
scale-—20 ptxels

flz,y) * g(z,y) & F(u,v)G

The Importance of Convolution Theorem

Example smooth an image with a Gaussian spatial filter
f(@,y) % g(a,y) & Flu,0)G(u,0)

Cayssian
. scale=20 pixels

1. Compute FT of image and FT of Gaussian
2. Multiply FT's

3. Compute inverse FT of the result.

11/11/20
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The Importance of Convolution Theorem

Jxy)

Gaussian
scale=3 pixels

Inverse Fourier
transform

|F(u,v)| |G(u,v)|

The Importance of Convolution Theorem

Gaussian scale=3 pixels

Jxy)

Inverse Fourier
transform

.

|F(u,v)]| |G(u,v)|

11/11/20
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Filtering: Spatial Domain vs. Frequency
Domain

There are two equivalent ways of carrying out linear spatial
filtering operations:

1. Spatial domain: convolution with a spatial operator

2. Frequency domain: multiply FT of signal and filter, and compute
inverse FT of product

Why choose one over the other ?
* The filter may be simpler to specify or compute in one of the domains

*  Computational cost

More on Filtering in spatial domain

1(0]-1
2|0|-2
1(0]-1

Hays

11/11/20
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Filtering in frequency domain u

FFTl

Inverse FFT

¢

Slide: Hoiem

Fast Fourier Transform in Matlab

>> I = rgb2gray(im);
>> I = double(I)/255;
>> figure;imshow(I)
>> [w,h] = size(I)

42



Fast Fourier Transform in Matlab

>>
>> fftsize = 1024;
>> |% should be of order of 2 (for speed) and include padding

> fs = 50; % filter half-size

>> fil = fspecial('gaussian’, fs%2+1,10);

\ Standard

> row &cols I
Deviation

>> im_fft = fft2(I,fftsize,fftsize);
>> fil_fft = fft2(fil,fftsize,fftsize);

>> im_fil_fft = im_fft.«fil_fft;

7

pointwise multiplication

Fast Fourier Transform in Matlab

100 200 300 400 500 600 700 800 900 1000

100 0 300 400 500 600

>> figure; imagesc(log(abs(fftshift(im_fft)))); axis image, colormap jet
>> colorbar
I

>> figure; imagesc(log(abs(fftshift(fil_fft)))); axis image, colormap jet

11/11/20
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Fast Fourier Transform in Matlab

PR 25 SRR
100 200 300 400 500 600 700 800 900 1000

100 200 300 400 500 600 700 800 900 1000

>> figure; imagesc(log(abs(fftshift(im_fft)))); axis image, colormap jet
>> colorbar
I

>>
>> figure; imagesc((angle((im_fft)))); axis image, colormap jet

~~

Fast Fourier Transform in Matlab

>> im_fil = ifft2(im_fil_fft);

>> im_fil_no_pad = im_fil(1l+fs:size(I,1)+fs,1+fs:size(I,2)+fs);

11/11/20
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Fast Fourier Transform in Matlab

>> figure;imshow(im_fil_no_pad);

Class Work

- Read cameraman image:
| = imread('cameraman.tif');

- Calculate its frequency spectrum with fft2

- Display the absolute value of its spectrum with and w/o
fftshift

- It is recommended to present the spectral image using
logarithmic scale.

11/11/20
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Sampling Theorem

o] 1 S

]
1D Sampling

In 1D model the image as a set of point samples obtained my multi-
plying f(z) by the comb function

comb(z) = i d(z —nX)

n=-—0oc

an infinite set of delta functions spaced by X.

L P77

@)= 3 8a-nX)f(z) Tf T T Tf

11/11/20
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1D Sampling

spatial domain frequency domain

(1T — A\
' x

F('u)

Ty

fiz)= 3 8@ —nX)f(2)

n=—00

= 3 f(X)dz —nX)

n=—0oo

1] =

Yn;_:mF(u—n/X)

B = )1—( §w6(u X% T =

replicated copies of F(u)

1D Sampling
\ / H(u) = rect(uX)

Apply a box filter \

=
/X u
TN F)
<G
! S
fl@) = _f FnX)8(z —nX) xsine Tl =FbH0)
= "200 f(nX)sinc%(z —nX)

The original continuous function f{x) is completely recovered from the samples
provided the sampling frequency (1/X) exceeds twice the greatest frequency of the
band-limited signal. (Nyquist sampling limit)

47



The Sampling Theorem and Aliasing

if sampling frequency is reduced ...

spatia| domain frequenCX domain
T T oF: s —
x
Frequencies above the Nyquist limit are
‘folded back’ corrupting the signal in the
acceptable range.
/

The information in these frequencies is —
not correctly reconstructed.

=V

2D Sampling
In 2D the equivalent of a comb is a bed-of-nails function

§ i d(z —nX)d(y —mY)

n=-—00 m=—0C

vV vy 1

T/‘I/T/
Vv Ve
1/1/
/T/ /Vn‘/‘

11/11/20
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2D Sampling

In 2D the equivalent of a comb is a bed-of-nails function

i i 0(x —nX)d(y —mY)

n=—0o0 m=—000

Fourier transform pairs

i 0z —nX) (—)i)( i du—n/X)

n=—0oc “* N=—00

i i 0z —nX)d(y —mY) & )&Y Z d0(u—n/X) i d(v—n/Y)

n=—0o0 m=-—0oQ n=-—00 m=-—00

Sampling Theorem in 2D
frequency domain

vV v v 4

'V V
VYV VYV & =
VYV ¥ Vv ruy EEE yaz,“/w

% AIX

= rect(uX)rect(v

f(z, Z Z f(nX, mY)Smc (z — nX)%mCY(y —nY)

n=-—000 m=—00

11/11/20
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Sampling Theorem in 2D

If the Fourier transform of a function f(x,y) is zero for all
frequencies beyond u, and v,,i.e. if the Fourier transform is
band-limited, then the continuous function f(x,y) can be
completely reconstructed from its samples as long as the
sampling distances w and h along the x and y directions

1

aresuchthat o ! and h<—

Aliasing: 1D Example

If the signal has frequencies above the Nyquist limit ...

Insufficient samples to distinguish the high and low frequency

aliasing: signals “travelling in disguise” as other frequencies

11/11/20
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Aliasing in video

Imagine a spoked wheel moving to the right (rotating clockwise).
Mark wheel with dot so we can see what’s happening.

If camera shutter is only open for a fraction of a frame time (frame
time = 1/30 sec. for video, 1/24 sec. for film):

DXIRDB

frame 0 frame 1 frame 2 frame 3 frame 4
shutter open time

Without dot, wheel appears to be rotating slowly backwards!
(counterclockwise)

Slide by Steve Seitz

11/11/20
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Aliasing in 2D: under-sampling
reconstruction

original reconstruction

o

signal has frequencies
above Nyquist limit

Aliasing in Images

Disintegrating textures

52
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What's happening

T

Plot as image:

Aliasing
Not enough samples

AAAAAANANAAN
WiNEWANEDINEWINEADINA
VYV

Anti-aliasing

* Increase sampling frequency
» e.g. in graphics rendering cast 4 rays per pixel

* Reduce maximum frequency to below Nyquist limit
+ e.g. low pass filter before sampling

53
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Anti-aliasing

Example 4 x zoom

down sample by
factor of 4

convolve with
Gaussian

down sample by
factor of 4

Aliasing in MRI

MRI

STAT692, Wisconsin
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Aliasing in MRI
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(a) Gradient Echo-EPI Pulse Sequence
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(b) k-Space Trajectory

STAT692, Wisconsin

Aliasing in MRI

MRI

K-Space
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Aliasing in MRI

MRI K-Space

Reconstructed
MRI

|deas for final Projects

Solitaire Recognition
Chess recognition
Real time Human Activity recognition

Face Recognition

Flaying Object Detection

Ball detection (in soccer game)
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|deas for final Projects

EENG 512/CSCI 512 - Final Projects
Hoch, Garrett, Solitaire Recognition

|deas for Final Projects

Original:video
Example 1

EENG 512/CSCI 512 - Final Projects
Xiao, Ke, Chess Recognition
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|deas for Final Projects

BGU - ECE 2013: Topaz, Ohad, Tsachi, Nadav

|deas for Final Projects

BGU - ECE 2015:Doron, Boris, Alex
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|deas for Final Projects

0 i

' IMANGLSTUDIOS,

~—-

BGU - ECE 2015:Nir, Tal & Shay — Interactive temple Run

|deas for Final Projects

BGU — ECE 2013:Ariel, Tomer, Oren — Virtual Keyboard
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