DIGITAL IMAGE
PROCESSING

Lecture 3

Filters cont., Scale-space, Colors
Tammy Riklin Raviv

Electrical and Computer Engineering
Ben-Gurion University of the Negev

Last Class: Filtering

Linear filtering is a weighted sum/difference of

pixel values

* Can smooth, sharpen, translate (among many
other uses)

* Filtering in Matlab, e.g. to filter image f with h
Option 1:
g =filter2( h, f);
h=filter  f=image
e.g. h = fspecial('gaussian’);
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Filtering in Matlab
Option 2
imfilter - N-D filtering of multidimensional images

I, = imfilter(l, h)

filters the multidimensional array | with the
multidimensional filter h and returns the result
in 1.

You optionally can filter a multidimensional array
with a 2-D filter using a GPU

Filtering in Matlab

- h= fspecial(type)

- h = fspecial(‘average',hsize)

- h = fspecial('disk',radius)

- h = fspecial(‘gaussian',hsize,sigma)

- Use imgaussfilt or imgaussfilt3 instead.
- h = fspecial('laplacian’,alpha)

- h = fspecial('log',hsize,sigma)

- h = fspecial('motion'.len,theta)

- h = fspecial('prewitt') : ; ; ;
-1-1-1

]

- h = fspecial('sobel') :

121
0 0 0
-1-2-1]
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Important filter: Gaussian

016

014

- Weight contributions of neighboring pixels by nearness
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Slide credit: Christopher Rasmussen
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Smoothing with Gaussian filter
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Smoothing with box filter

Gaussian filters

- Remove “high-frequency” components from the image
(low-pass filter)
- Images become more smooth

- Convolution with self is another Gaussian

- So can smooth with small-width kernel, repeat, and get same result
as larger-width kernel would have

— Convolving two times with Gaussian kernel of width o is same as
convolving once with kernel of width o2

- Separable kernel
- Factors into product of two 1D Gaussians

Source: K. Grauman
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Separability of the Gaussian filter

T G
Gs(x,y) = 57 OXP 20
1 x> 1 y?
T 5 2 T 5 2
= exp 20 exp 20
V2ro P Voro P

The 2D Gaussian can be expressed as the product of two
functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Source: D. Lowe

Separability example

112 |1 2 13]3
2D convolution > 1212 1«3 15 |5
(center location only)

11211 (4 |4 |s

65
The filter factors 112 |1 1] X n
into aproductof 1D [2 |4 |2 | =
filters: 12 11 1
. 2 13|38 1"
Perform convolfjtlon [ 1 I2 I - I *G 1515 1= B
along rows:
4 |4 |8 18
Followed by convolution 1
along the remaining column: 8 = 65
18

Source: K. Grauman
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Separability

- Why is separability useful in practice?

]
Separability

- Why is separability useful in practice?
- If K is width of convolution kernel:

- 2D convolution = K2 multiply-add operations
- 2x 1D convolution: 2K multiply-add operations




Partial Derivatives

First order partial derivatives:

oI (x,

(8x 2 =I(x+1,y) - I(z,y) Left Derivative
ol (x,

(8:1; 2 =I(z,y) — I(z - 1,y) Right Derivative

81(% y) I(:): + 1, y) - 1(33 — 1, y) Central Derivative

ox 2

Partial Derivatives

First order partial derivatives:

ol(z,y)
dy

ZI(QZ‘,y—I—l)—I(CE,y)
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Partial Derivatives

>> myFirstImage = imread('someImage.png’);
>> I = myFirstImage(:,:,1);

>> Ir I(2:end,:);

>> Il I(1l:end-1,:);

>> Idx = Il-Ir;

>> figure;imagesc(Idx);colorbar

>> figure;imagesc(abs(Idx));colorbar

Partial Derivatives

25¢

B

>>
>> figure;imagesc(diff(I,1));colorbar
« >> figure;imagesc(diff(I,2));colorbar

>> Iu = I(:,1:end-1);

>> Id = I(:,2:end);

>> Idy = Iu-Id;

>> figure;imagesc(abs(Idy));colorbar




11/4/20

G d . t

= w

“ »

= » o
"

ey
= o i "

. ™
- ©

o a0
7 . » -

- “w
“w v »
Woome w0 w8 w0 K W me WM k0 W0 w3 W 2

Can you explain the differences?

>> [Igx,Igy] = gradient(double(I));
>> figure;imagesc(abs(Igx));colorbar
>> figure;imagesc(abs(Igy));colorbar
>>

Gradients

Gradients:

ol 01
o2 o)

wi= ()" + (%)

vi=(
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>> G = sqrt(double(Idx).”2+double(Idy)."2);
>> figure;imagesc(G);colorbar

Computing Derivatives using Linear
Filters

Think of the image as a surface with z = f{x,y)

:
:
:
:
, <

10



Computing Derivatives using Linear
Filters

Objective: compute gradient Vf(z,y) = (3, 5!) of the image “surface”

* e.g. as a method to find the edge in the image

» there is the problem of noise ....

Computing Derivatives using Linear
Filters

1D
Want f/(x), use central difference
N _ Jit1— fi-1
f'(z) s i+1 - 1

which is equivalent to the molecule [-3,0, 3].

For a noisy signal the derivative amplifies the
noise. _
Solution?

11/4/20
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Computing Derivatives using Linear
Filters
1D
Want f/(z), use central difference

f,(Z) — f’L+1 ; f'i—l

which is equivalent to the molecule [-3,0,1].

For a noisy signhal the derivative amplifies the
noise. )
Solution

* smooth with a Gaussian filter
* then differentiate

Computing Derivatives using Linear
Filters

Differentiate smoothed signal G(z) * f(z)

A6+ @) _ gy, H@
=g ey
=209, o)

Convolution with a derivative of Gaussian filter

] A~ T T
P T el =T

e.g. for ¢ = 1 the molecule is
[-0.0133,-0.1080,—0.2420,0.0000,0.2420,0.1080,0.0133].
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Computing Derivatives using Linear

Filters
2D

1 2792
G(z,y) - e rie

2eG@) % £(00) = (55 @) x f(z,9)

2not
—T _22/952 1 —12/20?
= (\/2_,”036 2 ) % (\/2_71'06 - )*f(fﬂ,y)

Filtering with a 1D derivative of Gaussian filter in x and a
1D Gaussian filter in y — it is a separable filter

.
"
' AHN
s a
o

Computing Derivatives using Linear
Filters
Example

filter with x and y derivatives of Gaussian to obtain directional
image derivatives

d'

IZ‘ = G.‘L‘(z, y) ¥ I(.’B, y)

11/4/20
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Computing Derivatives using Linear
Filters

Computing Derivatives using Linear
Filters
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Computing Derivatives using Linear
Filters

y-deriv

Computing Derivatives using Linear
Filters

[V(G(z,y) * I(z,y))]

image

gradient magnitude

11/4/20
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Derivatives & the Laplacian

- Second order derivatives

021 971
29 Y & _
V=021 5p
921
oz =L@+ Ly + 1@ —1y)—2(xy)
921
g = @y + D+ 1y—1) -2y

VA =1z +1,y) + 1z = 1,y) + I(z,y + 1) + I(z,y — 1) — 41(z,y)

Divergence

&3¢ Il

a/ax(V,) > 0 a/ax(vx) <0 3/ox(Vy) =
a/ay(V,) > 0 a/day(Vy) <0 a/ay(Vy) =
Ve(V)>0 Ve(V) <0 Ve(V) =

divergence is a vector operator that operates on a vector field,
producing a scalar field

V- (Vg = ) 0Vy(2,y)

ox oy

11/4/20
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Back to Laplacian

The Laplacian of a scalar function or functional expression is

the divergence of the gradient of that function or expression:

Al =V - (VI)

Therefore, you can compute the Laplacian using the divergence

and gradient functions:
>> [Igx,Igy]l = gradient(double(I));
>> div = divergence(Igx,Igy);
>> figure;imagesc(div);colorbar
>> figure;imagesc(abs(div));colorbar

Back to Laplacian aA;—v.(vn

>> [Igx,Igy]l = gradient(double(I));
oo

>> div = divergence(Igx,Igy);
>> figure;imagesc(div);colorbar
>> figure;imagesc(abs(div));colorbar

abs

11/4/20
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Pyramids

Level 4

Blur and 1/16 resolution

subsample . Level 3
Multi-scale signal representation  Blurand JiEsresokiian
subsample ' -4 Level 2

1/4 resolution

Blur and
subsample
Level 1'
Blur and 1/2 resolution
subsample
Level 0
Original

image

A predecessor to scale-space
representation and
multiresolution analysis.

Wikipedia

Gaussian Pyramid

The Gaussian Pyramid is a hierarchy of low-pass filtered versions
of the original image, such that successive levels correspond to

lower frequencies.

] ® g,

S
LTINS L
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Gaussian Pyramids

» Algorithm:

— 1. Filter with G(o = 1)

— 2. Resample at every
other pixel

— 3. Repeat

Laplacian Pyramid

The Laplacian Pyramid is a decomposition of the original
image into a hierarchy of images such that each level
corresponds to a different band of image frequencies.
This is done by taking the difference of levels in the

Gaussian pyramid.

For image / the Laplacian pyramid L(/) is:
L; = G; — expand(Gj41)

L; = G; — blur(G;)

19
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Laplacian Pyramid Algorithm

Pyramids Construction

Bl ¥ ¥ ¥

20



Laplacian Pyramid & Laplacian
The well-known Laplacian derivative operator (isotropic second deriva-
tive) is given by
>’Pf P f
2 o iy i
Viflz,y) = 53 + A
For Gaussian kernels, g(z;0) = —— —=?/20
dg(z; o) —z
s = ?!}(-’1‘,”)
d’g(z;0) a? 1
o = (; - 1) —9(z;0)
dg(z; o) x? 1
el (F —1}ZeEel)
http://www.cs.toronto.edu/~jepson/
Therefore csc320/notes/pyramids.pdf
d%q(z; o dg(x.o
TIT) (o) B s (0 (9(250) ~ gla; 0 + Ao))

Uses of Laplacian Pyramid: Coding

bits per pixel

http://www.cs.toronto.edu/~jepson/csc320/notes/pyramids.pdf

11/4/20
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Uses of Laplacian Pyramid: Image

Restoration (Coring)

100 <80 <60 ~40 -20 0 20 40 60 80 100

Original image + additive Cored image
noise (SNR = 9dB) (SNR = 13.82dB)

http://www.cs.toronto.edu/~jepson/csc320/notes/pyramids.pdf

Uses of Laplacian Pyramid: Image
Enhancement

Image 1

http://www.cs.toronto.edu/~jepson/csc320/notes/pyramids.pdf

11/4/20
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Uses of Laplacian Pyramid: Image
Compositing

http://www.cs.toronto.edu/~jepson/csc320/notes/pyramids.pdf

]
Hybrid Images

Ask about the
bonus !

23



]
Isotropic Diffusion

The diffusion equation is a general case of the heat
equation that describes the density changes in a material
undergoing diffusion over time. Isotropic diffusion, in image
processing parlance, is an instance of the heat equation as
a partial differential equation (PDE), given as:

or _, 9 o1
_ = I —_—— R
o=V T gt

where, | is the image and t is the time of evolution.

Manasi Datar

]
Isotropic Diffusion

Solving this for an image is equivalent to convolution with

some Gaussian kernel.

In practice we iterate as follows:

t t t t
L+ Lo+ I — AL

1 J

I =T+ A (I

'L—l,j

11/4/20
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Isotropic Diffusion

t=2 t=8 t=128 t=256

We can notice that while the diffusion process blurs the image
considerably as the number of iterations increases, the edge

information progressively degrades as well.

Anisotropic Diffusion: Perona-Malik

Perona & Malik introduce the flux function as a means to
constrain the diffusion process to contiguous
homogeneous regions, but not cross region boundaries.
The heat equation (after appropriate expansion of terms)
is thus modified to:

I
% = div (¢(z,y,t)VI) = Ve - VI + c(z,y,t) AT

where c is the proposed flux function which controls the

rate of diffusion at any point in the image.

11/4/20
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Anisotropic Diffusion: Perona-Malik

A choice of ¢ such that it follows the gradient
magnitude at the point enables us to restrain the
diffusion process as we approach region boundaries.
As we approach edges in the image, the flux function
may trigger inverse diffusion and actually enhance

the edges.

Anisotropic Diffusion: Perona-Malik

Perona & Malik suggest the following two flux functions:

c([|VI)]) = e~ (IVII/K)?
1

C(lIVIII)ZW

11/4/20
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Anisotropic Diffusion: Perona-Malik

The flux functions offer a trade-off between edge-
preservation and blurring (smoothing) homogeneous
regions. Both the functions are governed by the free
parameter kK which determines the edge-strength to
consider as a valid region boundary. Intuitively, a large
value of k will lead back into an isotropic-like solution.

We will experiment with both the flux functions.

Anisotropic Diffusion: Perona-Malik

A discrete numerical solution can be derived for the

anisotropic case as follows:
Ilt;;—l — If,] + A [CN . VNI+ Cg * VSI + Cp VEI_f_C‘-‘V . V“/I]:,]

where {N,S,W,E} correspond to the pixel above, below, left

and right of the pixel under consideration (i,j).

11/4/20
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Anisotropic Diffusion: Perona-Malik

Anisotropic vs. Isotropic Diffusion

Isotropic quadratic exponent

11/4/20
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Colors

The Eye

Vitreous humor

Macula

Visual axis
e B BRI ficil

Optic axis

Optic nerve

Choroid
Sclera

The human eye is a camera

— Iris - colored annulus with radial muscles
— Pu pll - the hole (aperture) whose size is controlled by the iris

— What'’s the sensor?
— photoreceptor cells (rods and cones) in the retina

Slide by Steve Seitz

11/4/20
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Eye receptors

IR G Al.
Thomas Young and Hermann Helmholtz assumed that the
eye's retina consists of three different kinds of light receptors for red,
green and blue. Source: Wikipedia

Eye receptors

Two types of light-sensitive receptors

Cones
cone-shaped
less sensitive
operate in high light
color vision

Rods
rod-shaped
highly sensitive
operate at night
gray-scale vision

James Havs

11/4/20
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Rod & Cone Sensitivity

/\ Dazzling light; bright sun on snow

10
14| | Outdoors in full sunlight
= Outdoors under a tree on a sunny day

Comfortable indoor illumination;
night sports events

1
vision

hreshold for perception of color;
bright moonlight

10n

Intensity of light reflected
from objects (lamberts)

Rod vis

~J

V' Threshold when dark-adapted

© 1998 Sinauer Associates, Inc.

Distribution of Rods & Cones

Night Sky: why are there more stars off-center?
Averted vision: http://en.wikipedia.org/wiki/Averted_vision

James Hays
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Visible Spectrum

Radio waves Infrared Ultra- X-rays Gamma rays
AM FM TV  Radar violet
1 [ 1 | | [
100 m Tm Tcm 0.01 cm 1000 nm 10 nm 0.01 nm 0.0001 nm

VISIBLE SPECTRUM

| 1 | | | | | | 1 1 | | | | 1 | | | |
700 nm 600 nm 500 nm 400 nm

http://www.chromacademy.com/Ims/sco736/images/Electromagnetic-spectrum.jpg

Visible Spectrum

0.8

0.6

0.4

Relative Sensitivity

0.2

400 500 600 700
Wavelength (nm)

11/4/20
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The Physics of Light

Any patch of light can be completely described
physically by its spectrum: the number of photons
(per time unit) at each wavelength 400 - 700 nm.

# Photons
(per ms.)

400 500 600 700
Wavelength (nm.)

© Stephen E. Palmer, 2002

The Physics of Light

Some examples of the spectra of light sources

A. Ruby Laser

# Photons

400 500 600 700
Wavelength (nm.)

C. Tungsten Lightbulb

# Photons

400 500 600 700

B. Gallium Phosphide Crystal

# Photons

400 500 600 700
Wavelength (nm.)

D. Normal Daylight

# Photons

400 500 600 700

© Stephen E. Palmer, 2002

11/4/20
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The Physics of Light

Some examples of the reflectance spectra of surfaces

% Photons Reflected

400 700 400 700 400 700 400
Wavelength (nm)

© Stephen E. Palmer, 2002

Physiology of Color Vision

Three kinds of cones:

Cone mosaic
440 530 560 nm.

=
o
o

RELATIVE ABSORBANCE (%)
o
=

450 500 550 600 650

WAVELENGTH (nm.)

» Why are M and L cones so close?
* Why are there 3?

© Stephen E. Palmer, 2002

11/4/20
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Metamers

Input Input

‘

Frequency Frequency

Yisualization Centex

Color Perception

Select the lightest shade Select the darkest shade Select the two identical
of blue. of orange. shades of pink.

https://petapixel.com/2019/06/05/less-than-1-of-people-can-ace-this-color-
perception-test/

35



Color Sensing in Camera (RGB)

* 3-chip vs. 1-chip: quality vs.
* Why more green? i

]

]

Bayer filter
Why 3 colors? ——
‘ http://www.cooldictionary.com/words/Bayer-filter.wikipedia
Slide by Steve Seitz

Practical Color Sensing: Bayer Grid

— mcominglight o Fstimate RGB
Filter Layer at ‘G’ cells from
e neighboring
values
——— Resulting Patt
_ _

11/4/20
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Camera Color Response

Canon 450D Quantum Efficiency

LLC
tMax.com

\

_

375 a7s 575 675 s a5 975

/
/ /
-
A

MaxMax.com

Color Space: How can we represent colors

https://www.liveabout.com/top-color-mixing-tips-2578046

11/4/20
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Color Space: How can we represent colors

http://en.wikipedia.org/wiki/File:RGB_illumination.jpg

Additive and Subtractive Colors

Additive Colour Mixing Subtractive Colour Mixing
(Red, Green & Blue) (Cyan, Magenta & Yellow)

38



Color Spaces: RGB

Default Color
Spac

Any color =r*R + g*G + b*B
« Strongly correlated channels

» Non-perceptual
Image from: http://en.wikij

Color Space: CM 'K

C —Cyan
M — Magenta
K -Black

Subtractive primary colors —
Used in printing

In contrast:

RGB

Additive Primary colors
Computer monitors

G=
(R=0,B=0)

B=1

(R=0,G=0)

iki/File:RGB color_solid cube.png

11/4/20
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Color Spaces: HSV

hue, saturation, and value
Intuitive color space

Hue

If you had to choose, would you rather
go without:

- intensity (‘value’), or

- hue + saturation (‘chroma’)?

Color Spaces: HSV

James Hays

Only color: Constant Intensity

11/4/20
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Color Spaces: HSV

Constant Color; Only Intensity James Hays

/]
Color Spaces: HSV

Original Image James Hays

41
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Color Spaces: HSV

Intuitive color space

(H=1,5=0)

James Havs

Color Spaces: L*a*b*

“Perceptually uniform™ color space

(L=65,a=0)

James Havs

42
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Color Spaces: L*a*b*

“Perceptually uniform” color space

+L
L — Lightness

s 4 =g a,b color opponents

Reproduction rights obtainable from
www. CartoonStock.com

Don't worry Sir, being colour-blind
is not much of a problem around here...

© UW CSE vision faculty

43



11/4/20

Next class

Frequency

]
Links to Some Previous Years Projects
- Supermarket

+ AirDrums

- BallBounce

- PizzaPlanner

- VirtualShooting
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