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DIGITAL IMAGE 
PROCESSING
Lecture 3
Filters cont., Scale-space, Colors
Tammy Riklin Raviv
Electrical and Computer Engineering
Ben-Gurion University of the Negev

Last Class: Filtering

Option 1:
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Filtering in Matlab

imfilter - N-D filtering of multidimensional images

Ih = imfilter(I, h)
filters the multidimensional array I with the 
multidimensional filter h and returns the result 
in Ih.

You optionally can filter a multidimensional array 
with a 2-D filter using a GPU

Option 2

Filtering in Matlab
• h= fspecial(type)
• h = fspecial('average',hsize)
• h = fspecial('disk',radius)
• h = fspecial('gaussian',hsize,sigma)
• Use imgaussfilt or imgaussfilt3 instead.
• h = fspecial('laplacian',alpha)
• h = fspecial('log',hsize,sigma)
• h = fspecial('motion',len,theta)
• h = fspecial('prewitt')

• h = fspecial('sobel')
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• Weight contributions of neighboring pixels by nearness

0.003   0.013   0.022   0.013   0.003
0.013   0.059   0.097   0.059   0.013
0.022   0.097   0.159   0.097   0.022
0.013   0.059   0.097   0.059   0.013
0.003   0.013   0.022   0.013   0.003

5 x 5, s = 1

Slide credit: Christopher Rasmussen

Important	filter:	Gaussian

x y

x

y

Smoothing	with	Gaussian	filter

James Hays
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Smoothing	with	box	filter

James Hays

Gaussian filters
• Remove “high-frequency” components from the image 

(low-pass filter)
• Images become more smooth

• Convolution with self is another Gaussian
– So can smooth with small-width kernel, repeat, and get same result 

as larger-width kernel would have
– Convolving two times with Gaussian kernel of width σ is same as 

convolving once with kernel of width  σ√2 
• Separable kernel

– Factors into product of two 1D Gaussians

Source: K. Grauman
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Separability of the Gaussian filter

Source: D. Lowe

Separability example

*

*

=

=

2D convolution
(center location only)

Source: K. Grauman

The filter factors
into a product of 1D

filters:

Perform convolution
along rows:

Followed by convolution
along the remaining column:

=
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Separability
• Why is separability useful in practice?

Separability
• Why is separability useful in practice?
• If K is width of convolution kernel:

• 2D convolution = K2 multiply-add operations
• 2x 1D convolution: 2K multiply-add operations
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Partial Derivatives
First order partial derivatives:

@I(x, y)

@x
= I(x+ 1, y)� I(x, y)

@I(x, y)

@x
= I(x, y)� I(x� 1, y)

@I(x, y)

@x
=

I(x+ 1, y)� I(x� 1, y)

2

Left Derivative

Right Derivative

Central Derivative

Partial Derivatives
First order partial derivatives:

@I(x, y)

@y
=

I(x, y + 1)� I(x, y � 1)

2

@I(x, y)

@y
= I(x, y + 1)� I(x, y)

@I(x, y)

@y
= I(x, y)� I(x, y � 1)
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Partial Derivatives

Partial Derivatives
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Gradients

Can you explain the differences?

Gradients
Gradients:

rI =
⇣@I
@x

,
@I

@y

⌘

|rI| =

s
⇣@I
@x

⌘2
+
⇣@I
@y

⌘2
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Gradients

Computing Derivatives using Linear 
Filters
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Computing Derivatives using Linear 
Filters

Computing Derivatives using Linear 
Filters

Solution?
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Computing Derivatives using Linear 
Filters

Computing Derivatives using Linear 
Filters
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Computing Derivatives using Linear 
Filters

Computing Derivatives using Linear 
Filters



11/4/20

14

Computing Derivatives using Linear 
Filters

Computing Derivatives using Linear 
Filters
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Computing Derivatives using Linear 
Filters

Computing Derivatives using Linear 
Filters
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Derivatives & the Laplacian
• Second order derivatives

@2I

@x2
= I(x+ 1, y) + I(x� 1, y)� 2I(x, y)

@2I

@y2
= I(x, y + 1) + I(x, y � 1)� 2I(x, y)

r2I =
@2I

@x2
+

@2I

@y2

r2I = I(x+ 1, y) + I(x� 1, y) + I(x, y + 1) + I(x, y � 1)� 4I(x, y)

Divergence

divergence is a vector operator that operates on a vector field, 
producing a scalar field
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Back to Laplacian

The Laplacian of a scalar function or functional expression is 

the divergence of the gradient of that function or expression:

�I = r · (rI)

Therefore, you can compute the Laplacian using the divergence

and gradient functions:

Back to Laplacian �I = r · (rI)

abs
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Pyramids

Multi-scale signal representation 

A predecessor to scale-space 
representation and 
multiresolution analysis.

Wikipedia

Gaussian Pyramid

The Gaussian Pyramid is a hierarchy of low-pass filtered versions 

of the original image, such that successive levels correspond to 

lower frequencies. 
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Gaussian Pyramids

Laplacian Pyramid

The Laplacian Pyramid is a decomposition of the original 

image into a hierarchy of images such that each level 

corresponds to a different band of image frequencies. 

This is done by taking the difference of levels in the 

Gaussian pyramid. 

For image I the Laplacian pyramid L(I) is: 

Li = Gi � expand(Gi+1)

Li = Gi � blur(Gi)
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Laplacian Pyramid Algorithm

Pyramids Construction
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Laplacian Pyramid & Laplacian

http://www.cs.toronto.edu/~jepson/
csc320/notes/pyramids.pdf

Uses of Laplacian Pyramid: Coding

http://www.cs.toronto.edu/~jepson/csc320/notes/pyramids.pdf
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Uses of Laplacian Pyramid: Image 
Restoration (Coring)

http://www.cs.toronto.edu/~jepson/csc320/notes/pyramids.pdf

Uses of Laplacian Pyramid: Image 
Enhancement

http://www.cs.toronto.edu/~jepson/csc320/notes/pyramids.pdf
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Uses of Laplacian Pyramid:  Image 
Compositing

http://www.cs.toronto.edu/~jepson/csc320/notes/pyramids.pdf

Hybrid Images

Ask about the 
bonus !
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Isotropic Diffusion
The diffusion equation is a general case of the heat 

equation that describes the density changes in a material 

undergoing diffusion over time. Isotropic diffusion, in image 

processing parlance, is an instance of the heat equation as 

a partial differential equation (PDE), given as:

where, I is the image and t is the time of evolution.  

Manasi Datar

Isotropic Diffusion
Solving this for an image is equivalent to convolution with 

some Gaussian kernel. 

In practice we iterate as follows:
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Isotropic Diffusion

We can notice that while the diffusion process blurs the image 

considerably as the number of iterations increases, the edge 

information progressively degrades as well. 

Anisotropic Diffusion: Perona-Malik

Perona & Malik introduce the flux function as a means to 

constrain the diffusion process to contiguous 

homogeneous regions, but not cross region boundaries. 

The heat equation (after appropriate expansion of terms) 

is thus modified to: 

where c is the proposed flux function which controls the 

rate of diffusion at any point in the image. 
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Anisotropic Diffusion: Perona-Malik
A choice of c such that it follows the gradient 

magnitude at the point enables us to restrain the 

diffusion process as we approach region boundaries. 

As we approach edges in the image, the flux function 

may trigger inverse diffusion and actually enhance 

the edges. 

Anisotropic Diffusion: Perona-Malik
Perona & Malik suggest the following two flux functions: 
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Anisotropic Diffusion: Perona-Malik
The flux functions offer a trade-off between edge-

preservation and blurring (smoothing) homogeneous 

regions. Both the functions are governed by the free 

parameter κ which determines the edge-strength to 

consider as a valid region boundary. Intuitively, a large 

value of κ will lead back into an isotropic-like solution.

We will experiment with both the flux functions.

Anisotropic Diffusion: Perona-Malik
A discrete numerical solution can be derived for the 

anisotropic case as follows:

where {N,S,W,E} correspond to the pixel above, below, left 

and right of the pixel under consideration (i,j).  
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Anisotropic Diffusion: Perona-Malik

Anisotropic vs. Isotropic Diffusion
Isotropic              quadratic          exponent
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Colors

The Eye
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Eye receptors

Thomas Young and Hermann Helmholtz assumed that the 
eye's retina consists of three different kinds of light receptors for red, 
green and blue.  Source: Wikipedia

Eye receptors
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Rod & Cone Sensitivity

Distribution of Rods & Cones
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Visible Spectrum

http://www.chromacademy.com/lms/sco736/images/Electromagnetic-spectrum.jpg

Visible Spectrum
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The Physics of Light

The Physics of Light
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The Physics of Light

Physiology of Color Vision
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Metamers

Color Perception

https://petapixel.com/2019/06/05/less-than-1-of-people-can-ace-this-color-
perception-test/
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Color Sensing in Camera (RGB)

Practical Color Sensing: Bayer Grid
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Camera Color Response

Color Space: How can we represent colors

https://www.liveabout.com/top-color-mixing-tips-2578046
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Color Space: How can we represent colors

Additive and Subtractive Colors
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Color Spaces: RGB
Default Color 

Space

Color Space: CMYK

C – Cyan
M – Magenta
Y – Yellow
K -Black

Subtractive primary colors –
Used in printing

In contrast:
RGB
Additive Primary colors
Computer monitors
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Color Spaces: HSV 
hue, saturation, and value

Color Spaces: HSV

Only color: Constant Intensity
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Color Spaces: HSV

Only color: Constant Intensity
Constant Color; Only Intensity

Color Spaces: HSV

Only color: Constant Intensity
Original Image
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Color Spaces: HSV

Only color: Constant Intensity

Intuitive color space

Color Spaces: L*a*b*

Only color: Constant Intensity
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Color Spaces: L*a*b*

Only color: Constant Intensity

L – Lightness

a,b color opponents
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Next class

Frequency

Links to Some Previous Years Projects
• Supermarket

• AirDrums

• BallBounce

• PizzaPlanner

• VirtualShooting


