DIGITAL IMAGE PROCESSING

Lecture 2
Basics of Image Processing
Tammy Riklin Raviv
Electrical and Computer Engineering
Ben-Gurion University of the Negev

The Makeover of My First Image

The Makeover of My First Image

What is image enhancement?

• How to improve contrast?

What is image enhancement?

- · How to improve contrast?
- How to sharpen edges?

Original image: http://www.rd.com/advice/pets/how-to-decode-your-cats-behavior/

What is image enhancement?

- How to improve contrast?
- How to sharpen edges?
- · How to reduce noise?

https://leegihan.wordpress.com/category/the-best-noise-reduction/

What is image enhancement?

- · How to improve contrast?
- How to sharpen edges?
- · How to reduce noise?
- · How to remove shadows?

What is image enhancement?

- How to improve contrast?
- How to sharpen edges?
- How to reduce noise?
- · How to remove shadows?
- How to do deblurring?

What is image enhancement?

- · How to improve contrast?
- How to sharpen edges?
- · How to reduce noise?
- · How to remove shadows?
- How to do deblurring?
- · How to do impainting?

Sampling and Quantization

A monochrome image is an array of values.

There are two types of discretization involved:

- 1. Spatial sampling (pixels -'picture elements'), and
- 2. Intensity quantization (grey level value).

2 levels - binary

8 levels

4 levels

256 levels - 1 byte

Spatial sampling

384 x 288 pixels

92 v 72 pivole

192 x 144 pixels

48 x 36 nixels

Some numbers

Quantization:

- Often 8 bits per pixel (0-255, 2^8 = 256 levels) for monochrome
- 24 bits per pixel for colour (8 bits for each of Red Green Blue)
- Medical images 12 bits (4096 levels) or 16 bits (65536 levels)

Size

- · Cameras typically 4K x 3K pixels or far more
- · Satellite images 10 -100K pixels width

• 3D images

- · e.g. Magnetic Resonance Images
- Videos (2D + time)

Shanghai Skyline - Stitched from 12,000 photos

273 G pixels

http://gigapan.com

Google Art Project

resolution 30,000 × 23,756 pixels https://www.google.com/culturalinstitute/about/artproject/

Not-My-Cat Image

Images as functions

- We can think of an **image** as a function, f , from $\mathbb{R}^2 \to \mathbb{R}$:
 - f(x,y) gives the **intensity** at position (x,y)
 - Realistically, we expect the image only to be defined over a rectangle, with a finite range:

$$f \colon [a,b] \times [c,d] \to [0,1]$$

 A color image is just three functions pasted together. We can write this as a "vector-valued" function:

$$f(x,y) = \begin{bmatrix} r(x,y) \\ g(x,y) \\ b(x,y) \end{bmatrix}$$

Point operation: Histogram frequency histogram for image with reduced brightness * histogram for image with reduced brightness * histogram for image with reduced brightness

Histogram Equalization (flatening)

$$C(i) = \int_0^i h(u) \, du$$

$$C(i_{\mathsf{max}}) = \#\mathsf{pixels} = N$$

$$C(i_{\mathsf{I}}) = \frac{N}{i_{\mathsf{max}}} i_{\mathsf{I}}$$

Histogram Equalization

$$C(i) = C(i_{\mathsf{n}}) = \frac{N}{i_{\mathsf{max}}}i_{\mathsf{n}}$$

$$i_{\mathsf{l}} = \frac{i_{\mathsf{max}}}{N}C(i)$$

Algorithm:

- ullet compute the cumulative probability distribution C(i) from the intensity histogram
- · map pixel intensities as

$$i_{\mathrm{I}} = T(i) \quad \mathrm{where} \quad T(i) = \frac{i_{\mathrm{max}}}{N} C(i)$$

50/38

 $CDF(\mathbf{h_1})$

Earth Mover's Distance (Wasserstein Distance)

• The EMD between $\mathbf{h}_1, \mathbf{h}_2$ is the **minimum cost** of work that satisfies the **constraints** normalized by the total flow:

$$\mathcal{D}_{\text{EMD}}(\mathbf{h_1}, \mathbf{h_2}) = \inf_{\mathbf{F}} \frac{W(\mathbf{h_1}, \mathbf{h_2}, \mathbf{F})}{\sum_{k_1=0}^{K-1} \sum_{k_2=0}^{K-1} f_{k_1, k_2}}$$

 $\sum_{k_1=0}^{K-1} P_{I_1}(k_1) = \sum_{k_2=0}^{K-1} P_{I_2}$

$$\mathbf{h_1, h_2} \in \mathbb{R}^{1 imes K}$$

→ EMD is equivalent to Mallows distance:

$$\mathcal{D}_{EMD}(\mathbf{h_1}, \mathbf{h_2}) = \left(\frac{1}{K}\right)^{\frac{1}{l}} \|CDF(\mathbf{h_1}) - CDF(\mathbf{h_2})\|_{l}$$

where, $CDF(\cdot)$ is the cumulative density function.

Levina and Bickel. ICCV 2001.

Mor Avi-Aharon et al

Temporal Averaging

Temporal Averaging

Temporally Averaged from 70 Images

Spatial Operation

Image Filtering

- Image filtering: compute function of local neighborhood at each position
- Linear filtering: function is a weighted sum/difference of pixel values
- · Many applications:
 - Enhance images
 - · Denoise, resize, increase contrast, etc.
 - Extract information from images
 - Texture, edges, distinctive points, etc.
 - Detect patterns
 - Template matching

Image filtering

Compute function of local neighborhood at each position

h=output f=filter I=image
$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

James Ha

Image filtering

Example: box

filter

$$f[\cdot\,,\cdot\,]$$

$$\frac{1}{9}\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Slide credit: David Lowe (UBC)

Box Filter

What does it do?

- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)

Slide credit: David Lowe (UBC)

Box Filter

What does it do?

- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)
- Why does it sum to one?

Slide credit: David Lowe (UBC)

Image filtering

Compute function of local neighborhood at each position

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

- Really important!
 - Enhance images
 - Denoise, resize, increase contrast, etc.
 - Extract information from images
 - Texture, edges, distinctive points, etc.
 - Detect patterns
 - Template matching

James Hay

1. Practice with linear filters

Original

Filtered (no change)

Source: D. Lowe

2. Practice with linear filters

Original

Source: D. Lowe

2. Practice with linear filters

Original

Shifted left By 1 pixel

Source: D. Lowe

3. Practice with linear filters

0 -1 2 -2 0 -1 Sobel

(absolute value)

4. Practice with linear filters

Original

Sharpening filter

- Accentuates differences with local average

Source: D. Lowe

4. Practice with linear filters

after

Sharpening

Source: D. Lowe

Filtering: Correlation vs. Convolution

2d correlation

h=filter2(f,I); or h=imfilter(I,f);

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

James Ha

Filtering: Correlation vs. Convolution

2d correlation

h=filter2(f,I); or h=imfilter(I,f);

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

2d convolution

h=conv2(f,I);

$$h[m,n] = \sum_{k,l} f[k,l] I[m-k,n-l]$$

conv2(I,f) is the same as filter2(rot90(f,2),I) Correlation and convolution are identical when the filter is symmetric.

James Hay

Key properties of linear filters

Linearity:

```
imfilter(I, f_1 + f_2) =
imfilter(I, f_1) + imfilter(I, f_2)
```

Shift invariance: same behavior regardless of pixel location

```
imfilter(I, shift(f)) = shift(imfilter(I, f))
```

Any linear, shift-invariant operator can be represented as a convolution

Source: S. Lazebnik

Convolution properties

- Commutative: a * b = b * a
 - Conceptually no difference between filter and signal
 - But particular filtering implementations might break this equality, e.g., image edges
- Associative: a * (b * c) = (a * b) * c
 - Often apply several filters one after another: (((a * b_1) * b_2) * b_3)
 - This is equivalent to applying one filter: a * (b₁ * b₂ * b₃)
 - Correlation is not associative (rotation effect)
 - Why important?

Source: S. Lazebnik

Convolution properties Commutative: a * b = b * a

- - · Conceptually no difference between filter and signal
 - · But particular filtering implementations might break this equality, e.g., image edges
- Associative: a * (b * c) = (a * b) * c
 - Often apply several filters one after another: (((a * b₁) * b₂) * b₃)
 - This is equivalent to applying one filter: a * (b₁ * b₂ * b₃)
 - · Correlation is _not_ associative (rotation effect)
 - · Why important?
- Distributes over addition: a * (b + c) = (a * b) + (a * c)
- Scalars factor out: ka * b = a * kb = k (a * b)
- Identity: unit impulse e = [0, 0, 1, 0, 0], a * e = a

Source: S. Lazebnik

Gaussian filters

- Remove "high-frequency" components from the image (low-pass filter)
 - · Images become more smooth
- Convolution with self is another Gaussian
 - So can smooth with small-width kernel, repeat, and get same result as larger-width kernel would have
 - Convolving two times with Gaussian kernel of width σ is same as convolving once with kernel of width $\sigma\sqrt{2}$
- Separable kernel
 - Factors into product of two 1D Gaussians

Source: K. Grauman

Separability of the Gaussian filter

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{y^2}{2\sigma^2}}\right)$$

The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Source: D. Lowe

Separability

· Why is separability useful in practice?

Separability

- · Why is separability useful in practice?
- If K is width of convolution kernel:
 - 2D convolution = K² multiply-add operations
 - 2x 1D convolution: 2K multiply-add operations

Practical matters

How big should the filter be?

- · Values at edges should be near zero
- Gaussians have infinite extent...
- ${}^{\circ}$ Rule of thumb for Gaussian: set filter half-width to about 3 σ

James Hay

Practical matters

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - · methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - · reflect across edge

Source: S. Marschner

Computing Derivatives using Linear Filters

Think of the image as a surface with z = f(x,y)

Computing Derivatives using Linear Filters

<u>Objective:</u> compute gradient $\nabla f(x,y) = (\frac{\partial f}{\partial x},\frac{\partial f}{\partial y})$ of the image "surface"

- e.g. as a method to find the edge in the image
- there is the problem of noise

Computing Derivatives using Linear Filters

1D

Want f'(x), use central difference

$$f'(i) = \frac{f_{i+1} - f_{i-1}}{2}$$

which is equivalent to the molecule $[-\frac{1}{2},0,\frac{1}{2}].$

For a noisy signal the derivative amplifies the noise.

Solution?

Computing Derivatives using Linear Filters

1D

Want f'(x), use central difference

$$f'(i) = \frac{f_{i+1} - f_{i-1}}{2}$$

which is equivalent to the molecule $[-\frac{1}{2}, 0, \frac{1}{2}]$.

For a noisy signal the derivative amplifies the noise.

Solution

- · smooth with a Gaussian filter
- then differentiate

Computing Derivatives using Linear Filters

Differentiate smoothed signal G(x) * f(x)

$$\begin{split} \frac{d(G(x)*f(x))}{dx} &= G(x)*\frac{df(x)}{dx} \\ &= \frac{dG(x)}{dx}*f(x) \\ &= \left(\frac{-x}{\sqrt{2\pi}\sigma^3}e^{-x^2/2\sigma^2}\right)*f(x) \end{split}$$

Convolution with a derivative of Gaussian filter

e.g. for $\sigma=1$ the molecule is

[-0.0133, -0.1080, -0.2420, 0.0000, 0.2420, 0.1080, 0.0133].

Computing Derivatives using Linear Filters

<u>2D</u>

$$G(x,y) = \frac{1}{2\pi\sigma^2}e^{-r^2/2\sigma^2}$$

$$\begin{split} \frac{\partial}{\partial x}G(x,y)*f(x,y) &= \left(\frac{-x}{2\pi\sigma^4}e^{-(x^2+y^2)/2\sigma^2}\right)*f(x,y) \\ &= \left(\frac{-x}{\sqrt{2\pi}\sigma^3}e^{-x^2/2\sigma^2}\right) \times \left(\frac{1}{\sqrt{2\pi}\sigma}e^{-y^2/2\sigma^2}\right)*f(x,y) \end{split}$$

Filtering with a 1D derivative of Gaussian filter in x and a 1D Gaussian filter in y – it is a <u>separable</u> filter

Computing Derivatives using Linear Filters

Example

filter with x and y derivatives of Gaussian to obtain directional image derivatives

Filtering: summary

Linear filtering is a weighted sum/difference of pixel values

- Can smooth, sharpen, translate (among many other uses)
- Filtering in Matlab, e.g. to filter image f with h

```
g = filter2( h, f );

h=filter f=image
e.g. h = fspecial('gaussian');
```

Bonus Question: Image Enhancement

- Take an image (any image, but preferably one's that needs enhancement) and enhance it.
- Use what learned in this class to do so
- Plot the "before" and "after"
- Plot its derivatives before and after
- Matlab code is needed
- 3 Best works in class get 1 bonus point

Next Class

Links to Some Last Year Projects

- Supermarket
- <u>AirDrums</u>
- BallBounce
- PizzaPlanner
- VirtualShooting