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Cluster The United States of America

Major Physiographic Divisions of

the Conterminous United States

Cluster The United States of America

MEAN LAST FRZEZING TEMP (DATES)

A RARE ORNO FRZEZE
BJAN 1-FEBZ8
C MAR “ - MAR 31
DAPR 1-APR 15

Bl F may 1-MAY 15
G MAY 16 - MAY 3:
HJUNA JUN 2D

I R T 7

Mean date of last 32 degree temperature for Spring planting - Intemet Accuracy Project

1/5/21



/7]
Cluster The United States of America

The United States s Fifty States «» Equal Population
V-\' T ) W‘i_‘-“r & :

http://fakeisthenewreal.org/reform/

Clustering

Group together similar ‘points’ and represent them with a
single token.

Key Challenges:
1) Which features to select for meaningful clustering?

2) What makes two points/images/patches similar? -
define a metric

3) How do we compute an overall grouping from pairwise
similarities?

4) Hard or Soft Clustering?

Adapted from Derek Hoiem
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Why do we cluster?

- Summarizing data
— Look at large amounts of data
- Patch-based compression or denoising
- Represent a large continuous vector with the cluster number

- Counting
— Histograms of texture, color, SIFT vectors

- Segmentation
- Separate the image into different regions

- Prediction
—Images in the same cluster may have the same labels

Derek Hoiem

How do we cluster?

- K-means
— Iteratively re-assign points to the nearest cluster center

- Agglomerative clustering

— Start with each point as its own cluster and iteratively merge the
closest clusters

- Mean-shift clustering
- Estimate modes of probability density function (pdf)

- Spectral clustering

— Split the nodes in a graph based on assigned links with similarity
weights

1/5/21



K-means algorithm
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lllustration: http://en.wikipedia.org/wiki/K-means_clustering

K-means algorithm
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lllustration: http://en.wikipedia.org/wiki/K-means_clustering
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K-means: design choices

- Initialization
- Randomly select K points as initial cluster center
« Or greedily choose K points to minimize residual

- Distance measures
- Traditionally Euclidean, could be others

- Optimization
- Will converge to a local minimum
- May want to perform multiple restarts

K-means

1. Initialize cluster centers: ¢° ;=0
2. Assign each point to the closest center
N K
t . t—1
o =arg§nm%225y (cl. —xj)z
Jj i

3. Update cluster centers as the mean of the points

N K
t - t
c —argmlnﬁzz&‘ij(ci—xj)z
c Jj i

4. Repeat 2-3 until no points are re-assigned (t=t+1)

Slide: Derek Hoiem
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K-means Clustering Example
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K-Means pros and cons

- Pros

- Finds cluster centers that minimize
conditional variance (good
representation of data)

- Simple and fast*
- Easy to implement
- Cons ° 4 outhier
- Need to choose K ) 0.0
- Sensitive to outliers o’ oo b /
- Prone to local minima
- All clusters have the same
parameters (e.g., distance measure is
non-adaptive)
- *Can be slow: each iteration is
O(KNd) for N d-dimensional points
- Usage
- Rarely used for pixel segmentation

outher
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Agglomerative clustering

1. Say “Every point is its
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Copyright © 2001, 2004, Andrew W. Moore K-means and Hierarchical Clustering: Slide 40

Agglomerative clustering

1. Say “Every point is its

L ]
own cluster”
* : : ... .: L ] - n . . ” .
o 2. Find "most similar” pair
b of clusters
[ ] ° - L ) Y ° *
o °4 L)
° [ ]
[ ] ..:
® o

Copyright © 2001, 2004, Andrew W. Moore K-means and Hierarchical Clustering: Slide 41
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Agglomerative clustering
- 1. Say “Every point is its
.® * e own cluster
* ® . 2. Find “most similar” pair
. of clusters

® o e . . * .

o %o, . 3. Merge it into a parent

o . cluster
. s
~
Copyright © 2001, 2004, Andrew W. Moore K-means and Hierarchical Clustering: Slide 42

Aqgalomerative clustering

1. Say “Every point is its

«® o . @ own cluster”
o L . i .
° ® . 2. Find “most similar” pair
= . of clusters
e . Co. g o
o %o, s ¢ 3. Merge it into a parent
% . cluster
. ., ®
e 4. Repeat
L J
S o
Copyright © 2001, 2004, Andrew W. Moore K-means and Hierarchical Clustering: Slide 43
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Agglomerative clustering

Copyright © 2001, 2004, Andrew W. Moore

1. Say “Every point is its
own cluster”

2. Find “most similar” pair

of clusters

3. Merge it into a parent
cluster

4. Repeat

e
RSN\

K-means and Hierarchical Clustering: Slide 44

Hierarchical Clustering Example

Hierarchical Clustering Dendrogram
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Agglomerative clustering A

@
How to define cluster similarity? @
[]

- Average distance between points, maximum
distance, minimum distance

- Distance between means or medoids

- (medoids like means but restricted to be in the dataset)

How many clusters?

- Clustering creates a dendrogram (a tree)

04

03

distance

02

- Threshold based on max number of clusters or ..
based on distance between merges o ’—T

12312 519 4132926 9 310 724 61128172021 218 83025141527162;

Conclusions: Agglomerative Clustering

Good

- Simple to implement, widespread application
- Clusters have adaptive shapes
- Provides a hierarchy of clusters

Bad

- May have imbalanced clusters
- Still have to choose number of clusters or threshold
- Need to use an “ultrametric” to get a meaningful hierarchy

1/5/21
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Let's return to K-means...

Expectation-Maximization Algorithm

K-Means — the Soft Version

K-means algorithm is a hard clustering algorithm: every point is
assigned to a single cluster.

It is an iterative algorithm with two step: assign and update.

In soft clustering algorithm all data points are assigned to all
clusters with a certain degree (or weight ).

The EM algorithm is a soft clustering algorithm (analogous to K-
means) where E stands for Expectation and M for

.. . (Dempster, Laird, and
Maximization. Rubin 1977)

1/5/21
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Expectation-Maximization Algorithm
Delay
100
90
g0
B T S
70 + N ) ++ ﬁ?
B ++§.f:¢* +, https://lizluvsanime2.devian
¥, : 2.
3%}} + tart.com/art/Old-Faithful-
s Fee 129421239
L
40 3 4 5 H g . Duration
Old Faithful data From Wikipedia

Some Background before we go deeper

Probability

Inference
(Likelihood)

A model of the data generating process gives rise to data.
Model estimation from data is most commonly done through Likelihood estimation

sydney.edu.au/engineering/it/~comp5318/lectures/EMAIlgorithm.ppt

1/5/21
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Likelihood Function

P(Data | Model) P(Model)
P(Data)

P(Model | Data) =

Likelihood Function

Find the “best” model which has generated the data. In a likelihood function
the data is considered fixed and one searches for the best model over the
different choices available.

sydney.edu.au/engineering/it/~comp5318/lectures/EMAIgorithm.ppt

Model Space

- The choice of the model space is plentiful but not
unlimited.

- There is a bit of “art” in selecting the appropriate model
space.

- Typically the model space is assumed to be a linear
combination of known probability distribution functions.

sydney.edu.au/engineering/it/~comp5318/lectures/EMAIlgorithm.ppt

1/5/21
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Examples
- Suppose we have the following data
-0,1,1,0,0,1,1,0

- |In this case it is sensible to choose the Bernoulli
distribution (B(p)) as the model space.

- - 1—
P(X=z)=p"(1 —p)~~°
- Now we want to choose the best p, i.e.,

argmax,P(Data|B(p))

sydney.edu.au/engineering/it/~comp5318/lectures/EMAIgorithm.ppt

Examples

Suppose the following are marks in a course
55.5, 67, 87, 48, 63

Marks typically follow a Normal distribution whose density
function is

— (2—p)2
N(p,0) = A=e"2:7H)

Now, we want to find the best u,c such that

argmaz, sp(Datalp, o)

sydney.edu.au/engineering/it/~comp5318/lectures/EMAIlgorithm.ppt

16
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Examples

- Suppose we have data about heights of people (in cm)
- 185,140,134,150,170

- Heights follow a normal (log normal) distribution but men
on average are taller than women. This suggests a
mixture of two distributions

1 N(p1,01) + N (u2,02)

sydney.edu.au/engineering/it/~comp5318/lectures/EMAIgorithm.ppt

/7]
Maximum Likelihood Estimation (MLE)

- We have reduced the problem of selecting the best
model to that of selecting the best parameter.

- We want to select a parameter p which will maximize
the probability that the data was generated from the

model with the parameter p plugged-in.

- The parameter p is called the maximum likelihood

estimator.

sydney.edu.au/engineering/it/~comp5318/lectures/EMAIlgorithm.ppt

17



MLE for Mixture Distributions

- When we proceed to calculate the MLE for a mixture, the
presence of the sum of the distributions prevents a “neat”

factorization using the log function.

- A completely new rethink is required to estimate the

parameter.

- The new rethink also provides a solution to the clustering

problem.

sydney.edu.au/engineering/it/~comp5318/lectures/EMAIgorithm.ppt

Expectation-Maximization Algorithm

An expectation—-maximization (EM) algorithm is an iterative method to find
maximum likelihood or maximum a posteriori (MAP) estimates of parameters

in statistical models, where the model depends on unobserved latent variables.
The EM iteration alternates between

1. Expectation (E) step: expectation of the log-likelihood evaluated

using the current estimate for the parameters

2. Maximization (M) step: which computes parameters maximizing the expected
log-likelihood found on the E step.

These parameter-estimates are then used to determine the distribution of the

latent variables in the next E step.

Wikipedia: EM

1/5/21
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EM Algorithm for Mixture of Normals
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EM and K-means

- Notice the similarity between EM for Normal mixtures and
K-means.

- The expectation step is the assignment.
- The maximization step is the update of centers.

1/5/21
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Clustering for Image Processing:

Image Segmentation

Goal: Break up the image into meaningful or perceptually
similar regions

N,

) g, e 4

/]
K-means clustering using intensity or color

Image Clusters on intensity Clusters on color

1/5/21
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Segmentation by K-Means Clustering

Matlab Command:
idx = kmeans(X,k)
Input: X — n-by-p observation matrix
for Images: nis the number of pixels,

p is the number of features:

RGB - channels; or RGB+ image coordinates (x,y)
Output: vector idx containing cluster indices

Features Space . - 47

51 41 50
49 44 51
46 45 53

41 45 54
38 47 56

Segmentation by K-Means Clustering

51 41 50 What is K?

. 3747 ...

1/5/21
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Brain Tumor Segmentation

N\ \,J‘. ,/ ’ J
WM soft seg. GM soft seg. CSF soft seg. Tumor soft seg. Aut. seg.

Tammy Riklin Raviv, Multinomial Level-Set Framework for
Multi-Region Image Segmentation, SSVM 2017

Mean shift algorithm

Try to find modes of a non-parametric density.

L*U*V* color space

Find smooth continuous non-parametric model of the intensity
distribution

Efficiently search for peaks in this high-dimensional data
distribution without ever computing the complete function explicitly

(Fukunaga and Hostetler 1975; Cheng 1995; Comaniciu and Meer 2002).

1/5/21
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Mean shift algorithm

Try to find modes of a non-parametric density.

e o o
[~

NORMALIZED DENSITY

8o

" Color space
cluster;

Mean Shift Algorithm

How to estimate the density function given a sparse set of
samples?
smooth the data, e.g., by convolving it -
with a fixed kernel of width h:

f(m)=;K(m—mi):;k<”x;42mi"2)

PR e B m o om ® w

L*U* color space

where x; are the input samples and k(r) is the kernel function (or Parzen window).

Once we have computed f(x), as we can find its local maxima using gradient

ascent or some other optimization technique.

1/5/21
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Attraction basin

- Attraction basin: the region for which all trajectories
lead to the same mode

- Cluster: all data points in the attraction basin of a
mode

Slide by Y. Ukrainitz & B. Sarel

/7]
Attraction basin

© © ©
N R @

NORMALIZED DENSITY

8o
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Slide by Y. Ukrainitz & B. Sarel
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Slide by Y. Ukrainitz & B. Sarel
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Mean Shlﬂ Region of
L4 ® P @ interest
[ J [ J [ J
Y Center of

Slide by Y. Ukrainitz & B. Sarel

Mean-shift algorithm

- Mean shift is a procedure for locating the maxima—the
modes—of a density function given discrete data sampled
from that function.

- Let a kernel function K (x — x;) be given.

- Typical kernels :

- Gaussian: K(x—x;) =k (M)

h2
- Flat kernel:
N if |jx—x;]| <A
K(X_Xl)—{ 0 if [[x — x| > A

1/5/21
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Mean-shift algorithm

- Mean shift is a procedure for locating the maxima—the
modes—of a density function given discrete data sampled
from that function.

- Let a kernel function K (x — x;) be given.

- The weighted mean of the density in the window
determined by K is Do en () K (xi —x)x;

m(x) =
ineN(x) K(x; — x)

- N(x) is the neighborhood of x .A set of points of

which  K(x,x;) #0 .

]
Computing the Mean Shift

Simple Mean Shift procedure:
» Compute mean shift vector

*Translate the Kernel window by m(x)

ineN(x) K(X@ - XiX_@‘_
ineN(x) K(xi _X/I-)_

m(x) =

Slide by Y. Ukrainitz & B. Sarel

30
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Mean shift clustering

The mean shift algorithm seeks modes of the given set
of points

1. Choose kernel and bandwidth
2. For each point:
a) Center a window on that point

b) Compute the mean of the data in the search
window

c) Center the search window at the new mean
location

d) Repeat (b,c) until convergence

3. Assign points that lead to nearby modes to the
same cluster

/]
Segmentation by Mean Shift

Compute features for each pixel (color, gradients, texture, etc.).
- Set kernel size for features K; and position K.

Initialize windows at individual pixel locations.

Perform mean shift for each window until convergence.

Merge windows that are within width of K; and K.

K(z;) = k (Ila;gl?) K (II-"ZSEIP)

31
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]
Mean Shift Algorithm

(Comaniciu and Meer 2002) (© 2002 IEEE.|

]
Mean shift segmentation

D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, PAMI 2002.

- Versatile technique for clustering-based segmentation

‘ Segmented "landscape 1" Segmented "landscape 2"

32
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Mean shift segmentation results

T el v -

Comaniciu and Meer 2002

Mean shift segmentation results

omaniciu an eer 2002

33



Mean shift pros and cons

- Pros
- Good general-practice segmentation
- Flexible in number and shape of regions
- Robust to outliers
- Cons
- Have to choose kernel size in advance
- Not suitable for high-dimensional features
- When to use it
- Oversegmentation
- Multiple segmentations
- Tracking, clustering, filtering applications

Quantitative Evaluation

IOU(SA, SM) =

SaN Sy

SaUSy

1/5/21
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QUANTITATIVE Similarity Measures

ANB
DSC = 2A+ =
ANB
IoU =
T AUB
- T
TS —
2 TP +~ FN + FP
Hausdorff distance
sup inf (v}

sup inf d(z,y
yé)BI.'éX ( y)

1/5/21
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Hausdorff distance

sup inf d(z,y
sup inf d(z, )

Hausdorff distance

inf d(,1)

The closest distance
from the Green to the
Blue.

1/5/21
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Hausdorff distance

Hausdorff distance

The closest distance
from the Blue to the
Green

sup inf d(z,y
yé)BI.‘éX ( y)

37
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Hausdorff distance

The closest distance
from the Green to the
Blue.

The closest distance
from the Blue to th-'
Green

Hausdorff distance

- A shape could be represented by a point S}

cloud
- We could use the Haug!orff meﬁjc to define
the distance between and :
DH(Si, SJ) =
max{ sup inf d(x;,x;), sup inf d(x;,x;)},
x;€8; X5 €5 x; €8, Xi€5;

38
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Modified Hausdorff distance

Dy (S;,S5) =

Z inf d(x;,x;) + Z inf d(x;,x;).

X;ES; xX; ES;
x;€8; 0 o

Not a metric yet More robust

Spectral clustering

Group points based on graph structure & edge costs.
Captures “neighborhood-ness” or local smoothness.

Image:
Hassan et al.
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Spectral clustering

Main idea: Group points based on links in a graph

Construct a symmetric matrix W

Wi,j  is the affinity between points i and j.

Cuts in a graph

cut(A, B) = Z Wi, 4

i€A,jEB

A B sum
A | assoc(A,A) | cut(A,B) | assoc(A,V)
B | cut(B,A) |assoc(B,B) | assoc(B,V)
sum | assoc(A,V) | assoc(BYV)

assoc(A, A) = Z Wi, j
i€AjEA assoc(A, V) = assoc(A4, A) + cut(A, B)

assoc(B, B) = Z Wii sum of all weights associated with A
i€B,j€B

1/5/21
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Normalized Cut (Shi and Malik)

IjillélClltAB Z Wi

1€EA,JEB
imbalance clustering

Normalized cut

cut(4, B) cut(A, B)

Ncut(A, B) =
cut(4, B) assoc(A, V) = assoc(B,V)

Normalized Cut (shi & Malik)

L. cut(4, B) cut(A4, B)
assoc(A,V)  assoc(B,V)

W = [w; ]

Unfortunately, computing the optimal normalized cut is NP-complete.

1/5/21
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Normalized Cut (Shi & Malik)

Let x be the indicator vector where z; = +1iffi € Aand z; = —1iffi € B.

Letd = W1 be the row sums of the symmetric matrix ; W and D = diag(d)

Shi and Malik show that minimizing the normalized cut over all possible

indicator vectors x is equivalent to minimizing

T _
min (2 -W)y

Rayleigh quotient n
¥y y'Dy

where, y = ((1+z)—b(1—x))/2 suchthat y-d=0

a vector of all ones and b’s

Normalized Cut (Shi & Malik)

T
.y (D-W)y
mmn —_jmor—),
7] yT' Dy

Minimizing this Rayleigh quotient is equivalent to solving the generalized

eigenvalue system
(D — W)y =Dy,

which can be turned into a regular eigenvalue problem
(I —N)z = Az,

where N = D7'2WD-Y? and =z = pD'/%y,
Normalized Affinity Matrix (Weiss 1999)

1/5/21
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Normalized Cut (Shi & Malik)

Pixel-wise affinities:

F,—F;|? |z:—z;|?
S L

s

' is a feature vector that consists of intensities, colors, or oriented filter histograms.

Normalized cuts for segmentation

1/5/21
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Which algorithm to use?

- Quantization/Summarization: K-means
- Aims to preserve variance of original data
- Can easily assign new point to a cluster

N Summary of 20,000 photos of Rome using
Quantization for “greedy k-means”

computing histograms http://grail.cs.washington.edu/projects/canonview/

Which algorithm to use?

- Image segmentation: agglomerative clustering
- More flexible with distance measures (e.g., can be based on
boundary prediction)
- Adapts better to specific data
- Hierarchy can be useful

http://www.cs.berkeley.edu/~arbelaez/UCM.html

1/5/21
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Segmentation in MATLAB

- https://www.mathworks.com/discovery/image-
segmentation.html

* Thresholding methods such as Otsu’s method

]
Segmentation in MATLAB

- https://www.mathworks.com/discovery/image-
segmentation.html

« Color-based Segmentation such as K-means clustering

45
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Segmentation in MATLAB

- https://www.mathworks.com/discovery/image-
segmentation.html

» Texture methods such as texture filters

Segmentation in MATLAB

- https://www.mathworks.com/discovery/image-
segmentation.html

« Transform methods such as watershed segmentation

1/5/21
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Prior based segmentation

supervised/unsupervised
top-down — bottom-up
segmentation

Riklin Raviv et al, ECCV 2004, ICCV 2005, IJCV 2007

/7]
Prior based segmentation

_

Co-segmentation/Mutual Segmentation

Riklin-Raviv et al CVPR workshop (POCV) 2006, IJCV 2008

1/5/21
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Prior based segmentation

Riklin Raviv et al, CVPR 2006, IEEE TPAMI 2009

Symmetry based
segmentation

1/5/21
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