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Cluster The United States of America
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http://fakeisthenewreal.org/reform/

Cluster The United States of America

Clustering

Group together similar ‘points’ and represent them with a 
single token.
Key Challenges:
1) Which features to select for meaningful clustering? 
2) What makes two points/images/patches similar?  -
define a metric
3) How do we compute an overall grouping from pairwise 
similarities? 
4) Hard or Soft Clustering?  

Adapted from Derek Hoiem
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Why do we cluster?
• Summarizing data

– Look at large amounts of data
– Patch-based compression or denoising
– Represent a large continuous vector with the cluster number

• Counting
– Histograms of texture, color, SIFT vectors

• Segmentation
– Separate the image into different regions

• Prediction
– Images in the same cluster may have the same labels

Derek Hoiem

How do we cluster?
• K-means

– Iteratively re-assign points to the nearest cluster center

• Agglomerative clustering
– Start with each point as its own cluster and iteratively merge the 

closest clusters

• Mean-shift clustering
– Estimate modes of probability density function (pdf)

• Spectral clustering
– Split the nodes in a graph based on assigned links with similarity 

weights
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K-means algorithm

Illustration: http://en.wikipedia.org/wiki/K-means_clustering

1. Randomly 
select K centers 

2. Assign each 
point to nearest 
center

3. Compute new 
center (mean) 
for each cluster

K-means algorithm

Illustration: http://en.wikipedia.org/wiki/K-means_clustering

1. Randomly 
select K centers 

2. Assign each 
point to nearest 
center

3. Compute new 
center (mean) 
for each cluster

Back to 2
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K-means: design choices
• Initialization

• Randomly select K points as initial cluster center
• Or greedily choose K points to minimize residual

• Distance measures
• Traditionally Euclidean, could be others

• Optimization
• Will converge to a local minimum
• May want to perform multiple restarts

K-means
1. Initialize cluster centers: c0 ; t=0

2. Assign each point to the closest center

3. Update cluster centers as the mean of the points

4. Repeat 2-3 until no points are re-assigned (t=t+1)
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Slide: Derek Hoiem
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K-means Clustering Example

K-Means pros and cons
• Pros

• Finds cluster centers that minimize 
conditional variance (good 
representation of data)

• Simple and fast*
• Easy to implement

• Cons
• Need to choose K
• Sensitive to outliers
• Prone to local minima
• All clusters have the same 

parameters (e.g., distance measure is 
non-adaptive)

• *Can be slow: each iteration is 
O(KNd) for N d-dimensional points

• Usage
• Rarely used for pixel segmentation
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Agglomerative clustering

Agglomerative clustering
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Agglomerative clustering

Agglomerative clustering
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Agglomerative clustering

Hierarchical Clustering Example 
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Agglomerative clustering
How to define cluster similarity?
- Average distance between points, maximum 

distance, minimum distance
- Distance between means or medoids
- (medoids like means but restricted to be in the dataset)

How many clusters?
- Clustering creates a dendrogram (a tree)
- Threshold based on max number of clusters or 

based on distance between merges
di

st
an

ce

Conclusions: Agglomerative Clustering

Good
• Simple to implement, widespread application
• Clusters have adaptive shapes
• Provides a hierarchy of clusters

Bad
• May have imbalanced clusters
• Still have to choose number of clusters or threshold
• Need to use an “ultrametric” to get a meaningful hierarchy
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Let’s return to K-means…

Expectation-Maximization Algorithm 
K-Means – the Soft Version

K-means algorithm is a hard clustering algorithm: every point is 

assigned to a single cluster. 

It is an iterative algorithm with two step: assign and update.  

In soft clustering algorithm all data points are assigned to all 

clusters with a certain degree (or weight ).

The EM algorithm is a soft clustering algorithm (analogous to K-

means) where E stands for Expectation and M for 

Maximization.
(Dempster, Laird, and
Rubin 1977)
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Expectation-Maximization Algorithm 

Old Faithful data From Wikipedia

https://lizluvsanime2.devian
tart.com/art/Old-Faithful-
129421239

Some Background before we go deeper

sydney.edu.au/engineering/it/~comp5318/lectures/EMAlgorithm.ppt

Model Data

Probability

Inference
(Likelihood)

A model of the data generating process gives rise to data.
Model estimation from data is most commonly done through Likelihood estimation
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Likelihood Function
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DataP
ModelPModelDataPDataModelP =

Likelihood Function

Find the “best” model which has generated the data. In a likelihood function
the data is considered fixed and one searches for the best model over the
different choices available.

sydney.edu.au/engineering/it/~comp5318/lectures/EMAlgorithm.ppt

Model Space
• The choice of the model space is plentiful but not 

unlimited.
• There is a bit of “art” in selecting the appropriate model 

space.
• Typically the model space is assumed to be a linear 

combination of known probability distribution functions.

sydney.edu.au/engineering/it/~comp5318/lectures/EMAlgorithm.ppt
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Examples
• Suppose we have the following data

• 0,1,1,0,0,1,1,0
• In this case it is sensible to choose the Bernoulli 

distribution (B(p)) as the model space.

• Now we want to choose the best p, i.e., 

sydney.edu.au/engineering/it/~comp5318/lectures/EMAlgorithm.ppt

Examples
Suppose the following are marks in a course

55.5, 67, 87, 48, 63
Marks typically follow a Normal distribution whose density 

function is 

Now, we want to find the best µ,s such that 

sydney.edu.au/engineering/it/~comp5318/lectures/EMAlgorithm.ppt
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Examples
• Suppose we have data about heights of people (in cm)

• 185,140,134,150,170
• Heights follow a normal (log normal) distribution but men 

on average are taller than women. This suggests a 
mixture of two distributions

sydney.edu.au/engineering/it/~comp5318/lectures/EMAlgorithm.ppt

Maximum Likelihood Estimation (MLE)

• We have reduced the problem of selecting the best 

model to that of selecting the best parameter.

• We want to select a parameter p which will maximize

the probability that the data was generated from the 

model with the parameter p plugged-in.

• The parameter p is called the maximum likelihood 

estimator.

sydney.edu.au/engineering/it/~comp5318/lectures/EMAlgorithm.ppt



1/5/21

18

MLE for Mixture Distributions
• When we proceed to calculate the MLE for a mixture, the 

presence of the sum of the distributions prevents a “neat” 

factorization using the log function.

• A completely new rethink is required to estimate the 

parameter.

• The new rethink also provides a solution to  the clustering 

problem.

sydney.edu.au/engineering/it/~comp5318/lectures/EMAlgorithm.ppt

Expectation-Maximization Algorithm 
An expectation–maximization (EM) algorithm is an iterative method to find 

maximum likelihood or maximum a posteriori (MAP) estimates of parameters 

in statistical models, where the model depends on unobserved latent variables. 

The EM iteration alternates between 

1. Expectation (E) step: expectation of the log-likelihood evaluated 

using the current estimate for the parameters

2. Maximization (M) step: which computes parameters maximizing the expected

log-likelihood found on the E step. 

These parameter-estimates are then used to determine the distribution of the 

latent variables in the next E step.

Wikipedia: EM
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EM Algorithm for Mixture of Normals

E Step

M-Step

Mixture of
Normals

sydney.edu.au/engineering/it/~comp5318/lectures/EMAlgorithm.ppt

EM and K-means
• Notice the similarity between EM for Normal mixtures and 

K-means.

• The expectation step is the assignment.
• The maximization step is the update of centers.



1/5/21

20

Clustering for Image Processing:
Image Segmentation
Goal: Break up the image into meaningful or perceptually 
similar regions

Image Clusters on intensity Clusters on color

K-means clustering using intensity or color
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Segmentation by K-Means Clustering
Matlab Command: 
idx = kmeans(X,k) 
Input: X – n-by-p observation matrix
for Images:   n is the number of pixels, 

p is the number of features: 
RGB – channels; or RGB+ image coordinates (x,y)

Output: vector idx containing cluster indices
Features Space

…

Segmentation by K-Means Clustering

What is K?

…

X

3 ? 4? ….
K=3 K=4
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GMM- EM-based Segmentation 

…
X

Label Map

!1

!2!3

P (x 2 !1) P (x 2 !2) P (x 2 !3)

EM-Based Segmentation
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Brain Tumor Segmentation
47

Tammy Riklin Raviv, Multinomial Level-Set Framework for
Multi-Region Image Segmentation, SSVM 2017

Mean shift algorithm
Try to find modes of a non-parametric density.

Original Image L*U*V*  color space

Find smooth continuous non-parametric model of the intensity 
distribution

Efficiently search for peaks in this high-dimensional data 
distribution without ever computing the complete function explicitly 

(Fukunaga and Hostetler 1975; Cheng 1995; Comaniciu and Meer 2002).
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Mean shift algorithm
Try to find modes of a non-parametric density.

Color
space

Color space
clusters

Mean Shift Algorithm
How to estimate the density function given a sparse set of
samples? 
smooth the data, e.g., by convolving it
with a fixed kernel of width h:

L*U*  color space

Once we have computed f(x), as we can find its local maxima using gradient

ascent or some other optimization technique.
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• Attraction basin: the region for which all trajectories 
lead to the same mode

• Cluster: all data points in the attraction basin of a 
mode

Slide by Y. Ukrainitz & B. Sarel

Attraction basin

Attraction basin
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Region of
interest

Center of
mass

Mean Shift
vector

Slide by Y. Ukrainitz & B. Sarel

Mean shift

Region of
interest

Center of
mass

Mean Shift
vector

Slide by Y. Ukrainitz & B. Sarel

Mean shift
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Region of
interest

Center of
mass

Mean Shift
vector

Slide by Y. Ukrainitz & B. Sarel

Mean shift

Region of
interest

Center of
mass

Mean Shift
vector

Mean shift

Slide by Y. Ukrainitz & B. Sarel
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Region of
interest

Center of
mass

Mean Shift
vector

Slide by Y. Ukrainitz & B. Sarel

Mean shift

Region of
interest

Center of
mass

Mean Shift
vector

Slide by Y. Ukrainitz & B. Sarel

Mean shift
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Region of
interest

Center of
mass

Slide by Y. Ukrainitz & B. Sarel

Mean shift

Mean-shift algorithm
• Mean shift is a procedure for locating the maxima—the 

modes—of a density function given discrete data sampled 
from that function. 

• Let a kernel function be given. 
• Typical kernels :
• Gaussian:                                 
• Flat kernel: 

K(x� xi) = k

✓
||x� xi||2

h2

◆

K(x� xi)

K(x� xi) =

⇢
1 if ||x� xi||  �
0 if ||x� xi|| > �
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Mean-shift algorithm

• Mean shift is a procedure for locating the maxima—the 
modes—of a density function given discrete data sampled 
from that function. 

• Let a kernel function be given.
• The weighted mean of the density in the window 

determined by is

• is the neighborhood of        . A set of points of 
which                           . 

K(x� xi)

K
m(x) =

P
xi2N(x) K(xi � x)xiP
xi2N(x) K(xi � x)

N(x) x
K(x,xi) 6= 0

Simple Mean Shift procedure:
• Compute mean shift vector

•Translate the Kernel window by m(x)

Computing the Mean Shift

Slide by Y. Ukrainitz & B. Sarel

m(x) =

P
xi2N(x) K(xi � x)xiP
xi2N(x) K(xi � x)
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Mean shift clustering
• The mean shift algorithm seeks modes of the given set 

of points
1. Choose kernel and bandwidth
2. For each point:

a) Center a window on that point
b) Compute the mean of the data in the search 

window
c) Center the search window at the new mean 

location
d) Repeat (b,c) until convergence

3. Assign points that lead to nearby modes to the 
same cluster

• Compute features for each pixel (color, gradients, texture, etc.).

• Set kernel size for features Kf and position Ks.

• Initialize windows at individual pixel locations.

• Perform mean shift for each window until convergence.

• Merge windows that are within width of Kf and Ks.

Segmentation by Mean Shift
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Mean Shift Algorithm

• Versatile technique for clustering-based segmentation

D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, PAMI 2002. 

Mean shift segmentation
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Mean shift segmentation results

Comaniciu and Meer 2002

Comaniciu and Meer 2002

Mean shift segmentation results
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Mean shift pros and cons
• Pros

• Good general-practice segmentation
• Flexible in number and shape of regions
• Robust to outliers

• Cons
• Have to choose kernel size in advance
• Not suitable for high-dimensional features

• When to use it
• Oversegmentation
• Multiple segmentations
• Tracking, clustering, filtering applications

Quantitative Evaluation

IoU(SA, SM ) =
SA \ SM

SA [ SM

SA SM
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QUANTITATIVE Similarity Measures

A
<latexit sha1_base64="i02njWYS2Z9GWEdt/9WSbnyh2/c=">AAAB6XicdVBNS8NAEN3Ur1q/qh69LBbBU9g0Kba3ihcPHqrYWmhD2Ww37dLNJuxuhBL6D7x4UMSr/8ib/8ZNW0FFHww83pthZl6QcKY0Qh9WYWV1bX2juFna2t7Z3SvvH3RUnEpC2yTmsewGWFHOBG1rpjntJpLiKOD0Lphc5P7dPZWKxeJWTxPqR3gkWMgI1ka6OS8NyhVkN+qO53oQ2ahW81AjJ67nVhF0bDRHBSzRGpTf+8OYpBEVmnCsVM9BifYzLDUjnM5K/VTRBJMJHtGeoQJHVPnZ/NIZPDHKEIaxNCU0nKvfJzIcKTWNAtMZYT1Wv71c/MvrpTqs+xkTSaqpIItFYcqhjmH+NhwySYnmU0MwkczcCskYS0y0CScP4etT+D/pVG3HtavXXqV5tYyjCI7AMTgFDjgDTXAJWqANCAjBA3gCz9bEerRerNdFa8FazhyCH7DePgEoyI0n</latexit>

B
<latexit sha1_base64="16x84qhl07iNdJEvdWFmpwmQbLY=">AAAB6XicdVDLSgMxFM3UV62vqks3wSK4GjJTx7a7ohsXLqrYB7RDyaSZNjSTGZKMUEr/wI0LRdz6R+78GzNtBRU9cOFwzr3ce0+QcKY0Qh9WbmV1bX0jv1nY2t7Z3SvuH7RUnEpCmyTmsewEWFHOBG1qpjntJJLiKOC0HYwvM799T6VisbjTk4T6ER4KFjKCtZFuLwr9YgnZqOpUvQpEtovKnucZUnNr524ZOjaaowSWaPSL771BTNKICk04VqrroET7Uyw1I5zOCr1U0QSTMR7SrqECR1T50/mlM3hilAEMY2lKaDhXv09McaTUJApMZ4T1SP32MvEvr5vqsOpPmUhSTQVZLApTDnUMs7fhgElKNJ8Ygolk5lZIRlhiok04WQhfn8L/Scu1nbLt3pyV6tfLOPLgCByDU+CACqiDK9AATUBACB7AE3i2xtaj9WK9Llpz1nLmEPyA9fYJQLSNOA==</latexit> DSC = 2

A \B

A+B
<latexit sha1_base64="4ZnszUQQmmpBwxssAdhR1DY5p0Y="></latexit>

IoU =
A \B

A [B
<latexit sha1_base64="YbEgfryGoQgynqb+eyMn055bo8A=">AAACBnicbZDNSgMxFIUz9a/Wv1GXIgSL4KrMVEE3Qq0b3VVw2kKnlEyaaUMzyZBkhDJ05cZXceNCEbc+gzvfxkw7C209EPg4915u7gliRpV2nG+rsLS8srpWXC9tbG5t79i7e00lEomJhwUTsh0gRRjlxNNUM9KOJUFRwEgrGF1n9dYDkYoKfq/HMelGaMBpSDHSxurZh7fCg5fQDyXC6ZWPUQzrkwySDHp22ak4U8FFcHMog1yNnv3l9wVOIsI1ZkipjuvEupsiqSlmZFLyE0VihEdoQDoGOYqI6qbTMybw2Dh9GAppHtdw6v6eSFGk1DgKTGeE9FDN1zLzv1on0eFFN6U8TjTheLYoTBjUAmaZwD6VBGs2NoCwpOavEA+RSUSb5EomBHf+5EVoVivuaaV6d1au1fM4iuAAHIET4IJzUAM3oAE8gMEjeAav4M16sl6sd+tj1lqw8pl98EfW5w9IG5e9</latexit>

Hausdorff distance
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Hausdorff distance

Hausdorff distance

The closest distance
from the Green to the
Blue.
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Hausdorff distance

Hausdorff distance

The closest distance
from the Blue to the
Green



1/5/21

38

Hausdorff distance

The closest distance
from the Green to the
Blue.

The closest distance
from the Blue to the
Green

Hausdorff distance

• A shape could be represented by a point 
cloud      

• We could use the Hausdorff metric to define 
the distance between             and           :   

Si

Si Sj

max{ sup
xi2Si

inf
xj2Sj

d(xi,xj), sup
xj2Sj

inf
xi2Si

d(xi,xj)},

DH(Si, Sj) =
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Modified Hausdorff distance

DMH(Si, Sj) =

X

xi2Si

inf
xj2Sj

d(xi,xj) +
X

xj2Sj

inf
xi2Si

d(xi,xj).

Not a metric yet  More robust

Spectral clustering
Group points based on graph structure & edge costs.
Captures “neighborhood-ness” or local smoothness.

A
B

Image: 
Hassan et al.
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Spectral clustering
Main idea: Group points based on links in a graph

A B

Construct a symmetric matrix W

is the affinity between points i and j.wi,j

cut(A,B) =
X

i2A,j2B

wi,j

Cuts in a graph

cut(A,B) =
X

i2A,j2B

wi,j

assoc(A,A) =
X

i2A,j2A

wi,j

assoc(B,B) =
X

i2B,j2B

wi,j

assoc(A, V ) = assoc(A,A) + cut(A,B)

sum of all weights associated with A

V
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Normalized Cut (Shi and Malik)

imbalance clustering

min
A,B

cut(A,B) =
X

i2A,j2B

wi,j

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )

Normalized cut

Normalized Cut (Shi & Malik)

A

B

BA

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )

Unfortunately, computing the optimal normalized cut is NP-complete.

W = [wi,j ]
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Normalized Cut (Shi & Malik)

Shi and Malik show that minimizing the normalized cut over all possible 

indicator vectors x is equivalent to minimizing

where,                                               such that

Let x be the indicator vector where 

be the row sums of the symmetric matrix  

Rayleigh quotient

a vector of all ones and b’s

Normalized Cut (Shi & Malik)

Minimizing this Rayleigh quotient is equivalent to solving the generalized 

eigenvalue system

which can be turned into a regular eigenvalue problem

where                                            and 

Normalized Affinity Matrix (Weiss 1999)
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Normalized Cut (Shi & Malik)

Pixel-wise affinities:

is a feature vector that consists of intensities, colors, or oriented filter histograms.F

Normalized cuts for segmentation



1/5/21

44

Which algorithm to use?
• Quantization/Summarization: K-means

• Aims to preserve variance of original data
• Can easily assign new point to a cluster

Quantization for 
computing histograms

Summary of 20,000 photos of Rome using 
“greedy k-means”

http://grail.cs.washington.edu/projects/canonview/

Which algorithm to use?
• Image segmentation: agglomerative clustering

• More flexible with distance measures (e.g., can be based on 
boundary prediction)

• Adapts better to specific data
• Hierarchy can be useful

http://www.cs.berkeley.edu/~arbelaez/UCM.html
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Segmentation in MATLAB
• https://www.mathworks.com/discovery/image-

segmentation.html

Segmentation in MATLAB
• https://www.mathworks.com/discovery/image-

segmentation.html
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Segmentation in MATLAB
• https://www.mathworks.com/discovery/image-

segmentation.html

Segmentation in MATLAB
• https://www.mathworks.com/discovery/image-

segmentation.html
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Prior based segmentation

supervised/unsupervised
top-down – bottom-up
segmentation

Riklin Raviv et al, ECCV 2004, ICCV 2005, IJCV 2007

Prior based segmentation

Riklin-Raviv et al CVPR workshop (POCV) 2006, IJCV 2008 

Co-segmentation/Mutual Segmentation
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Prior based segmentation

Symmetry based 
segmentation

Riklin Raviv et al, CVPR 2006, IEEE TPAMI 2009


