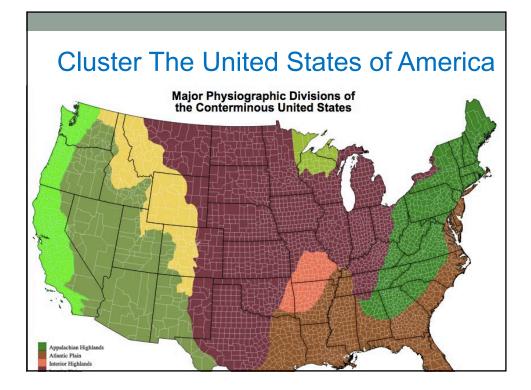
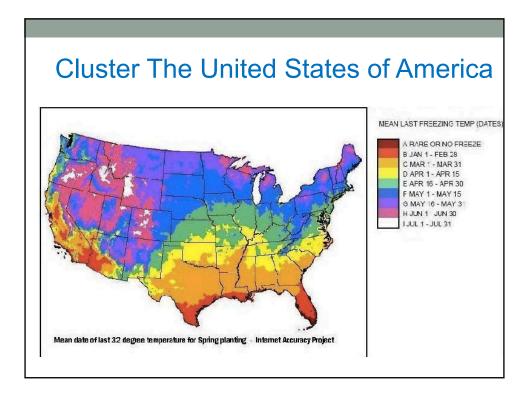
DIGITAL IMAGE PROCESSING

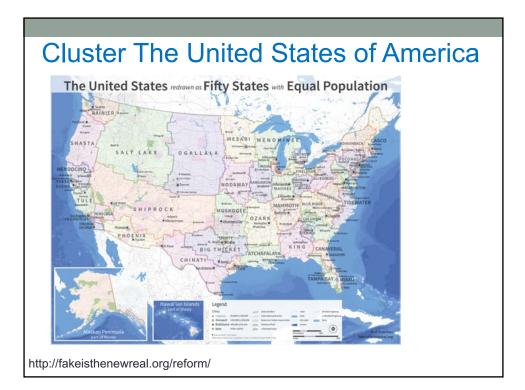
Lecture 12 Image Segmentation/ Unsupervised Learning Tammy Riklin Raviv Electrical and Computer Engineering Ben-Gurion University of the Negev

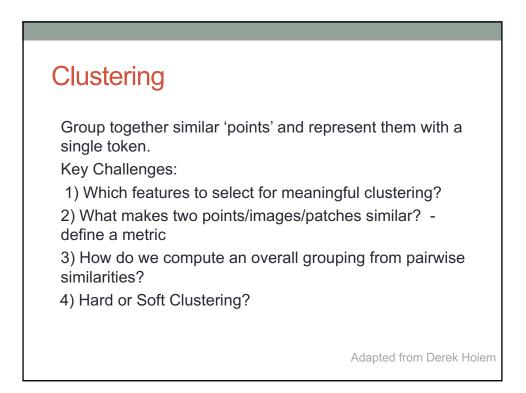
Machine Learning Problems				
	Supervised Learning	Unsupervised Learning		
Discrete	classification or categorization	clustering		
Continuous	regression	dimensionality reduction		

Machine Learning Problems				
	Supervised Learning	Unsupervised Learning		
Discrete	classification or categorization	clustering		
Continuous	regression	dimensionality reduction		
Contin	regression	reduction		

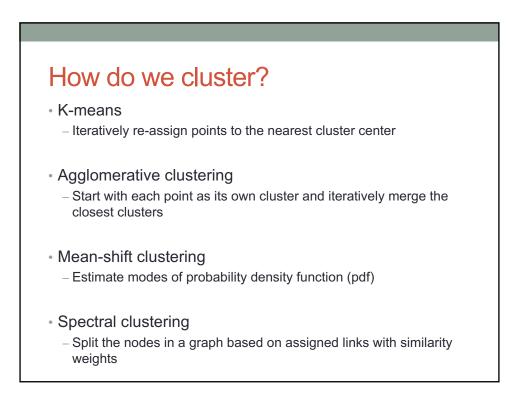


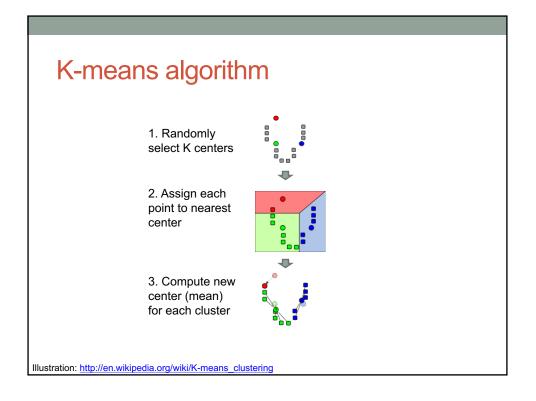


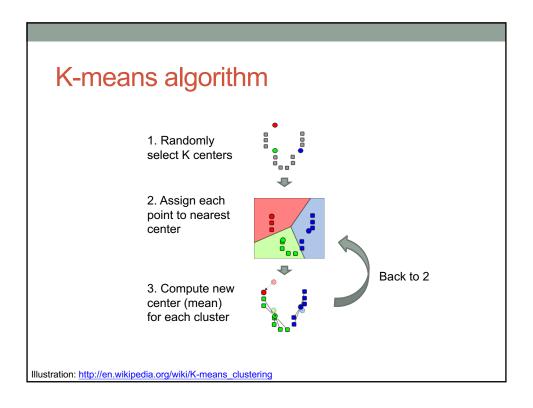




 Why do we cluster? Summarizing data Look at large amounts of data Patch-based compression or denoising Represent a large continuous vector with the cluster number
 Counting Histograms of texture, color, SIFT vectors
 Segmentation Separate the image into different regions
 Prediction Images in the same cluster may have the same labels
Derek Hoiem







K-means: design choices

- Initialization
 - · Randomly select K points as initial cluster center
 - Or greedily choose K points to minimize residual
- Distance measures
 - Traditionally Euclidean, could be others
- Optimization
 - · Will converge to a local minimum
 - May want to perform multiple restarts

K-means

- 1. Initialize cluster centers: \mathbf{c}^0 ; t=0
- 2. Assign each point to the closest center

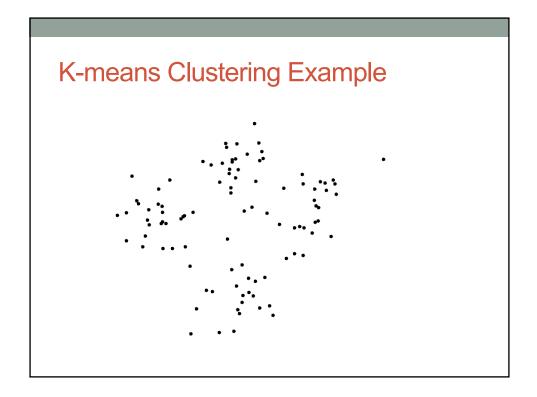
$$\boldsymbol{\delta}^{t} = \underset{\boldsymbol{\delta}}{\operatorname{argmin}} \frac{1}{N} \sum_{j}^{N} \sum_{i}^{K} \delta_{ij} \left(\mathbf{c}_{i}^{t-1} - \mathbf{x}_{j} \right)^{2}$$

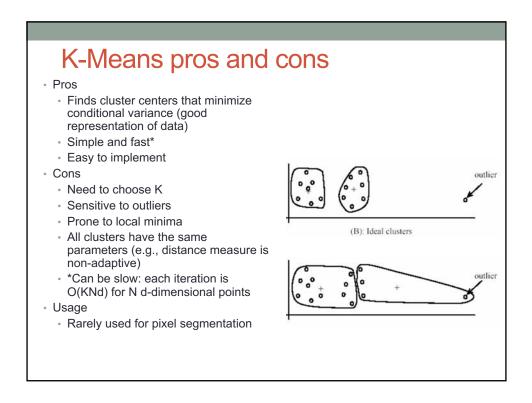
3. Update cluster centers as the mean of the points

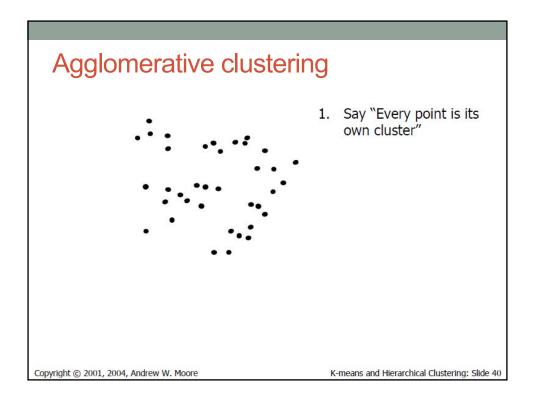
$$\mathbf{c}^{t} = \underset{\mathbf{c}}{\operatorname{argmin}} \frac{1}{N} \sum_{j}^{N} \sum_{i}^{K} \delta_{ij}^{t} (\mathbf{c}_{i} - \mathbf{x}_{j})^{2}$$

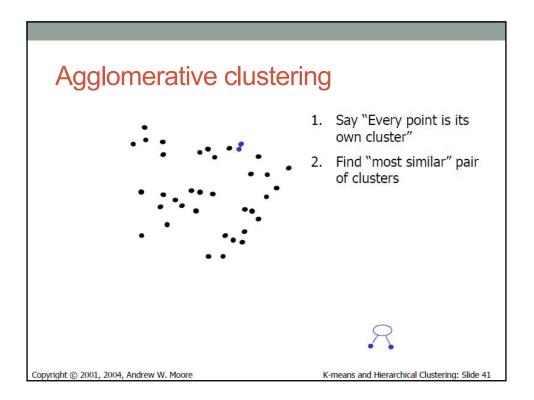
4. Repeat 2-3 until no points are re-assigned (t=t+1)

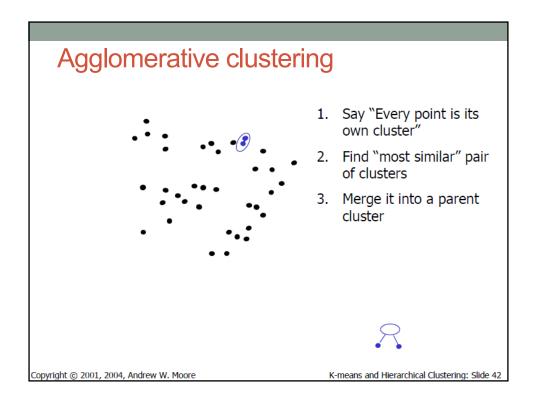
Slide: Derek Hoiem

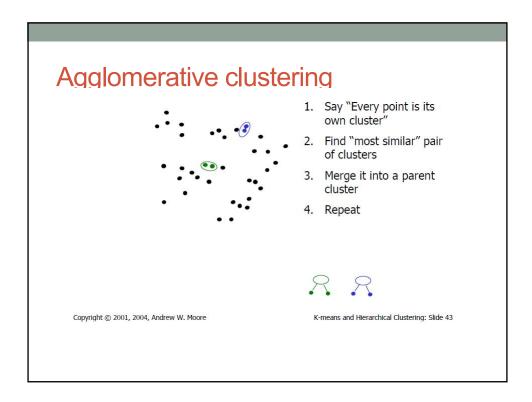


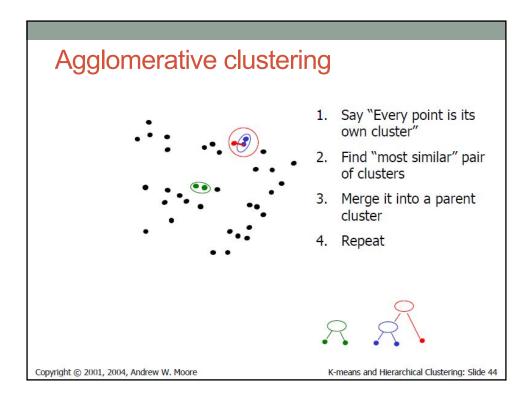


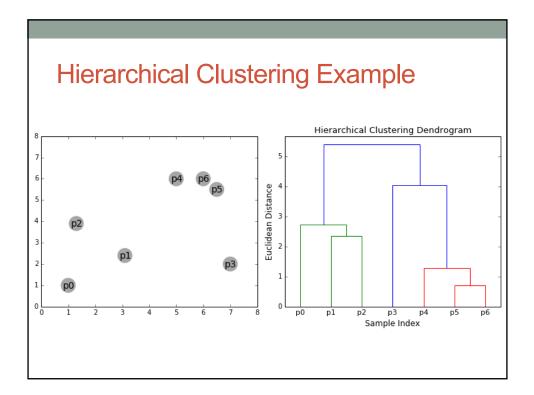


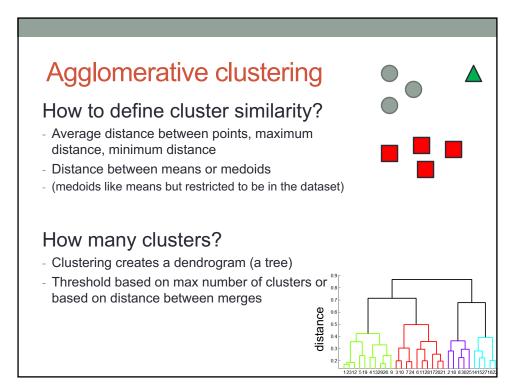


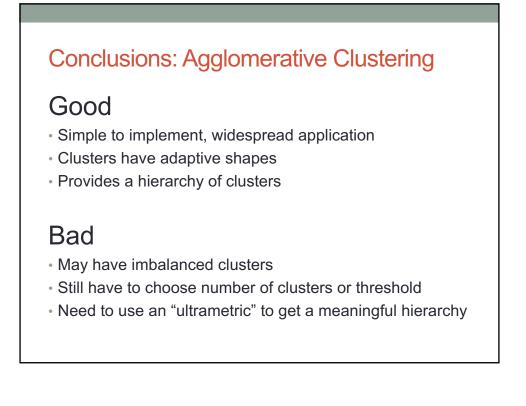


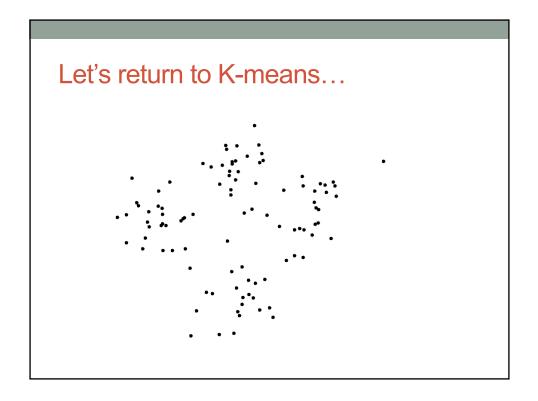


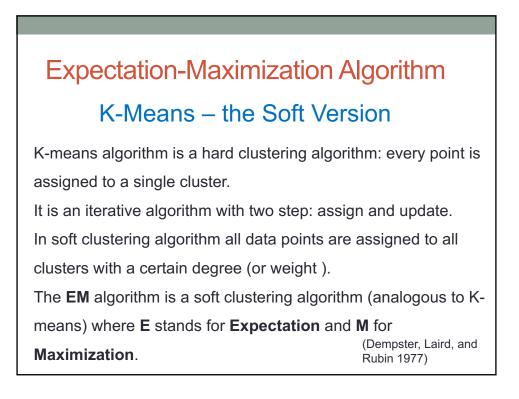


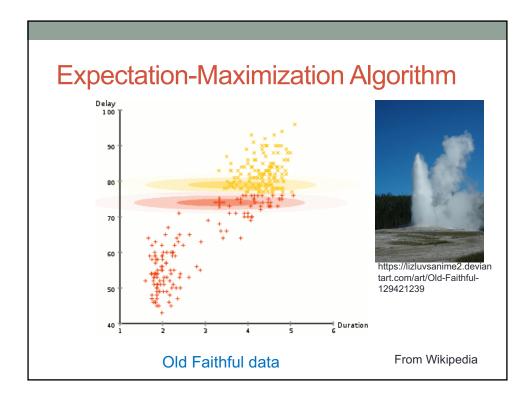


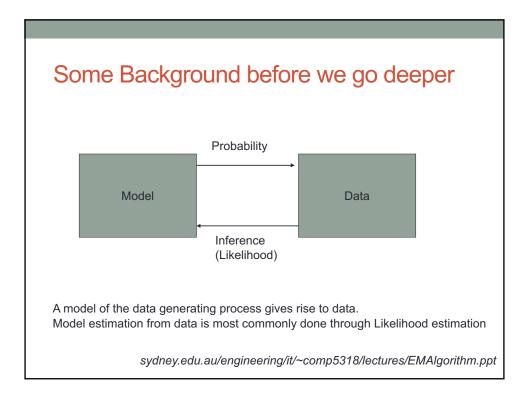


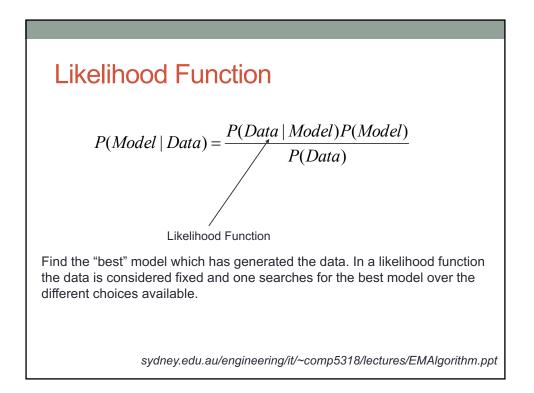


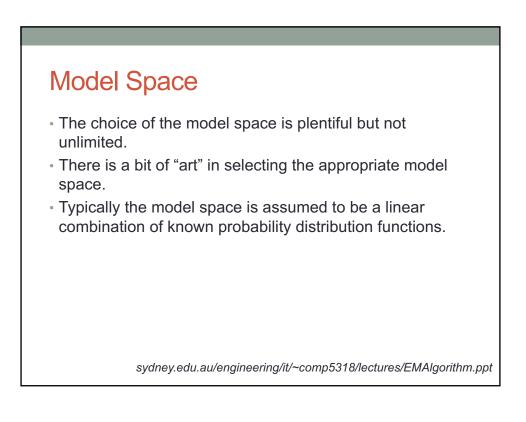












Examples

- Suppose we have the following data
 0,1,1,0,0,1,1,0
- In this case it is sensible to choose the Bernoulli distribution (B(p)) as the model space.

$$P(X = x) = p^{x}(1 - p)^{1 - x}$$

• Now we want to choose the best p, i.e.,

 $\operatorname{argmax}_p P(Data|B(p))$

sydney.edu.au/engineering/it/~comp5318/lectures/EMAlgorithm.ppt

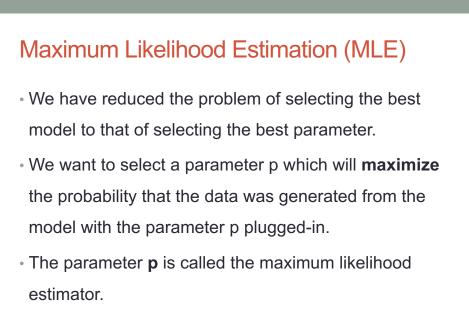
Examples Suppose the following are marks in a course 55.5, 67, 87, 48, 63 Marks typically follow a Normal distribution whose density function is $N(\mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2\sigma}(x-\mu)^2}$ Now, we want to find the best μ,σ such that $argmax_{\mu,\sigma}p(Data|\mu,\sigma)$ sydney.edu.au/engineering/it/~comp5318/lectures/EMAlgorithm.ppt

Examples

- Suppose we have data about heights of people (in cm)
 185,140,134,150,170
- Heights follow a normal (log normal) distribution but men on average are taller than women. This suggests a mixture of two distributions

 $\pi_1 N(\mu_1, \sigma_1) + \pi_2 N(\mu_2, \sigma_2)$

sydney.edu.au/engineering/it/~comp5318/lectures/EMAlgorithm.ppt



 $sydney.edu.au/engineering/it/\sim\!comp5318/lectures/EMAlgorithm.ppt$

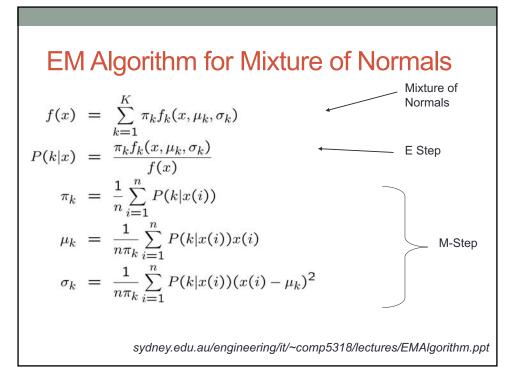
MLE for Mixture Distributions

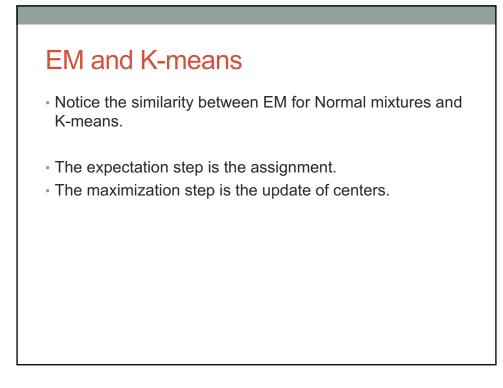
- When we proceed to calculate the MLE for a mixture, the presence of the sum of the distributions prevents a "neat" factorization using the log function.
- A completely new rethink is required to estimate the parameter.
- The new rethink also provides a solution to the clustering problem.

sydney.edu.au/engineering/it/~comp5318/lectures/EMAlgorithm.ppt

Expectation-Maximization Algorithm An **expectation-maximization** (**EM**) **algorithm** is an iterative method to find maximum likelihood or maximum a posteriori (MAP) estimates of parameters in statistical models, where the model depends on unobserved latent variables. The EM iteration alternates between 1. Expectation (E) step: expectation of the log-likelihood evaluated using the current estimate for the parameters 2. Maximization (M) step: which computes parameters maximizing the expected log-likelihood found on the *E* step. These parameter-estimates are then used to determine the distribution of the latent variables in the next E step.

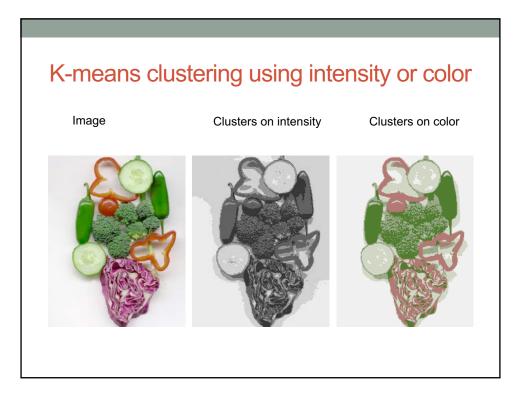
Wikipedia: EM





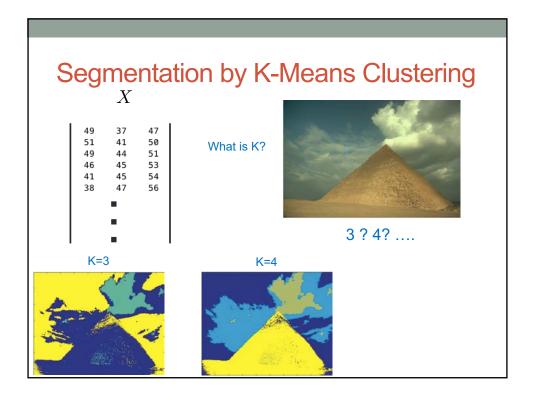
Clustering for Image Processing: Image Segmentation

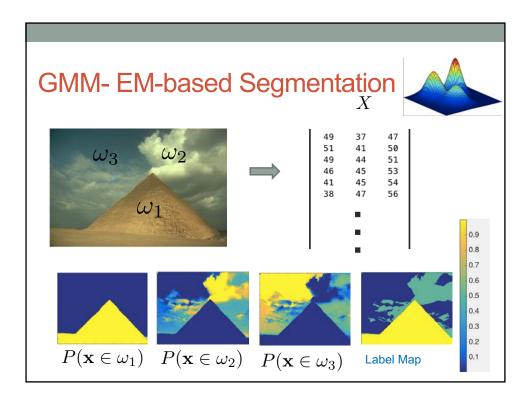
Goal: Break up the image into meaningful or perceptually similar regions

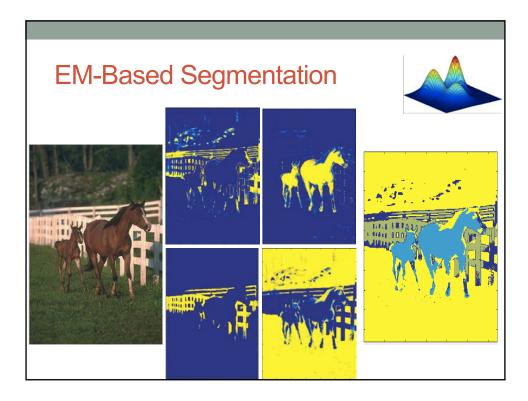


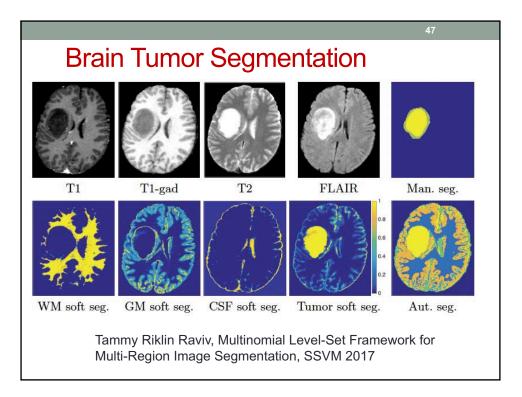
Segmentation by K-Means Clustering

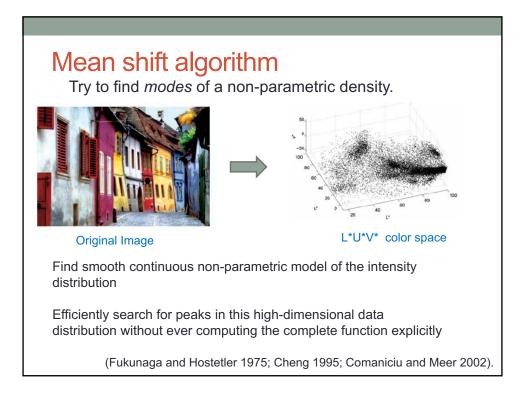
Matlab Command: idx = kmeans(X,k)Input: X – n-by-p observation matrix for Images: n is the number of pixels, p is the number of features: RGB – channels; or RGB+ image coordinates (x,y) Output: vector idx containing cluster indices **Features Space**

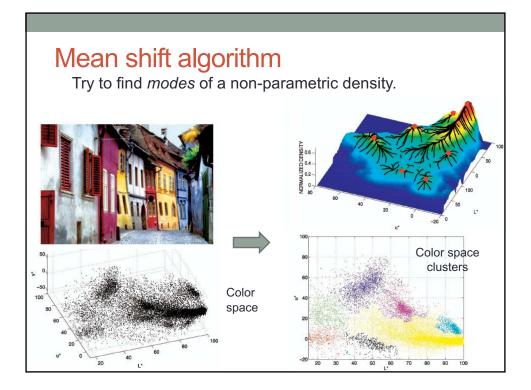


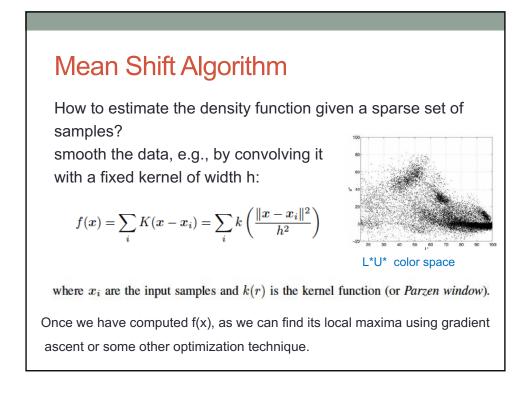


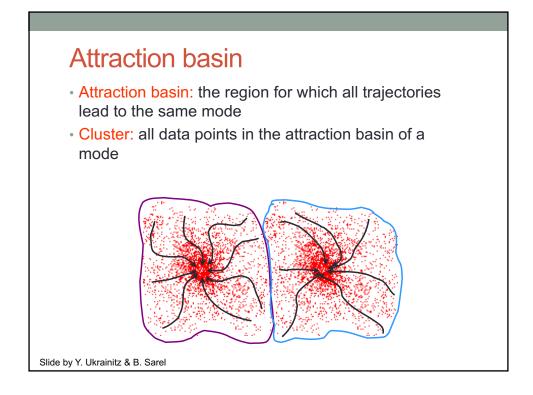


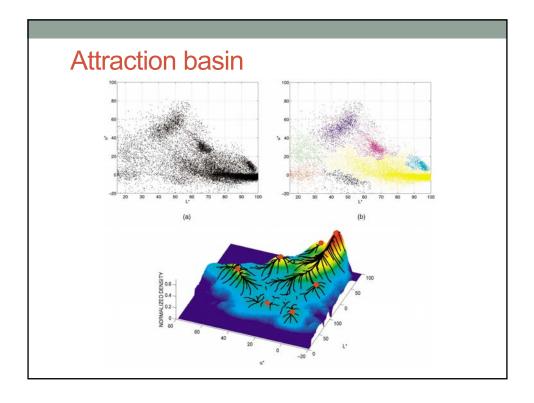


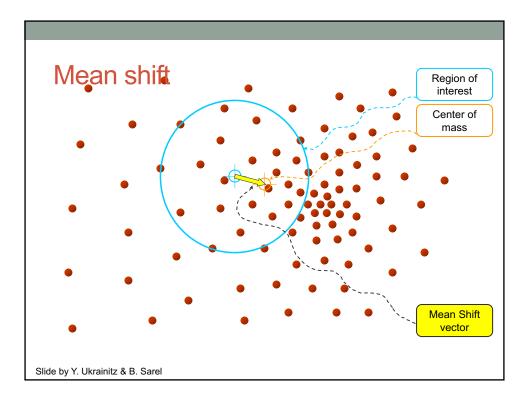


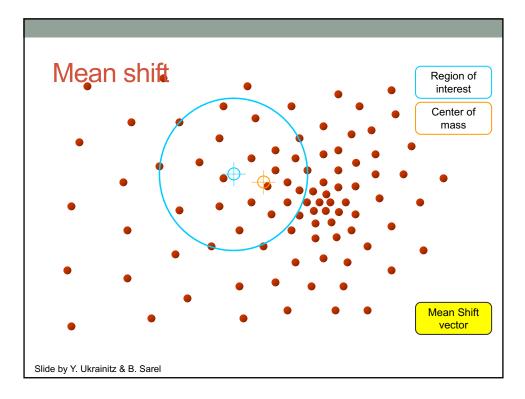


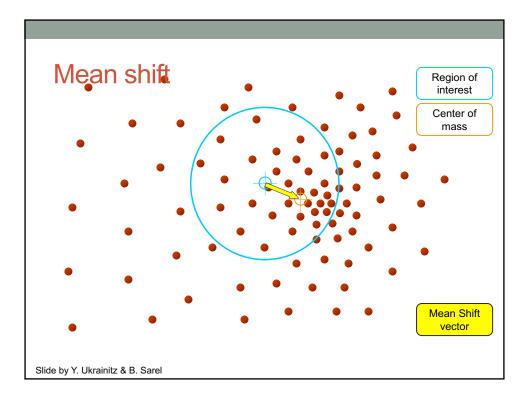


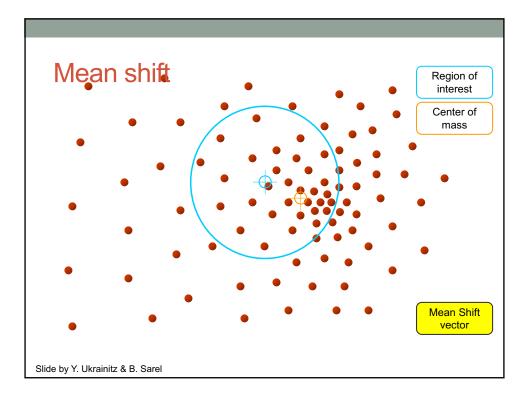


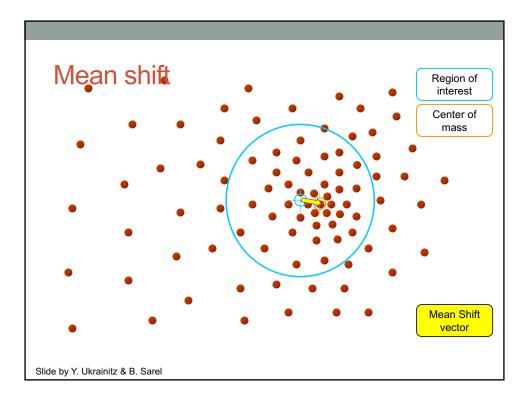


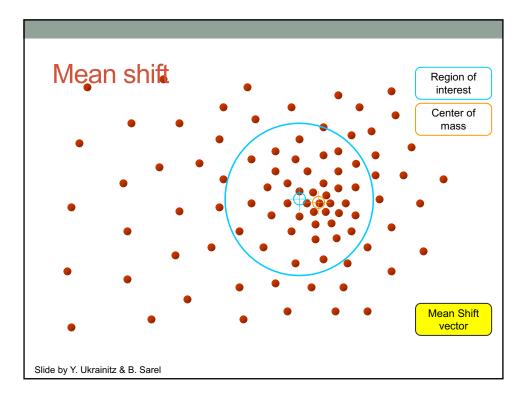


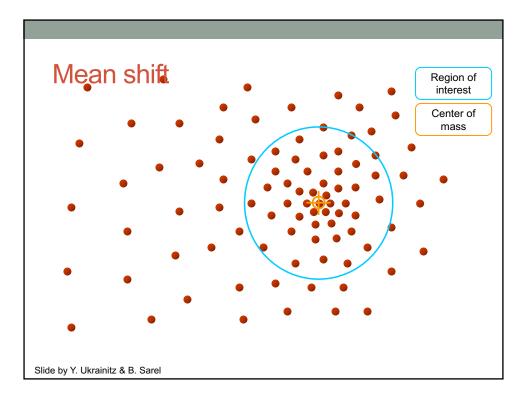




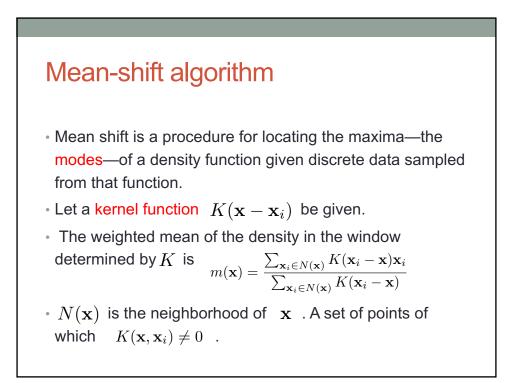


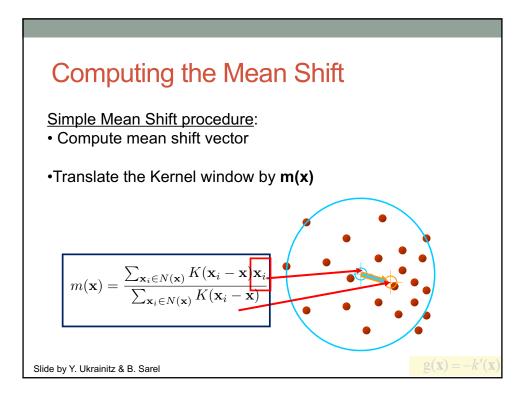






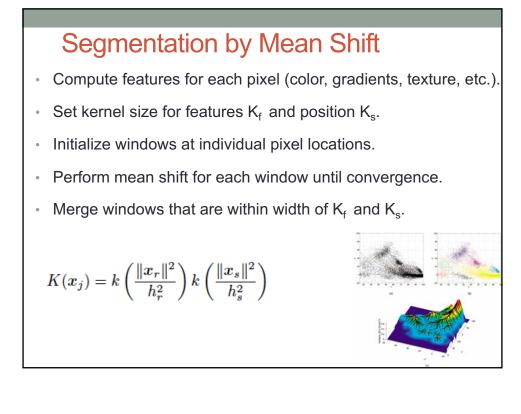
Mean-shift algorithm • Mean shift is a procedure for locating the maxima—the modes—of a density function given discrete data sampled from that function. • Let a kernel function $K(\mathbf{x} - \mathbf{x}_i)$ be given. • Typical kernels : • Gaussian: $K(\mathbf{x} - \mathbf{x}_i) = k\left(\frac{||\mathbf{x} - \mathbf{x}_i||^2}{h^2}\right)$ • Flat kernel: $K(\mathbf{x} - \mathbf{x}_i) = \begin{cases} 1 & \text{if } ||\mathbf{x} - \mathbf{x}_i|| \le \lambda \\ 0 & \text{if } ||\mathbf{x} - \mathbf{x}_i|| > \lambda \end{cases}$





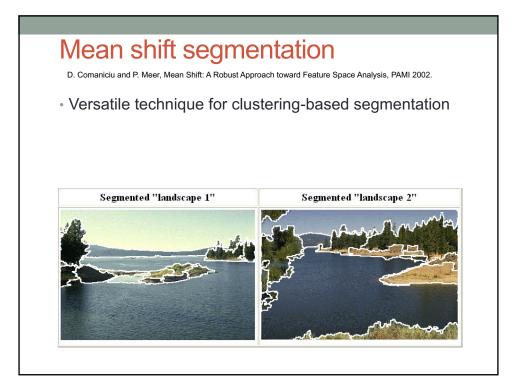
Mean shift clustering

- The mean shift algorithm seeks modes of the given set of points
 - 1. Choose kernel and bandwidth
 - 2. For each point:
 - a) Center a window on that point
 - b) Compute the mean of the data in the search window
 - c) Center the search window at the new mean location
 - d) Repeat (b,c) until convergence
 - 3. Assign points that lead to nearby modes to the same cluster

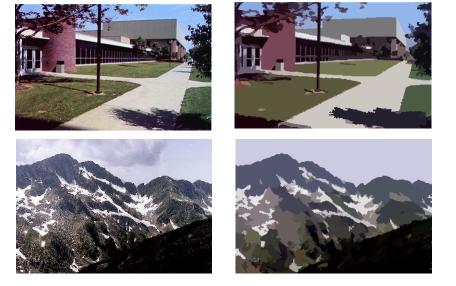


Mean Shift Algorithm

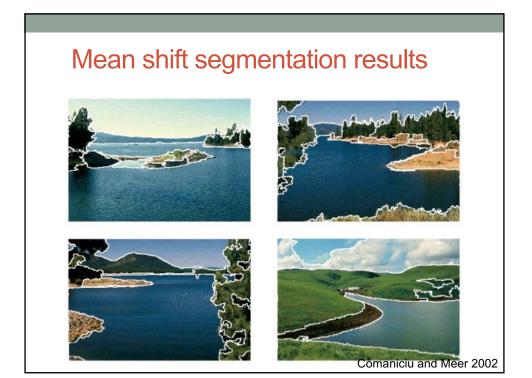
(Comaniciu and Meer 2002) © 2002 IEEE.



Mean shift segmentation results



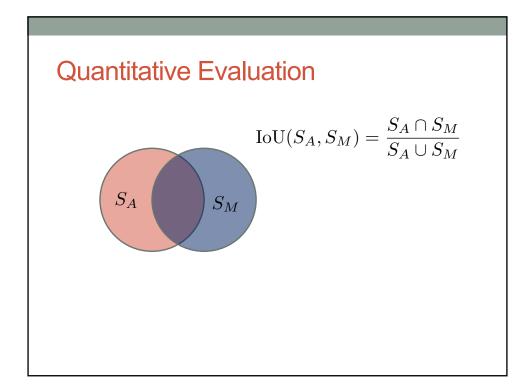
Comaniciu and Meer 2002

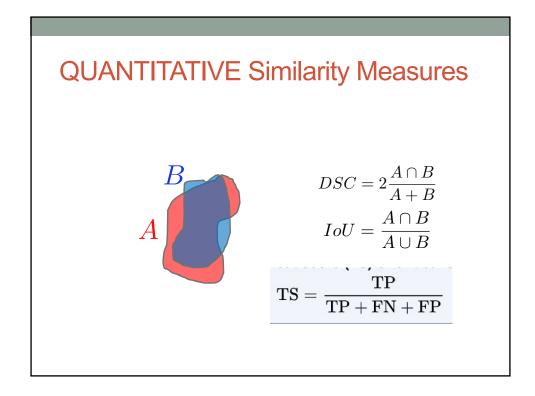


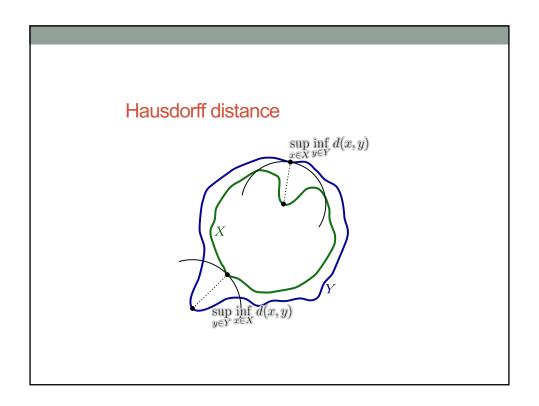
Mean shift pros and cons

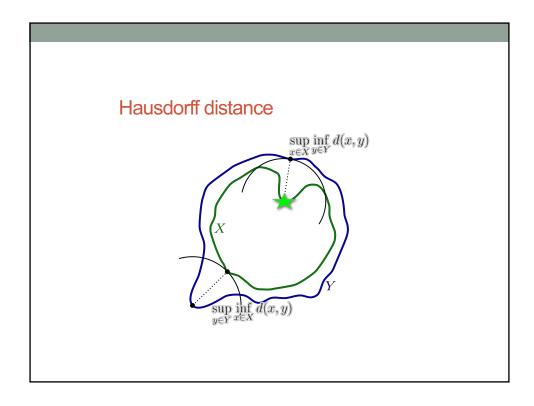
• Pros

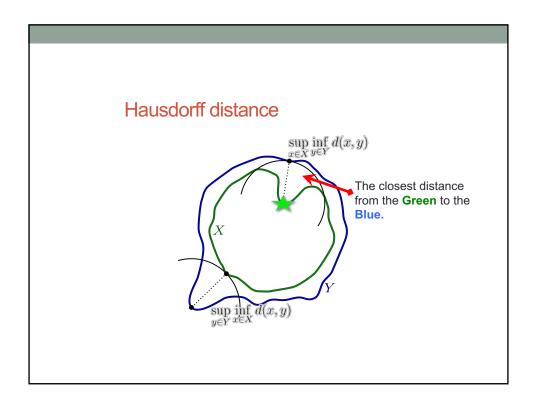
- Good general-practice segmentation
- · Flexible in number and shape of regions
- Robust to outliers
- Cons
 - Have to choose kernel size in advance
 - Not suitable for high-dimensional features
- When to use it
 - Oversegmentation
 - Multiple segmentations
 - Tracking, clustering, filtering applications

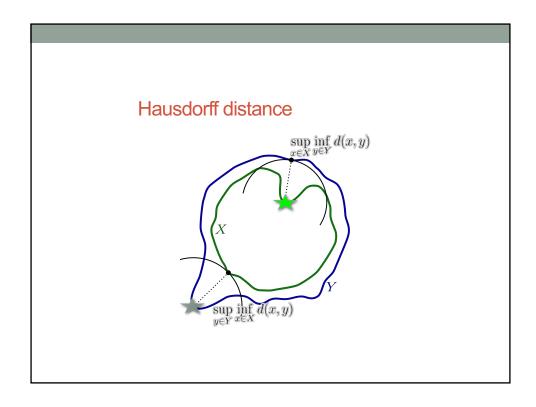


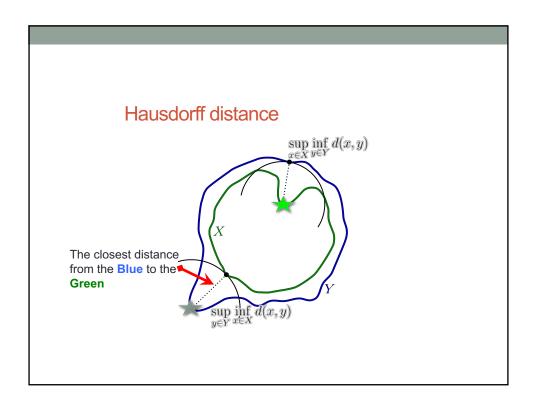


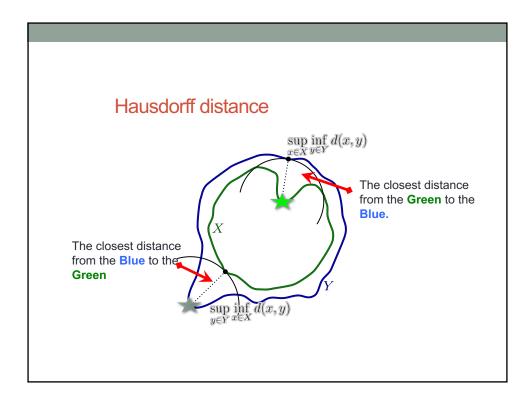


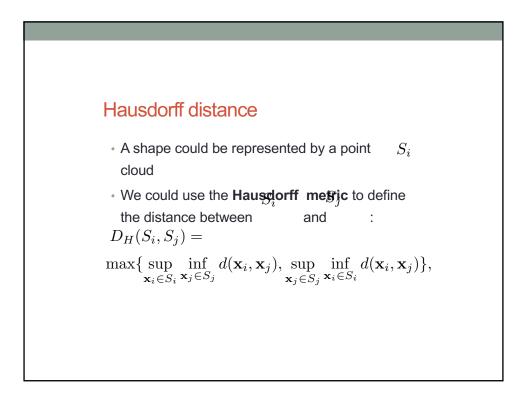










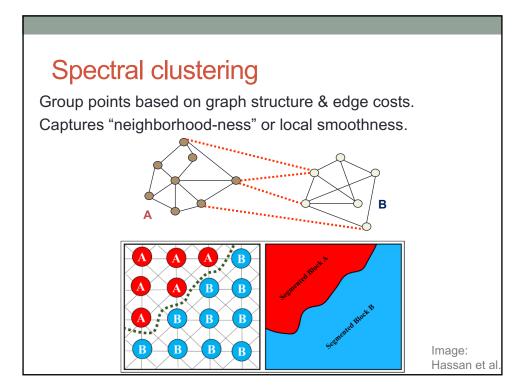


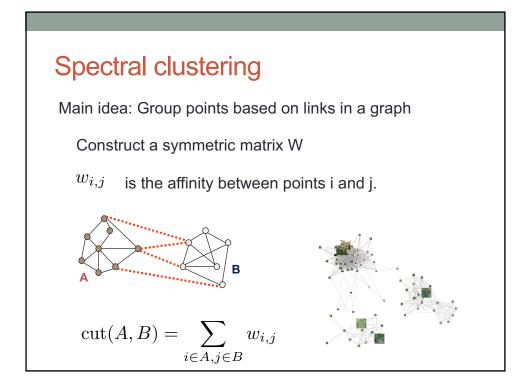
Modified Hausdorff distance

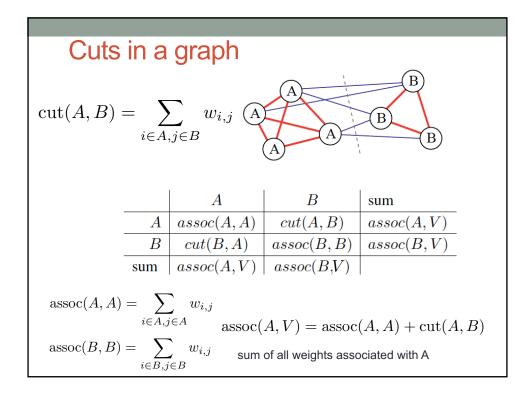
 $D_{MH}(S_i, S_j) =$

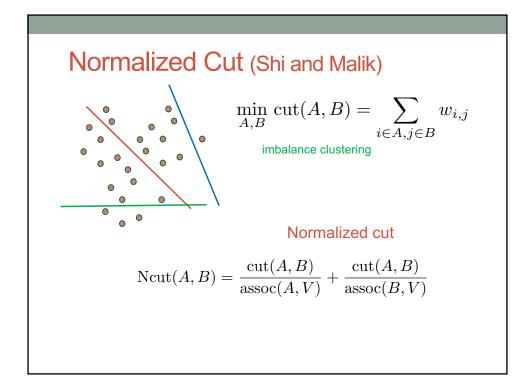
$$\sum_{\mathbf{x}_i \in S_i} \inf_{\mathbf{x}_j \in S_j} d(\mathbf{x}_i, \mathbf{x}_j) + \sum_{\mathbf{x}_j \in S_j} \inf_{\mathbf{x}_i \in S_i} d(\mathbf{x}_i, \mathbf{x}_j).$$

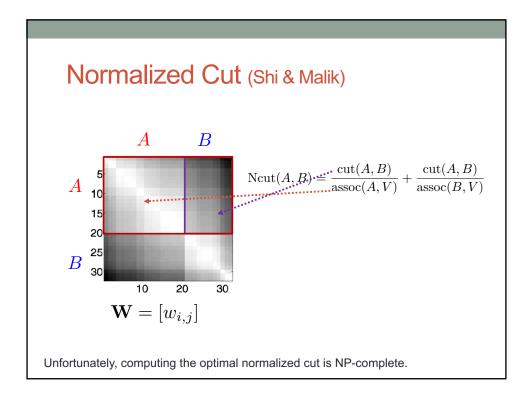
Not a metric yet More robust

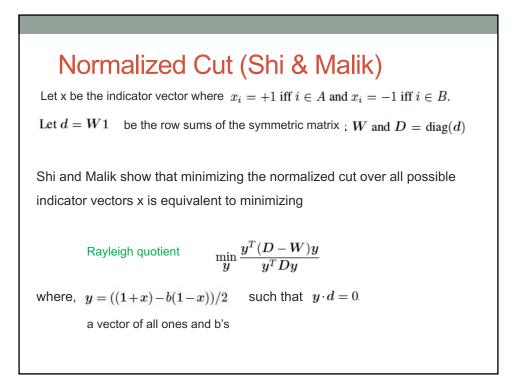












Normalized Cut (Shi & Malik)

$$\min_{\boldsymbol{y}} \frac{y^T (\boldsymbol{D} - \boldsymbol{W}) \boldsymbol{y}}{y^T \boldsymbol{D} \boldsymbol{y}},$$

Minimizing this Rayleigh quotient is equivalent to solving the generalized eigenvalue system

$$(D-W)y = \lambda Dy,$$

which can be turned into a regular eigenvalue problem

$$(I-N)z = \lambda z,$$

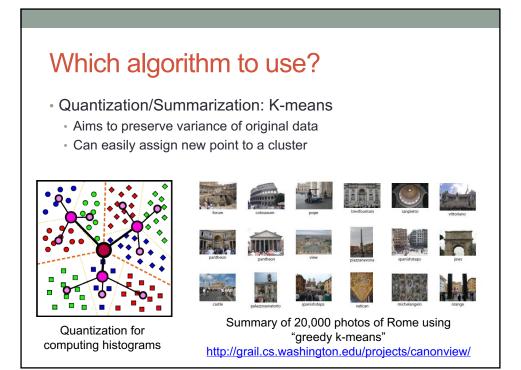
where $N = D^{-1/2}WD^{-1/2}$ and $z = D^{1/2}y$. Normalized Affinity Matrix (Weiss 1999)

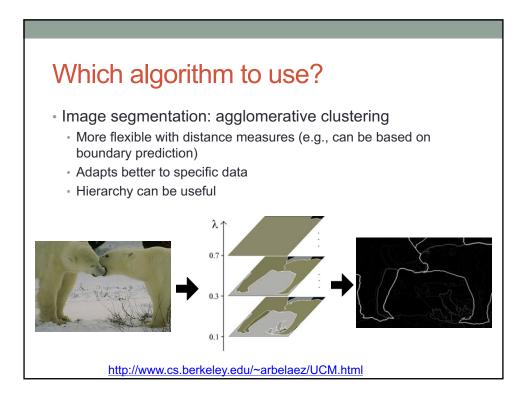
Normalized Cut (Shi & Malik)

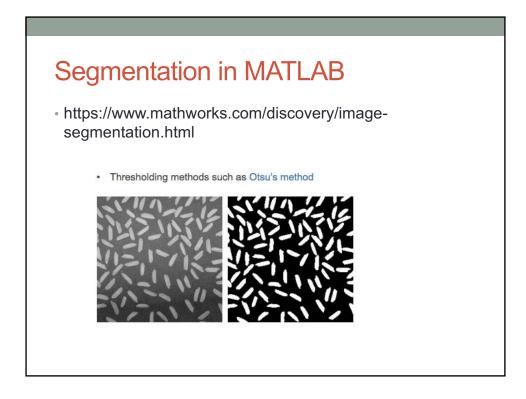
Pixel-wise affinities:

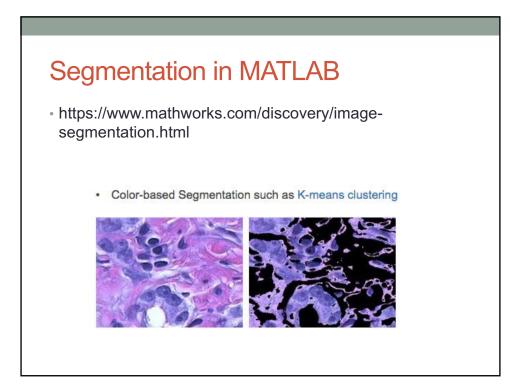
$$w_{ij} = \exp\left(-\frac{\|F_i - F_j\|^2}{\sigma_F^2} - \frac{\|x_i - x_j\|^2}{\sigma_s^2}
ight)$$

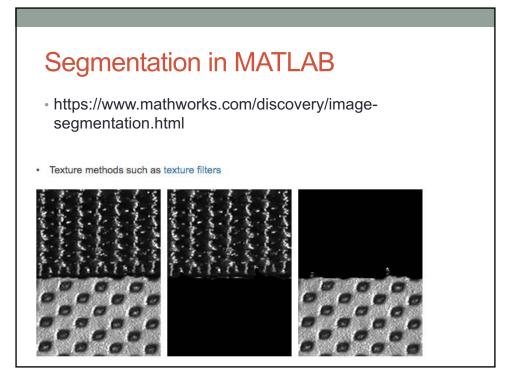
 ${\cal F}\,$ is a feature vector that consists of intensities, colors, or oriented filter histograms.

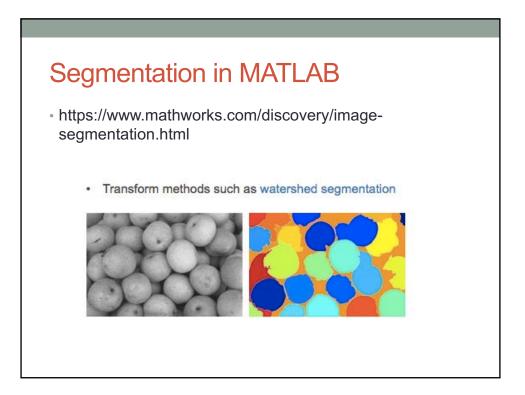








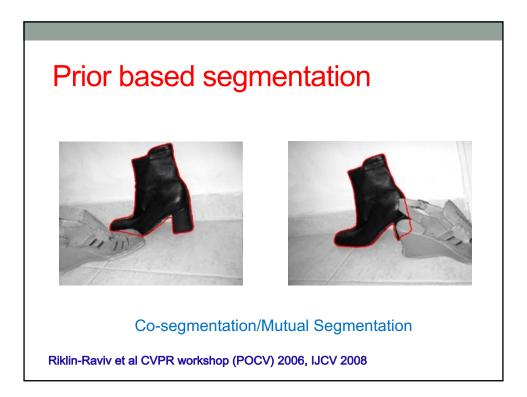




Prior based segmentation

supervised/unsupervised top-down – bottom-up segmentation

Riklin Raviv et al, ECCV 2004, ICCV 2005, IJCV 2007



Prior based segmentation

Symmetry based segmentation

Riklin Raviv et al, CVPR 2006, IEEE TPAMI 2009