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Machine Learning
• Learn from and make predictions on data.

• Arguably the greatest export from computing to other 
scientific fields.

• Statisticians might disagree with Computer Scientists on 
the true origins…

Most slides are taken (or adapted) from Michael Black’s course in Brown



ML for Computer Vision

• Face Recognition
• Object Classification
• Scene Segmentation









The machine learning framework

• Apply a prediction function to a feature representation of 
the image to get the desired output:

f(    ) = “apple”
f(    ) = “tomato”
f(    ) = “cow”

Slide credit: L. Lazebnik



The machine learning framework

f(x) = y

Training: Given a training set of labeled examples:
{(x1,y1), …, (xN,yN)}

Estimate the prediction function f by minimizing the 
prediction error on the training set.

Testing: Apply f to a unseen test example x and output the 
predicted value y = f(x) to classify x.

Output (label)Prediction 
function

Image 
feature

Slide credit: L. Lazebnik
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Example: Scene Categorization

• Is this a kitchen?
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General Principles of Representation
• Coverage

• Ensure that all relevant info is captured

• Concision
• Minimize number of features without 

sacrificing coverage

• Directness
• Ideal features are independently useful for 

prediction



Image representations
• Templates

• Intensity, gradients, etc.

• Histograms
• Color, texture, SIFT descriptors, etc.
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Learning a classifier
Given a set of features with corresponding labels, learn a 
function to predict the labels from the features.
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x2

x1

+ = Data point from class 1
o = Data point from class 2

Each data point has a 
feature vector (x1,x2).



ImageNet
• Images for each 

category of WordNet
• 1000 classes
• 1.2mil images
• 100k test

• Top 5 error



Labeled database

An example training set for four visual  categories. In practice we may have 
thousands 
of categories and hundreds of thousands of images for each category.



MNIST database



Dataset split
Training 
Images

Testing 
Images

Validation 
Images

- Secret labels
- Measure error

- Train classifier - Measure error
- Tune model 
hyperparameters

Random train/validate splits = cross validation



Prediction

Steps
Training 
Labels

Training 
Images

Training

Training

Image 
Features

Image 
Features

Testing

Test Image

Learned 
classifier

Apply 
classifier

Slide credit: D. Hoiem and L. Lazebnik



Features
• Raw pixels

• Histograms

• other descriptors

• …

Slide credit: L. Lazebnik



One way to think about it…

• Training labels dictate that two examples are the same or 
different, in some sense.

• Features and distance measures define visual similarity.

• Classifiers try to learn weights or parameters for features 
and distance measures so that visual similarity predicts 
label similarity.



Many classifiers to choose from…
• SVM
• Neural networks
• Naïve Bayes
• Bayesian network
• Logistic regression
• Randomized Forests
• Boosted Decision Trees
• K-nearest neighbor
• Restricted Boltzmann Machines
• Deep Convolutional Network
• …

Which is 
the best?



Claim:
The decision to use machine 

learning is more important than the 
choice of a particular learning 
method.

*Deep learning seems to be an exception to this, 
currently, because it learns the feature 
representation.



*Again, deep learning may be an exception here 
for the same reason, but deep learning _needs_ a 
lot of labeled data in the first place.
“The Unreasonable Effectiveness of Data” - Norvig

Claim:
It is more important to have more 
or better labeled data than to use 
a different supervised learning 
technique.



• Images in the training set must be annotated with the 
“correct answer” that the model is expected to produce

Contains a motorbike

Recognition task and supervision

Slide credit: L. Lazebnik



Unsupervised “Weakly” supervised Fully supervised

Fuzzy; definition depends on task

Lazebnik

Spectrum of supervision
Less More

E.G., MS CocoE.G., ImageNet



Good training 
data?



Good training 
data?

http://mscoco.org/explore/?id=134918



Google guesses from the 1st caption



Generalization

• How well does a learned model generalize from the data it 
was trained on to a new test set?

Training set (labels known) Test set (labels 
unknown)

Slide credit: L. Lazebnik



Generalization Error
• Bias: how much the average model over all training sets 

differs from the true model.
• Error due to inaccurate assumptions/simplifications made by the 

model. 
• Variance: how much models estimated from different 

training sets differ from each other.

• Underfitting: model is too “simple” to represent all the 
relevant class characteristics
• High bias (few degrees of freedom) and low variance
• High training error and high test error

• Overfitting: model is too “complex” and fits irrelevant 
characteristics (noise) in the data
• Low bias (many degrees of freedom) and high variance
• Low training error and high test error

Slide credit: L. Lazebnik



Generalization Error Effects
• Underfitting: model is too “simple” to represent all the 

relevant class characteristics
• High bias (few degrees of freedom) and low variance
• High training error and high test error

Slide credit: L. Lazebnik



Generalization Error Effects
• Overfitting: model is too “complex” and fits irrelevant 

characteristics (noise) in the data
• Low bias (many degrees of freedom) and high variance
• Low training error and high test error

Slide credit: L. Lazebnik



No Free Lunch Theorem

Slide credit: D. Hoiem



No free lunch theorem
• Averaged over all possible data generating distributions, every classification 

algorithm has the same error rate when classifying previously unobserved 

points.



No free lunch theorem
• Averaged over all possible data generating distributions, every 

classification algorithm has the same error rate when classifying 

previously unobserved points.

• This means that the goal of machine learning research is not to 
seek a universal learning algorithm or the absolute best learning 
algorithm. Instead, our goal is to understand what kinds of 
distributions are relevant to the “real world” that an AI agent 
experiences, and what kinds of machine learning algorithms 
perform well on data drawn from the kinds of data generating 
distributions we care about.



Bias-Variance Trade-off
Models with too few parameters are 
inaccurate because of a large bias.

• Not enough flexibility!

Models with too many parameters 
are inaccurate because of a large 
variance. 

• Too much sensitivity to the sample.

Slide credit: D. Hoiem



Bias-Variance Trade-off
E(MSE) = noise2  + bias2 + variance

For explanations of bias-variance (also Bishop’s “Neural Networks” book): 
•http://www.inf.ed.ac.uk/teaching/courses/mlsc/Notes/Lecture4/BiasVariance.pdf

Unavoidable 
error

Error due to 
incorrect 

assumptions

Error due to 
variance of training 

samples

Slide credit: D. Hoiem



Bias-variance tradeoff

Training error

Test error

Underfitting Overfitting

Complexity Low Bias
High Variance

High Bias
Low Variance

Er
ro

r

Slide credit: D. Hoiem



Bias-variance tradeoff

Many training examples

Few training examples

Complexity Low Bias
High Variance

High Bias
Low Variance

Te
st

 E
rro

r

Slide credit: D. Hoiem



Effect of Training Size

Testing

Training

Generalization Error

Number of Training Examples

Er
ro

r

Fixed prediction model

Slide credit: D. Hoiem



The perfect classification algorithm
• Objective function: encodes the right loss for the problem

• Parameterization: makes assumptions that fit the problem

• Regularization: right level of regularization for amount of 
training data

• Training algorithm: can find parameters that maximize 
objective on training set

• Inference algorithm: can solve for objective function in 
evaluation

Slide credit: D. Hoiem



Remember…
• No classifier is inherently better than 

any other: you need to make 
assumptions to generalize

• Three kinds of error
– Inherent: unavoidable
– Bias: due to over-simplifications
– Variance: due to inability to perfectly 

estimate parameters from limited data

Slide credit: D. Hoiem



How to reduce variance?

• Choose a simpler classifier

• Regularize the parameters

• Get more training data

Slide credit: D. Hoiem



Very brief tour of some classifiers
• K-nearest neighbor
• SVM
• Boosted Decision Trees
• Neural networks (+CNNs)
• Naïve Bayes
• Bayesian network
• Logistic regression
• Randomized Forests
• Restricted Boltzmann Machines
• ...



Generative vs. Discriminative Classifiers
Generative Models
• Represent both the data 

and the labels
• Often, makes use of 

conditional independence 
and priors

• Examples
• Naïve Bayes classifier
• Bayesian network

• Models of data may apply 
to future prediction 
problems

Discriminative	Models
• Learn	to	directly	predict	the	labels	

from	the	data
• Often,	assume	a	simple	boundary	

(e.g.,	linear)
• Examples

– Logistic	regression
– SVM
– Boosted	decision	trees

• Often	easier	to	predict	a	label	from	the	
data	than	to	model	the	data

Slide credit: D. Hoiem



evolvingai.org

“Learn the data boundary” “Represent the data + boundary”

P (X|Y = y)Observable variable

target variable (label)

P (Y |X = x) P (X,Y )



Relationship between discriminative and 
generative models
Given a model of the joint distribution,

the distribution of the individual variables can be computed as the 

marginal distributions:

P (X,Y )

P (X) =
X

y

P (X,Y = y) P (Y ) =

Z

x

P (Y,X = x)

P (X|Y ) = P (X,Y )/P (Y ) P (Y |X) = P (X,Y )/P (X)

P (Y |X)P (X) = P (X|Y )P (Y )Bayes Rule:



Classification
• Assign input vector to one of two or more classes
• Any decision rule divides input space into decision regions

separated by decision boundaries

Slide credit: L. Lazebnik



Classifiers: Nearest neighbor

f(x) = label of the training example nearest to x

• All we need is a distance function for our inputs
• No training required!

Test 
example

Training 
examples 

from class 1

Training 
examples 

from class 2

Slide credit: L. Lazebnik



Nearest neighbor – L1 distance

An example of using pixel-wise differences to compare two images with L1 distance 
(for one color channel in this example). Two images are subtracted elementwise and then all differences are 
added up to a single number. 
If two images are identical the result will be zero. But if the images are very different the result will be large.



Nearest	Neighbor	Classifier

Assign	label	of	nearest	training	data	point	to	each	test	data	point.
Divides	input	space	into	decision	regions separated	by	decision	
boundaries	– Voronoi.

Voronoi partitioning	
of	feature	space	
for	two-category	
2D	and	3D	data

from	Duda	et	al.

Source:	D.	Lowe
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1-nearest neighbor
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3-nearest neighbor
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5-nearest neighbor
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K- nearest neighbors

Find the top k closest images, and have them vote on the label of the test image. 



Validation sets for Hyperparameter
tuning

K is an hyperparameter

How can we determine K ? 
We CANNOT find K by tweaking it for the test set

Use validation set instead

Split your training set into training set and a validation set. 
Use validation set to tune all hyperparameters. 
At the end run a single time on the test set and report 
performance.



Cross validation
Insufficient data ? 
Split your training set into training set and a validation set. 
Use validation set to tune all hyperparameters. 
At the end run a single time on the test set and report performance.



Pros and Cons of Nearest Neighbor 
classifier

Pixel-based distances on high-dimensional data (and 

images especially) can be very unintuitive. An original image 

(left) and three other images next to it that are all equally far 

away from it based on L2 pixel distance. Clearly, the pixel-

wise distance does not correspond at all to perceptual or 

semantic similarity.



K-NN Disadvantages

• 1) The classifier must remember all of the training data 

and store it for future comparisons with the test data. This 

is space inefficient because datasets may easily be 

gigabytes in size.

2) Classifying a test image is expensive since it requires a 

comparison to all training images.



Parameterized mapping from images to 
label scores
• Define a score function that maps the pixel values of an image to confidence 

scores for each class:
• Training data-set: N examples, K categories

{xi, yi}Ni=1, xi 2 RD
, yi 2 {1, . . .K}

Linear classifier: 

The matrix W (of size [K x D]), and the vector b (of size [K x 1]) 
are the parameters (weights) of the function. 

f : RD ! RK

f(x) = Wxi + b



Classifiers: Linear

• Find a linear function to separate the classes:

f(x) = sign(w × x + b)

Slide credit: L. Lazebnik



Interpreting a linear classifier



Analogy of images as high-dimensional 
points.



Classifiers: Linear Support Vector 
Machine (SVM)

x x
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xi 2 Rn
i = 1, . . . ,m

yi = {�1, 1}

w 2 Rn

b 2 R

xi ·w � b > 0

xi ·w � b < 0

yi(xi ·w � b) > 0

APNIK, V., and A. LERNER, 1963. Pattern recognition using generalized 
portrait method. Automation and Remote Control, 24, 774–780.



Classifiers: Linear Support Vector 
Machine (SVM)
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• Find a linear function to separate the classes:
f(x) = sign(w × x + b)

xi 2 Rn
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xi ·w � b < 0



Classifiers: Linear Support Vector 
Machine (SVM)
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Challenges:
• The classes may not be linearly separable 
• Suppose the classes are linearly separable the hyperplane 

defined by            is not unique. 

xi 2 Rn
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Classifiers: Linear Support Vector 
Machine (SVM)
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yi = {�1, 1}
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b 2 R b,w

Among all possible hyperplanes            which of them has the

best generalization properties? 
b,w

The goal is to construct a learning machine is to maximize the performance

on the test data (the instances we haven't seen),



Classifiers: Linear SVM - Margin
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Classifiers: Linear SVM

(Hard)

Distance of a point        from an hyperplane
x

We look for 
argmax

w

|w · x� b|p
w ·w

We can normalize              such that 

|w · x� b| = 1

b,w

We can equivalently solve for 
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Classifiers: Linear SVM
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We can define the following 

optimization problem:

min

w,b

1

2

w ·w

subject to

yi(w · xi � b)� 1 � 0 1 = 1, . . . ,m

o

but this is valid only when the classes are linearly separable

Quadratic Linear 
Programming (QP) 
problem



Classifiers: Linear SVM

(Wikipedia)

maximum-margin hyperplane

Support vectors are defined by 
such that: 

|w · x� b| = 1

b,w

For linearly separated points

otherwise  

x

xj

yi(w · xi � b) � 1

1� yi(w · xi � b)  0

1� yi(w · xj � b) � 0

max(0, 1� yi(w · xj � b))Hinge Loss:



SVM Classifier: Soft Margin

"
nX

i=1

max(0, 1� yi(w · xj � b))

#
+ � ||w| |

We look  for            to minimize       b,w

margin/
regularization



• Datasets that are linearly separable work out great:

• But what if the dataset is just too hard? 

• We can map it to a higher-dimensional space:

0 x

0 x

0 x

x2

Nonlinear SVMs

Slide credit: Andrew Moore

Boser, B. E.; Guyon, I. M.; 
Vapnik, V. N. (1992). 
"A training algorithm for 
optimal margin classifiers". 
Proceedings of the fifth 
annual workshop on 
Computational learning 
theory – COLT '92. p. 144. 



Φ:  x→ φ(x)

Nonlinear SVMs
• General idea: the original input space can always be 

mapped to some higher-dimensional feature space 
where the training set is separable:

Slide credit: Andrew Moore



Nonlinear SVM: kernel trick
• We would like to learn a nonlinear classification rule which 

corresponds to a linear classification rule for the 

transformed data points           .

• Instead of explicitly calculating the transformation, we 

define a kernel function as follows:

and use the Kernel Trick.  

⇢(xi)

k(xi,xj) = ⇢(xi) · ⇢(xj)



Nonlinear SVM: common kernel functions
• Polynomial (homogeneous):
• Polynomial (inhomogeneous):

• Gaussian radial basis function:
•
• sometimes

• Hyperbolic tangent: 

is positive semi-definite                               

k(xi,xj) = (xi · xj)
d

k(xi,xj) = (xi · xj + 1)d

k(xi,xj) = exp(��||xi � xj ||2) � =
1

2
�2

k(xi,xj) = tanh(xi · xj + c)

 > 0, c > 0

Kij = k(xi,xj)



Nonlinear kernel: Example
• Consider the mapping ),()( 2xxx =j
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2222
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Nonlinear SVM: Kernel trick
• We can formulate the problem such that only inner 

products of the input vectors    (i.e.,             ) are used. 

• The kernel is related to the transform by definition:

• The hyperplane is also defined in the transformed space 

as follows:

• Dot products with w for classification can again be 

computed by the kernel trick, i.e., 

xi · xj

w =
X

i

↵iyi⇢(xi)

k(xi,xj) = ⇢(xi) · ⇢(xj)

w · ⇢(xi) =
X

i

↵iyik(xi,xj)



Non-linear SVM algorithm
• The non-linear SVM algorithm is formally similar to the 

linear SVM, except that every dot product is replaced by a 

nonlinear kernel function. 

• This allows the algorithm to fit the maximum-margin 
hyperplane in a transformed feature space. 

• The transformation may be nonlinear and the transformed 
space high dimensional; although the classifier is a 

hyperplane in the transformed feature space, it may be 

nonlinear in the original input space.



Summary: SVMs for image classification
1. Pick an image representation (in our case, bag of 

features)
2. Pick a kernel function for that representation
3. Compute the matrix of kernel values between every pair 

of training examples
4. Feed the kernel matrix into your favorite SVM solver to 

obtain support vectors and weights
5. At test time: compute kernel values for your test example 

and each support vector, and combine them with the 
learned weights to get the value of the decision function

Slide credit: L. Lazebnik



What about multi-class SVMs?
• Unfortunately, there is no “definitive” multi-class SVM 

formulation
• In practice, we have to obtain a multi-class SVM by 

combining multiple two-class SVMs 
• One vs. others

• Traning: learn an SVM for each class vs. the others
• Testing: apply each SVM to test example and assign to it the class 

of the SVM that returns the highest decision value

• One vs. one
• Training: learn an SVM for each pair of classes
• Testing: each learned SVM “votes” for a class to assign to the test 

example

Slide credit: L. Lazebnik



SVMs: Pros and cons
• Pros

• Many publicly available SVM packages:
http://www.kernel-machines.org/software

• Kernel-based framework is very powerful, flexible
• SVMs work very well in practice, even with very small training 

sample sizes

• Cons
• No “direct” multi-class SVM, must combine two-class SVMs
• Computation, memory 

• During training time, must compute matrix of kernel values for every 
pair of examples

• Learning can take a very long time for large-scale problems



Classifiers: Decision Trees
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Random forests L. Breiman.. 1999, 2001
Discrete Adaboost Freund and Shapire 1996



Forests and trees

A forest is an ensemble of trees. The trees are all slightly different from one another.

[ Y. Amit and D. Geman. Shape quantization and recognition with randomized 
trees. Neural Computation. 9:1545--1588, 1997]
[ L. Breiman.  Random forests. Machine Learning. 45(1):5--32, 2001]

taken from: A. Criminisi, J. Shotton and  E. Konukoglu



Generic trees and decision trees

terminal (leaf) node

internal 
(split) node

root node0

1 2

3 4 5 6

9 10 11 12 13 14

A general tree structure

Is top 
part blue?

Is bottom 
part green?

Is bottom 
part blue?

A decision tree

taken from: A. Criminisi, J. Shotton and  E. Konukoglu



The decision forest model

Basic notation

Output/label space Categorical, continuous? e.g.

Input data point e.g. Collection of feature responses        .  d=?

Feature response selector Features can be e.g. wavelets? Pixel intensities? Context?

Forest model

tr
ee

Node weak learner The test function for splitting data at a node j.e.g.

Node objective function (train.) The “energy” to be minimized when training the j-th split nodee.g.

Stopping criteria (train.) e.g.  max tree depth = When to stop growing a tree during training

The ensemble model How to compute the forest output from that of individual trees?e.g.

en
se

m
b

le

Forest size Total number of trees in the forest

Leaf predictor model Point estimate? Full distribution?e.g.

Randomness model (train.) e.g.  1. Bagging, 
2. Randomized node optimization

How is randomness injected during training? How much?

Node test parameters
Parameters related to each split node: 
i) which features, ii) what geometric primitive, iii) thresholds.

taken from: A. Criminisi, J. Shotton and  E. Konukoglu



Input
test
point

Split the data at 
node

Decision tree testing (runtime)

Input data in feature space

Prediction at leaf

taken from: A. Criminisi, J. Shotton and  E. Konukoglu



How to split the data?

Binary tree? Ternary?
How big a tree?
What tree structure?

Decision tree training (off-line)

Input data in feature space

Input training data

taken from: A. Criminisi, J. Shotton and  E. Konukoglu



How many trees?
How different?
How to fuse their outputs?

Decision forest training (off-line)

… …

taken from: A. Criminisi, J. Shotton and  E. Konukoglu



Decision forest model: the randomness model

1) Bagging (randomizing the training set)

The full training set

The randomly sampled subset of training data made available for the tree t

Forest training

Efficient trainingtaken from: A. Criminisi, J. Shotton and  E. Konukoglu



Decision forest model: training and information gain

B
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Information gain

Shannon’s entropy

Node training

(for categorical, non-parametric distributions)
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Decision forest model: training and information gain

Information gain

Differential entropy of Gaussian

Node training

B
ef

or
e 

sp
lit

(for continuous, parametric densities)
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lit

 1
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lit
 2



Background: overfitting and underfitting

taken from: A. Criminisi, J. Shotton and  E. Konukoglu



Classification forest
Training data in feature space

?

?

?

Entropy of a discrete  distribution

with

Classification tree
training

Obj. funct. for node j (information gain)

Training node j

Output is categorical 

Input data point

Node weak learner

Predictor model (class posterior)

Model specialization for classification

(       is feature response)

(discrete set)



Classification forest: the prediction model

What do we do at the leaf?

leaf
leaf

leaf

Prediction model: probabilistic



Classification forest: the ensemble model

Tree t=1 t=2 t=3

Forest output probability

The ensemble model



What can decision forests do? tasks

Regression forestsClassification forests

Manifold forestsDensity forests Semi-supervised forests



What can decision forests do? applications

Regression forestsClassification forests

Manifold forestsDensity forests Semi-supervised forests

e.g. semantic segmentation e.g. object localization

e.g. novelty detection e.g. dimensionality reduction e.g. semi-sup. semantic segmentation



Naïve Bayes

• A  family of  simple probabilistic classifiers based on 

applying Bayes' theorem with strong (naive) 

independence assumptions between the features.

Posterior Probability

Likelihood Class Prior Probability

Predictor Prior Probability



Naïve Bayes

Naive Bayes is a conditional probability model.

Given a problem instance to be classified, represented by a 

vector

representing some features (independent variables), it 

assigns to this instance probabilities

for each of K possible outcomes or classes Ck

p(Ck|x1, . . . , xn)

x = (x1, . . . , xn)

n



Naïve Bayes

When      is large or                                  can take on a 

large number of values, then basing this model 

on probability tables is infeasible.

Making the model more tractable using Bayes' theorem, the 

conditional probability can be decomposed as

p(Ck|x1, . . . , xn)

x = (x1, . . . , xn)n

p(Ck|x) =
p(Ck)p(x|Ck)

p(x)
effectively constant, does not depend on Ck



Naïve Bayes
The numerator is equivalent to the joint probability model

It can be rewritten as follows, using the chain rule for 

repeated applications of the definition of conditional 

probability:

p(Ck, x1, . . . , xn)



Naïve Bayes
``Naive" conditional independence assumptions: 

Assume that each feature         is conditionally independent 

of every other feature         for              given the category

This means that:  

Thus

xi

xj i 6= j C



Naïve Bayes
This means that under the above independence 

assumptions, the conditional distribution over the class 

variable       is: 

where the evidence     is a scaling factor dependent only on

that is, a constant if the values of the feature variables are 

known.

C

Z

x1, x2, . . . , xn



Maximum a Posteriori (MAP)
The naive Bayes classifier combines independent feature 

model model with a decision rule. One common rule is to 

pick the hypothesis that is most probable; this is known as 

the maximum a posteriori or MAP decision rule. The 

(corresponding) Bayes classifier, is the function that 

assigns a class label                 for some       as follows: k



Parameter estimation and event models

A class's prior may be calculated by assuming equiprobable
classes 

or by calculating an estimate for the class probability from the 
training set

To estimate the parameters for a feature's distribution, one must 
assume a distribution or generate nonparametric models for the 
features from the training set.

prior =

1

number of classes

prior for Ck =

number of samples in Ck

number of samples in

PK
k=1 Ck



Example: Gaussian naive Bayes

{µk,�k}k

likelihood term



Using Naïve Bayes 

• Simple thing to try for categorical data

• Very fast to train/test



Naïve Bayes and Logistic Regression 
In the case of discrete inputs (indicator or frequency 

features for discrete events), naive Bayes classifiers form a 

generative-discriminative pair with (multinomial) logistic 

regression classifiers: each naive Bayes classifier can be 

considered a way of fitting a probability model that 

optimizes the joint likelihood                 while logistic 

regression fits the same probability model to optimize the 

conditional  

p(C,x)

p(C|x)



Naïve Bayes and Logistic Regression 
The decision function for naive Bayes (in the binary case) can be 

rewritten as "predict class        if the odds of             

exceed those of “:

Since naive Bayes is also a linear model for the two "discrete" 

event models, it can be reparametrised as a linear function

p(C1|x)

p(C2|x)
C1

Logit function

y = b+w

T
x



Classifiers: Logistic Regression

x2

x1

Height

Pitch of voice

xwT

yxxP
yxxP

=
-=
=
)1|,(
)1|,(log

21

21

male

female

( )( )xwTxxyP -+== exp1/1),|1( 21

Maximize likelihood of 
label given data, 
assuming a log-linear 
model



Using Logistic Regression

• Quick, simple classifier (try it first)

• Outputs a probabilistic label confidence

• Use L2 or L1 regularization
• L1 does feature selection and is robust to irrelevant features but 

slower to train

Multinomial logistic regression function – SoftMax function



Ideals for a classification algorithm
• Objective function: encodes the right loss for the problem

• Parameterization: takes advantage of the structure of the 
problem

• Regularization: good priors on the parameters

• Training algorithm: can find parameters that maximize 
objective on training set

• Inference algorithm: can solve for labels that maximize 
objective function for a test example



Two ways to think about classifiers

1. What is the objective? What are the parameters?  How 
are the parameters learned? How is the learning 
regularized?  How is inference performed?

2. How is the data modeled?  How is similarity defined?  
What is the shape of the boundary?

Slide credit: D. Hoiem



Comparison

Naïve 
Bayes

Logistic 
Regression

Linear 
SVM

Nearest 
Neighbor

Kernelized 
SVM

Learning Objective
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Slide credit: D. Hoiem



What to remember about classifiers

• No free lunch: machine learning algorithms are tools, 
not dogmas

• Try simple classifiers first

• Better to have smart features and simple classifiers 
than simple features and smart classifiers

• Use increasingly powerful classifiers with more 
training data (bias-variance tradeoff)

Slide credit: D. Hoiem



Making decisions about data
• 3 important design decisions:

1) What data do I use?
2) How do I represent my data (what feature)?
3) What classifier / regressor / machine learning tool do I use?

• These are in decreasing order of importance
• Deep learning addresses 2 and 3 simultaneously (and 

blurs the boundary between them). 
• You can take the representation from deep learning and 

use it with any classifier.



Some Machine Learning References

• General
• Tom Mitchell, Machine Learning, McGraw Hill, 1997
• Christopher Bishop, Neural Networks for Pattern 

Recognition, Oxford University Press, 1995
• Adaboost

• Friedman, Hastie, and Tibshirani, “Additive logistic 
regression: a statistical view of boosting”, Annals of 
Statistics, 2000 

• SVMs
• http://www.support-vector.net/icml-tutorial.pdf

Slide credit: D. Hoiem


