
DIGITAL IMAGE
PROCESSING
Lecture 10
Machine Learning: Supervised Learning
Tammy Riklin Raviv
Electrical and Computer Engineering
Ben-Gurion University of the Negev

Machine Learning
• Learn from and make predictions on data.

• Arguably the greatest export from computing to other
scientific fields.

• Statisticians might disagree with Computer Scientists on
the true origins…

Most slides are taken (or adapted) from Michael Black’s course in Brown

ML for Computer Vision

• Face Recognition
• Object Classification
• Scene Segmentation

The machine learning framework

• Apply a prediction function to a feature representation of
the image to get the desired output:

f() = “apple”
f() = “tomato”
f() = “cow”

Slide credit: L. Lazebnik

The machine learning framework

f(x) = y

Training: Given a training set of labeled examples:
{(x1,y1), …, (xN,yN)}

Estimate the prediction function f by minimizing the
prediction error on the training set.

Testing: Apply f to a unseen test example x and output the
predicted value y = f(x) to classify x.

Output (label)Prediction
function

Image
feature

Slide credit: L. Lazebnik

Image Categorization
Training
Labels

Training
Images

Classifier
Training

Training

Image
Features

Trained
Classifie

r

Image Categorization
Training
Labels

Training
Images

Classifier
Training

Training

Image
Features

Image
Features

Testing

Test Image

Trained
Classifie

r

Trained
Classifier Outdoor

Prediction

Example: Scene Categorization

• Is this a kitchen?

Image features
Training
Labels

Training
Images

Classifier
Training

Training

Image
Features

Trained
Classifie

r

General Principles of Representation
• Coverage

• Ensure that all relevant info is captured

• Concision
• Minimize number of features without

sacrificing coverage

• Directness
• Ideal features are independently useful for

prediction

Image representations
• Templates

• Intensity, gradients, etc.

• Histograms
• Color, texture, SIFT descriptors, etc.

Classifiers
Training
Labels

Training
Images

Classifier
Training

Training

Image
Features

Trained
Classifie

r

Learning a classifier
Given a set of features with corresponding labels, learn a
function to predict the labels from the features.

+ +

+ +

+

+
+

+

o
o

o

o

o

x2

x1

+ = Data point from class 1
o = Data point from class 2

Each data point has a
feature vector (x1,x2).

ImageNet
• Images for each

category of WordNet
• 1000 classes
• 1.2mil images
• 100k test

• Top 5 error

Labeled database

An example training set for four visual categories. In practice we may have
thousands
of categories and hundreds of thousands of images for each category.

MNIST database

Dataset split
Training
Images

Testing
Images

Validation
Images

- Secret labels
- Measure error

- Train classifier - Measure error
- Tune model
hyperparameters

Random train/validate splits = cross validation

Prediction

Steps
Training
Labels

Training
Images

Training

Training

Image
Features

Image
Features

Testing

Test Image

Learned
classifier

Apply
classifier

Slide credit: D. Hoiem and L. Lazebnik

Features
• Raw pixels

• Histograms

• other descriptors

• …

Slide credit: L. Lazebnik

One way to think about it…

• Training labels dictate that two examples are the same or
different, in some sense.

• Features and distance measures define visual similarity.

• Classifiers try to learn weights or parameters for features
and distance measures so that visual similarity predicts
label similarity.

Many classifiers to choose from…
• SVM
• Neural networks
• Naïve Bayes
• Bayesian network
• Logistic regression
• Randomized Forests
• Boosted Decision Trees
• K-nearest neighbor
• Restricted Boltzmann Machines
• Deep Convolutional Network
• …

Which is
the best?

Claim:
The decision to use machine

learning is more important than the
choice of a particular learning
method.

*Deep learning seems to be an exception to this,
currently, because it learns the feature
representation.

*Again, deep learning may be an exception here
for the same reason, but deep learning _needs_ a
lot of labeled data in the first place.
“The Unreasonable Effectiveness of Data” - Norvig

Claim:
It is more important to have more
or better labeled data than to use
a different supervised learning
technique.

• Images in the training set must be annotated with the
“correct answer” that the model is expected to produce

Contains a motorbike

Recognition task and supervision

Slide credit: L. Lazebnik

Unsupervised “Weakly” supervised Fully supervised

Fuzzy; definition depends on task

Lazebnik

Spectrum of supervision
Less More

E.G., MS CocoE.G., ImageNet

Good training
data?

Good training
data?

http://mscoco.org/explore/?id=134918

Google guesses from the 1st caption

Generalization

• How well does a learned model generalize from the data it
was trained on to a new test set?

Training set (labels known) Test set (labels
unknown)

Slide credit: L. Lazebnik

Generalization Error
• Bias: how much the average model over all training sets

differs from the true model.
• Error due to inaccurate assumptions/simplifications made by the

model.
• Variance: how much models estimated from different

training sets differ from each other.

• Underfitting: model is too “simple” to represent all the
relevant class characteristics
• High bias (few degrees of freedom) and low variance
• High training error and high test error

• Overfitting: model is too “complex” and fits irrelevant
characteristics (noise) in the data
• Low bias (many degrees of freedom) and high variance
• Low training error and high test error

Slide credit: L. Lazebnik

Generalization Error Effects
• Underfitting: model is too “simple” to represent all the

relevant class characteristics
• High bias (few degrees of freedom) and low variance
• High training error and high test error

Slide credit: L. Lazebnik

Generalization Error Effects
• Overfitting: model is too “complex” and fits irrelevant

characteristics (noise) in the data
• Low bias (many degrees of freedom) and high variance
• Low training error and high test error

Slide credit: L. Lazebnik

No Free Lunch Theorem

Slide credit: D. Hoiem

No free lunch theorem
• Averaged over all possible data generating distributions, every classification

algorithm has the same error rate when classifying previously unobserved

points.

No free lunch theorem
• Averaged over all possible data generating distributions, every

classification algorithm has the same error rate when classifying

previously unobserved points.

• This means that the goal of machine learning research is not to
seek a universal learning algorithm or the absolute best learning
algorithm. Instead, our goal is to understand what kinds of
distributions are relevant to the “real world” that an AI agent
experiences, and what kinds of machine learning algorithms
perform well on data drawn from the kinds of data generating
distributions we care about.

Bias-Variance Trade-off
Models with too few parameters are
inaccurate because of a large bias.

• Not enough flexibility!

Models with too many parameters
are inaccurate because of a large
variance.

• Too much sensitivity to the sample.

Slide credit: D. Hoiem

Bias-Variance Trade-off
E(MSE) = noise2 + bias2 + variance

For explanations of bias-variance (also Bishop’s “Neural Networks” book):
•http://www.inf.ed.ac.uk/teaching/courses/mlsc/Notes/Lecture4/BiasVariance.pdf

Unavoidable
error

Error due to
incorrect

assumptions

Error due to
variance of training

samples

Slide credit: D. Hoiem

Bias-variance tradeoff

Training error

Test error

Underfitting Overfitting

Complexity Low Bias
High Variance

High Bias
Low Variance

Er
ro

r

Slide credit: D. Hoiem

Bias-variance tradeoff

Many training examples

Few training examples

Complexity Low Bias
High Variance

High Bias
Low Variance

Te
st

 E
rro

r

Slide credit: D. Hoiem

Effect of Training Size

Testing

Training

Generalization Error

Number of Training Examples

Er
ro

r

Fixed prediction model

Slide credit: D. Hoiem

The perfect classification algorithm
• Objective function: encodes the right loss for the problem

• Parameterization: makes assumptions that fit the problem

• Regularization: right level of regularization for amount of
training data

• Training algorithm: can find parameters that maximize
objective on training set

• Inference algorithm: can solve for objective function in
evaluation

Slide credit: D. Hoiem

Remember…
• No classifier is inherently better than

any other: you need to make
assumptions to generalize

• Three kinds of error
– Inherent: unavoidable
– Bias: due to over-simplifications
– Variance: due to inability to perfectly

estimate parameters from limited data

Slide credit: D. Hoiem

How to reduce variance?

• Choose a simpler classifier

• Regularize the parameters

• Get more training data

Slide credit: D. Hoiem

Very brief tour of some classifiers
• K-nearest neighbor
• SVM
• Boosted Decision Trees
• Neural networks (+CNNs)
• Naïve Bayes
• Bayesian network
• Logistic regression
• Randomized Forests
• Restricted Boltzmann Machines
• ...

Generative vs. Discriminative Classifiers
Generative Models
• Represent both the data

and the labels
• Often, makes use of

conditional independence
and priors

• Examples
• Naïve Bayes classifier
• Bayesian network

• Models of data may apply
to future prediction
problems

Discriminative	Models
• Learn	to	directly	predict	the	labels	

from	the	data
• Often,	assume	a	simple	boundary	

(e.g.,	linear)
• Examples

– Logistic	regression
– SVM
– Boosted	decision	trees

• Often	easier	to	predict	a	label	from	the	
data	than	to	model	the	data

Slide credit: D. Hoiem

evolvingai.org

“Learn the data boundary” “Represent the data + boundary”

P (X|Y = y)Observable variable

target variable (label)

P (Y |X = x) P (X,Y)

Relationship between discriminative and
generative models
Given a model of the joint distribution,

the distribution of the individual variables can be computed as the

marginal distributions:

P (X,Y)

P (X) =
X

y

P (X,Y = y) P (Y) =

Z

x

P (Y,X = x)

P (X|Y) = P (X,Y)/P (Y) P (Y |X) = P (X,Y)/P (X)

P (Y |X)P (X) = P (X|Y)P (Y)Bayes Rule:

Classification
• Assign input vector to one of two or more classes
• Any decision rule divides input space into decision regions

separated by decision boundaries

Slide credit: L. Lazebnik

Classifiers: Nearest neighbor

f(x) = label of the training example nearest to x

• All we need is a distance function for our inputs
• No training required!

Test
example

Training
examples

from class 1

Training
examples

from class 2

Slide credit: L. Lazebnik

Nearest neighbor – L1 distance

An example of using pixel-wise differences to compare two images with L1 distance
(for one color channel in this example). Two images are subtracted elementwise and then all differences are
added up to a single number.
If two images are identical the result will be zero. But if the images are very different the result will be large.

Nearest	Neighbor	Classifier

Assign	label	of	nearest	training	data	point	to	each	test	data	point.
Divides	input	space	into	decision	regions separated	by	decision	
boundaries	– Voronoi.

Voronoi partitioning	
of	feature	space	
for	two-category	
2D	and	3D	data

from	Duda	et	al.

Source:	D.	Lowe

K-nearest neighbor

x x

x x

x

x
x

x
o

o
o

o

o

o
o

x2

x1

+

+

1-nearest neighbor

x x

x x

x

x
x

x
o

o
o

o

o

o
o

x2

x1

+

+

3-nearest neighbor

x x

x x

x

x
x

x
o

o
o

o

o

o
o

x2

x1

+

+

5-nearest neighbor

x x

x x

x

x
x

x
o

o
o

o

o

o
o

x2

x1

+

+

K- nearest neighbors

Find the top k closest images, and have them vote on the label of the test image.

Validation sets for Hyperparameter
tuning

K is an hyperparameter

How can we determine K ?
We CANNOT find K by tweaking it for the test set

Use validation set instead

Split your training set into training set and a validation set.
Use validation set to tune all hyperparameters.
At the end run a single time on the test set and report
performance.

Cross validation
Insufficient data ?
Split your training set into training set and a validation set.
Use validation set to tune all hyperparameters.
At the end run a single time on the test set and report performance.

Pros and Cons of Nearest Neighbor
classifier

Pixel-based distances on high-dimensional data (and

images especially) can be very unintuitive. An original image

(left) and three other images next to it that are all equally far

away from it based on L2 pixel distance. Clearly, the pixel-

wise distance does not correspond at all to perceptual or

semantic similarity.

K-NN Disadvantages

• 1) The classifier must remember all of the training data

and store it for future comparisons with the test data. This

is space inefficient because datasets may easily be

gigabytes in size.

2) Classifying a test image is expensive since it requires a

comparison to all training images.

Parameterized mapping from images to
label scores
• Define a score function that maps the pixel values of an image to confidence

scores for each class:
• Training data-set: N examples, K categories

{xi, yi}Ni=1, xi 2 RD
, yi 2 {1, . . .K}

Linear classifier:

The matrix W (of size [K x D]), and the vector b (of size [K x 1])
are the parameters (weights) of the function.

f : RD ! RK

f(x) = Wxi + b

Classifiers: Linear

• Find a linear function to separate the classes:

f(x) = sign(w × x + b)

Slide credit: L. Lazebnik

Interpreting a linear classifier

Analogy of images as high-dimensional
points.

Classifiers: Linear Support Vector
Machine (SVM)

x x

x x

x

x
x

x

o
o

o

o

o

x2

x1

xi 2 Rn
i = 1, . . . ,m

yi = {�1, 1}

w 2 Rn

b 2 R

xi ·w � b > 0

xi ·w � b < 0

yi(xi ·w � b) > 0

APNIK, V., and A. LERNER, 1963. Pattern recognition using generalized
portrait method. Automation and Remote Control, 24, 774–780.

Classifiers: Linear Support Vector
Machine (SVM)

x x

x x

x

x
x

x

o
o

o

o

o

x2

x1

• Find a linear function to separate the classes:
f(x) = sign(w × x + b)

xi 2 Rn
i = 1, . . . ,m

yi = {�1, 1}

w 2 Rn

b 2 R

xi ·w � b > 0

xi ·w � b < 0

Classifiers: Linear Support Vector
Machine (SVM)

x x

x x

x

x
x

x

o
o

o

o

o

x2

x1
Challenges:
• The classes may not be linearly separable
• Suppose the classes are linearly separable the hyperplane

defined by is not unique.

xi 2 Rn
i = 1, . . . ,m

yi = {�1, 1}

w 2 Rn

b 2 R

b,w

X
X

o

o

o

Classifiers: Linear Support Vector
Machine (SVM)

x x

x x

x

x
x

x

o
o

o

o

o

x2

x1

xi 2 Rn
i = 1, . . . ,m

yi = {�1, 1}

w 2 Rn

b 2 R b,w

Among all possible hyperplanes which of them has the

best generalization properties?
b,w

The goal is to construct a learning machine is to maximize the performance

on the test data (the instances we haven't seen),

Classifiers: Linear SVM - Margin

x x

x
x

x

x

x

x

o
o

o

o

o

x2

x1

xi 2 Rn
i = 1, . . . ,m

yi = {�1, 1}

w 2 Rn

b 2 R

C� -a subset of all hyperplanes which have a fixed margin

A margin is defined as the distance of the closest training

point to the hyperplane:

�

� = min
i

⇢
yi(wT

xi � b)

||w||

�

Support
vector

Classifiers: Linear SVM

(Hard)

Distance of a point from an hyperplane
x

We look for
argmax

w

|w · x� b|p
w ·w

We can normalize such that

|w · x� b| = 1

b,w

We can equivalently solve for

argmin
w

1

2
w ·w

x x

x
x

x

x

x

x

o
o

o

o

o

x2

x1

Classifiers: Linear SVM

x x

x
x

x

x

x

x

o
o

o

o

o

x2

x1

We can define the following

optimization problem:

min

w,b

1

2

w ·w

subject to

yi(w · xi � b)� 1 � 0 1 = 1, . . . ,m

o

but this is valid only when the classes are linearly separable

Quadratic Linear
Programming (QP)
problem

Classifiers: Linear SVM

(Wikipedia)

maximum-margin hyperplane

Support vectors are defined by
such that:

|w · x� b| = 1

b,w

For linearly separated points

otherwise

x

xj

yi(w · xi � b) � 1

1� yi(w · xi � b)  0

1� yi(w · xj � b) � 0

max(0, 1� yi(w · xj � b))Hinge Loss:

SVM Classifier: Soft Margin

"
nX

i=1

max(0, 1� yi(w · xj � b))

#
+ � ||w| |

We look for to minimize b,w

margin/
regularization

• Datasets that are linearly separable work out great:

• But what if the dataset is just too hard?

• We can map it to a higher-dimensional space:

0 x

0 x

0 x

x2

Nonlinear SVMs

Slide credit: Andrew Moore

Boser, B. E.; Guyon, I. M.;
Vapnik, V. N. (1992).
"A training algorithm for
optimal margin classifiers".
Proceedings of the fifth
annual workshop on
Computational learning
theory – COLT '92. p. 144.

Φ: x→ φ(x)

Nonlinear SVMs
• General idea: the original input space can always be

mapped to some higher-dimensional feature space
where the training set is separable:

Slide credit: Andrew Moore

Nonlinear SVM: kernel trick
• We would like to learn a nonlinear classification rule which

corresponds to a linear classification rule for the

transformed data points .

• Instead of explicitly calculating the transformation, we

define a kernel function as follows:

and use the Kernel Trick.

⇢(xi)

k(xi,xj) = ⇢(xi) · ⇢(xj)

Nonlinear SVM: common kernel functions
• Polynomial (homogeneous):
• Polynomial (inhomogeneous):

• Gaussian radial basis function:
•
• sometimes

• Hyperbolic tangent:

is positive semi-definite

k(xi,xj) = (xi · xj)
d

k(xi,xj) = (xi · xj + 1)d

k(xi,xj) = exp(��||xi � xj ||2) � =
1

2
�2

k(xi,xj) = tanh(xi · xj + c)

 > 0, c > 0

Kij = k(xi,xj)

Nonlinear kernel: Example
• Consider the mapping),()(2xxx =j

22

2222

),(
),(),()()(
yxxyyxK

yxxyyyxxyx
+=

+=×=×jj

x2

Nonlinear SVM: Kernel trick
• We can formulate the problem such that only inner

products of the input vectors (i.e.,) are used.

• The kernel is related to the transform by definition:

• The hyperplane is also defined in the transformed space

as follows:

• Dot products with w for classification can again be

computed by the kernel trick, i.e.,

xi · xj

w =
X

i

↵iyi⇢(xi)

k(xi,xj) = ⇢(xi) · ⇢(xj)

w · ⇢(xi) =
X

i

↵iyik(xi,xj)

Non-linear SVM algorithm
• The non-linear SVM algorithm is formally similar to the

linear SVM, except that every dot product is replaced by a

nonlinear kernel function.

• This allows the algorithm to fit the maximum-margin
hyperplane in a transformed feature space.

• The transformation may be nonlinear and the transformed
space high dimensional; although the classifier is a

hyperplane in the transformed feature space, it may be

nonlinear in the original input space.

Summary: SVMs for image classification
1. Pick an image representation (in our case, bag of

features)
2. Pick a kernel function for that representation
3. Compute the matrix of kernel values between every pair

of training examples
4. Feed the kernel matrix into your favorite SVM solver to

obtain support vectors and weights
5. At test time: compute kernel values for your test example

and each support vector, and combine them with the
learned weights to get the value of the decision function

Slide credit: L. Lazebnik

What about multi-class SVMs?
• Unfortunately, there is no “definitive” multi-class SVM

formulation
• In practice, we have to obtain a multi-class SVM by

combining multiple two-class SVMs
• One vs. others

• Traning: learn an SVM for each class vs. the others
• Testing: apply each SVM to test example and assign to it the class

of the SVM that returns the highest decision value

• One vs. one
• Training: learn an SVM for each pair of classes
• Testing: each learned SVM “votes” for a class to assign to the test

example

Slide credit: L. Lazebnik

SVMs: Pros and cons
• Pros

• Many publicly available SVM packages:
http://www.kernel-machines.org/software

• Kernel-based framework is very powerful, flexible
• SVMs work very well in practice, even with very small training

sample sizes

• Cons
• No “direct” multi-class SVM, must combine two-class SVMs
• Computation, memory

• During training time, must compute matrix of kernel values for every
pair of examples

• Learning can take a very long time for large-scale problems

Classifiers: Decision Trees

x x

x x

x

x
x

x
o

o
o

o

o

o
o

x2

x1

Random forests L. Breiman.. 1999, 2001
Discrete Adaboost Freund and Shapire 1996

Forests and trees

A forest is an ensemble of trees. The trees are all slightly different from one another.

[Y. Amit and D. Geman. Shape quantization and recognition with randomized
trees. Neural Computation. 9:1545--1588, 1997]
[L. Breiman. Random forests. Machine Learning. 45(1):5--32, 2001]

taken from: A. Criminisi, J. Shotton and E. Konukoglu

Generic trees and decision trees

terminal (leaf) node

internal
(split) node

root node0

1 2

3 4 5 6

9 10 11 12 13 14

A general tree structure

Is top
part blue?

Is bottom
part green?

Is bottom
part blue?

A decision tree

taken from: A. Criminisi, J. Shotton and E. Konukoglu

The decision forest model

Basic notation

Output/label space Categorical, continuous? e.g.

Input data point e.g. Collection of feature responses . d=?

Feature response selector Features can be e.g. wavelets? Pixel intensities? Context?

Forest model

tr
ee

Node weak learner The test function for splitting data at a node j.e.g.

Node objective function (train.) The “energy” to be minimized when training the j-th split nodee.g.

Stopping criteria (train.) e.g. max tree depth = When to stop growing a tree during training

The ensemble model How to compute the forest output from that of individual trees?e.g.

en
se

m
b

le

Forest size Total number of trees in the forest

Leaf predictor model Point estimate? Full distribution?e.g.

Randomness model (train.) e.g. 1. Bagging,
2. Randomized node optimization

How is randomness injected during training? How much?

Node test parameters
Parameters related to each split node:
i) which features, ii) what geometric primitive, iii) thresholds.

taken from: A. Criminisi, J. Shotton and E. Konukoglu

Input
test
point

Split the data at
node

Decision tree testing (runtime)

Input data in feature space

Prediction at leaf

taken from: A. Criminisi, J. Shotton and E. Konukoglu

How to split the data?

Binary tree? Ternary?
How big a tree?
What tree structure?

Decision tree training (off-line)

Input data in feature space

Input training data

taken from: A. Criminisi, J. Shotton and E. Konukoglu

How many trees?
How different?
How to fuse their outputs?

Decision forest training (off-line)

… …

taken from: A. Criminisi, J. Shotton and E. Konukoglu

Decision forest model: the randomness model

1) Bagging (randomizing the training set)

The full training set

The randomly sampled subset of training data made available for the tree t

Forest training

Efficient trainingtaken from: A. Criminisi, J. Shotton and E. Konukoglu

Decision forest model: training and information gain

B
ef

or
e

sp
lit

Information gain

Shannon’s entropy

Node training

(for categorical, non-parametric distributions)

Sp
lit

 1
Sp

lit
 2

Decision forest model: training and information gain

Information gain

Differential entropy of Gaussian

Node training

B
ef

or
e

sp
lit

(for continuous, parametric densities)

Sp
lit

 1
Sp

lit
 2

Background: overfitting and underfitting

taken from: A. Criminisi, J. Shotton and E. Konukoglu

Classification forest
Training data in feature space

?

?

?

Entropy of a discrete distribution

with

Classification tree
training

Obj. funct. for node j (information gain)

Training node j

Output is categorical

Input data point

Node weak learner

Predictor model (class posterior)

Model specialization for classification

(is feature response)

(discrete set)

Classification forest: the prediction model

What do we do at the leaf?

leaf
leaf

leaf

Prediction model: probabilistic

Classification forest: the ensemble model

Tree t=1 t=2 t=3

Forest output probability

The ensemble model

What can decision forests do? tasks

Regression forestsClassification forests

Manifold forestsDensity forests Semi-supervised forests

What can decision forests do? applications

Regression forestsClassification forests

Manifold forestsDensity forests Semi-supervised forests

e.g. semantic segmentation e.g. object localization

e.g. novelty detection e.g. dimensionality reduction e.g. semi-sup. semantic segmentation

Naïve Bayes

• A family of simple probabilistic classifiers based on

applying Bayes' theorem with strong (naive)

independence assumptions between the features.

Posterior Probability

Likelihood Class Prior Probability

Predictor Prior Probability

Naïve Bayes

Naive Bayes is a conditional probability model.

Given a problem instance to be classified, represented by a

vector

representing some features (independent variables), it

assigns to this instance probabilities

for each of K possible outcomes or classes Ck

p(Ck|x1, . . . , xn)

x = (x1, . . . , xn)

n

Naïve Bayes

When is large or can take on a

large number of values, then basing this model

on probability tables is infeasible.

Making the model more tractable using Bayes' theorem, the

conditional probability can be decomposed as

p(Ck|x1, . . . , xn)

x = (x1, . . . , xn)n

p(Ck|x) =
p(Ck)p(x|Ck)

p(x)
effectively constant, does not depend on Ck

Naïve Bayes
The numerator is equivalent to the joint probability model

It can be rewritten as follows, using the chain rule for

repeated applications of the definition of conditional

probability:

p(Ck, x1, . . . , xn)

Naïve Bayes
``Naive" conditional independence assumptions:

Assume that each feature is conditionally independent

of every other feature for given the category

This means that:

Thus

xi

xj i 6= j C

Naïve Bayes
This means that under the above independence

assumptions, the conditional distribution over the class

variable is:

where the evidence is a scaling factor dependent only on

that is, a constant if the values of the feature variables are

known.

C

Z

x1, x2, . . . , xn

Maximum a Posteriori (MAP)
The naive Bayes classifier combines independent feature

model model with a decision rule. One common rule is to

pick the hypothesis that is most probable; this is known as

the maximum a posteriori or MAP decision rule. The

(corresponding) Bayes classifier, is the function that

assigns a class label for some as follows: k

Parameter estimation and event models

A class's prior may be calculated by assuming equiprobable
classes

or by calculating an estimate for the class probability from the
training set

To estimate the parameters for a feature's distribution, one must
assume a distribution or generate nonparametric models for the
features from the training set.

prior =

1

number of classes

prior for Ck =

number of samples in Ck

number of samples in

PK
k=1 Ck

Example: Gaussian naive Bayes

{µk,�k}k

likelihood term

Using Naïve Bayes

• Simple thing to try for categorical data

• Very fast to train/test

Naïve Bayes and Logistic Regression
In the case of discrete inputs (indicator or frequency

features for discrete events), naive Bayes classifiers form a

generative-discriminative pair with (multinomial) logistic

regression classifiers: each naive Bayes classifier can be

considered a way of fitting a probability model that

optimizes the joint likelihood while logistic

regression fits the same probability model to optimize the

conditional

p(C,x)

p(C|x)

Naïve Bayes and Logistic Regression
The decision function for naive Bayes (in the binary case) can be

rewritten as "predict class if the odds of

exceed those of “:

Since naive Bayes is also a linear model for the two "discrete"

event models, it can be reparametrised as a linear function

p(C1|x)

p(C2|x)
C1

Logit function

y = b+w

T
x

Classifiers: Logistic Regression

x2

x1

Height

Pitch of voice

xwT

yxxP
yxxP

=
-=
=
)1|,(
)1|,(log

21

21

male

female

()()xwTxxyP -+== exp1/1),|1(21

Maximize likelihood of
label given data,
assuming a log-linear
model

Using Logistic Regression

• Quick, simple classifier (try it first)

• Outputs a probabilistic label confidence

• Use L2 or L1 regularization
• L1 does feature selection and is robust to irrelevant features but

slower to train

Multinomial logistic regression function – SoftMax function

Ideals for a classification algorithm
• Objective function: encodes the right loss for the problem

• Parameterization: takes advantage of the structure of the
problem

• Regularization: good priors on the parameters

• Training algorithm: can find parameters that maximize
objective on training set

• Inference algorithm: can solve for labels that maximize
objective function for a test example

Two ways to think about classifiers

1. What is the objective? What are the parameters? How
are the parameters learned? How is the learning
regularized? How is inference performed?

2. How is the data modeled? How is similarity defined?
What is the shape of the boundary?

Slide credit: D. Hoiem

Comparison

Naïve
Bayes

Logistic
Regression

Linear
SVM

Nearest
Neighbor

Kernelized
SVM

Learning Objective

()
()

å
å

ú
ú

û

ù

ê
ê

ë

é

+i
i

j
jiij

yP

yxP

0;log

;|log
maximize

q

q

Training

()
() Krky

rkyx

i
i

i
iij

kj +=

+=Ù=
=

å
å

d

d
q

1

Inference
()

()
()
()
()0|0

1|0
log

,
0|1
1|1

log where

 01

0

1

01

==

==
=

==

==
=

>-+

yxP
yxP
yxP
yxP

j

j
j

j

j
j

TT

q

q

xθxθ

()()

() ()()xθθx

θθx

T
ii

i
i

yyP

yP

-+=

+å
exp1/1,| where

,|logmaximize l
Gradient ascent 0>xθT

 0>xθTLinear programming
iy i

T
i

i
i

"-³

+å
 1 such that

2
1 minimize

x

xl

xθ

θ

Quadratic
programming

complicated to write

most similar features à same label Record data

()å >
i

iii Ky 0,ˆ xxa

()xx ,ˆ argmin where

i
i

i

Ki
y

=

assuming x in {0 1}

Slide credit: D. Hoiem

What to remember about classifiers

• No free lunch: machine learning algorithms are tools,
not dogmas

• Try simple classifiers first

• Better to have smart features and simple classifiers
than simple features and smart classifiers

• Use increasingly powerful classifiers with more
training data (bias-variance tradeoff)

Slide credit: D. Hoiem

Making decisions about data
• 3 important design decisions:

1) What data do I use?
2) How do I represent my data (what feature)?
3) What classifier / regressor / machine learning tool do I use?

• These are in decreasing order of importance
• Deep learning addresses 2 and 3 simultaneously (and

blurs the boundary between them).
• You can take the representation from deep learning and

use it with any classifier.

Some Machine Learning References

• General
• Tom Mitchell, Machine Learning, McGraw Hill, 1997
• Christopher Bishop, Neural Networks for Pattern

Recognition, Oxford University Press, 1995
• Adaboost

• Friedman, Hastie, and Tibshirani, “Additive logistic
regression: a statistical view of boosting”, Annals of
Statistics, 2000

• SVMs
• http://www.support-vector.net/icml-tutorial.pdf

Slide credit: D. Hoiem

