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DIGITAL IMAGE
PROCESSING

Lecture 8

Geometric transformations

Tammy Riklin Raviv

Electrical and Computer Engineering
Ben-Gurion University of the Negev

Geometry Transformations

* Pinhole camera model
* Homogeneous coordinates

» 2D geometric transformations

Fitting and Alignment — brief intro
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Image Formation: 3D -> 2D

3D world 2D image

O

=) [23]

Point of observation

Figures © Stephen E. Palmer, 2002

2D -> 3D Scene Understanding

Single view Geometry

https://media-cdn.tripadvisor.com/media/photo-s/03/ae/fa/45/floor-chess-board.jpg
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2D -> 3D Scene Understanding

Jason Paul's Freerunning lllusions

https://www.gizmodo.com.au/2015/08/these-super-fun-illusions-really-messes-with-your-perspective




Jason Paul's Freerunning lllusions

Pinhole Camera Model

f = focal length
¢ = center of the camera
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Pinhole Camera Geometry

Pinhole Camera Geometry




Image Formation

image plane

Image Formation
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Image Formation

Image Formation
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Image Formation

Cone of Rays




Parametric (global) transformations

p = (xy) P’ = (X.y)

Transformation T is a coordinate-changing machine:
p'=T(p)

What does it mean that T is global?
- Tis the same for any point p
T can be described by just a few numbers (parameters)

For linear transformations, we can represent T as a matrix
p'=Tp

Homogeneous Coordinates

Converting to homogeneous coordinates

x

N Yy

(z,y) = | v (z,y,2) = |

1 1
homogeneous image homogeneous scene

coordinates coordinates

Converting from homogeneous coordinates
T

xXr
y | = (z/w,y/w) = (z/w,y/w,z/w)
w

)
z
w
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Homogeneous Coordinates

abc : u
defl |yl =1|v
ghl 1 w
One extra step:
¥ =u/w
y =v/w

Homogeneous Coordinates

Invariant to scaling

X kx

Jox X

_ w| | w
kly|=t|= L
W kw kw w
Homogeneous Cartesian
Coordinates Coordinates

Point in Cartesian is ray in Homogeneous

12/23/20
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Homogeneous Coordinates

ai
* Line equation: ax+by+c=0 line, = | b,
LG ]
* Append 1 to pixel coordinate to get u, |
homogeneous coordinate pi=|v
* Line given by cross product of two points
line; = p;x p,

Intersection of two lines given by cross

product of the lines q, =line, xline,

/7]
What are Geometric Transformations?

i <7y
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2-D Rotation

Y 4

o (X, Y)

(X, y)

12/23/20
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2-D Rotation

This is easy to capture in matrix form:

o <l

\ .

~"
R

Even though sin(0) and cos(0) are nonlinear functions of 0,
- x’is a linear combination of x and y
- y’is a linear combination of x and y

What is the inverse transformation?
- Rotation by —6 -1 T
. . =R
- For rotation matrices

cos(6) —sin(0) t, x x
sin(€) cos(0) t, vl =19
0 0 1 1 1

Translations and Rotations are not
commutative

12/23/20
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Scaling

- Scaling a coordinate means multiplying each of its
components by a scalar

- Uniform scaling means this scalar is the same for all
components:

12/23/20
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Similarity Transformations

Similarity transform (4 DoF) = translation +
rotation + scale

Preserves: Angles

Aspect Ratio

Non-uniform scaling: different scalars per component:

12/23/20

15



12/23/20

Aspect Ratio

\ d =
1 ; 74
al Vi
3
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Planar Affine Deformation

rotation deformation

R(0) R(=¢)DR(¢)

r—//— + "0}
Basic 2D Transformations

MRER N MEMN

Scale Shear

x' cos® —sin® | x X' 10 ¢ X
[Y'] B [sin@ cos® ][y] [J’l = [0 1 t.,,] }l’
Rotate Translate
X1 [a b ] Affine is any combination of
[ y'] - [d e f] Y translation, scale, rotation, and shear
Affine !

17



12/23/20

Affine Transformations

Affine transformations are combinations of
* Linear transformations, and

+ Translations ¥ fa b ¢

vjld e f
Properties of affine transformations: L1

* Lines map to lines or

» Parallel lines remain parallel ‘ boeTo]

» Ratios are preserved x' Z’ “a*

» Closed under composition YT e S|y
1 0 0 11]

]
What is missing?

Canaletto

Are there any other planar transformations?

18
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Vanishing Points and Lines

Photo from online Tate collection

/]
Note on Estimating Vanishing Points

Use multiple lines for better accuracy

... but lines will not intersect at exactly the same point in practice
One solution: take mean of intersecting pairs

... bad ideal
Instead, minimize angular differences

19



General Affine

We already used these

i £
= ly
1] |1

Projective Transformations

a.k.a. Homographies

' =u/w

. Yy =v/w

12/23/20
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]
Projective Transformations

Similarity Affine Projective

/7]
Projective Transformations

Projective transformations are combos of
+ Affine transformations, and '
* Projective warps

< %
Il
o AR
>0 S
~ 0
S <=

=

Properties of projective transformations:
* Lines map to lines
» Parallel lines do not necessarily remain parallel
» Ratios are not preserved
» Closed under composition
* Models change of basis
* Projective matrix is defined up to a scale (8 DOF)

12/23/20
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]
Homogeneous Coordinates

Converting to homogeneous coordinates

T

v )

(w,y)i[y] (2, y,2) = | 7

1 1
homogeneous image homogeneous scene

coordinates coordinates

Converting from homogeneous coordinates
Hi

= (z/w,y/w, z/w)

X
{ Y ] = (z/w,y/w)

)
z
w
w

]
Homogeneous Coordinates

ai
* Line equation: ax+by+c=0 line, =| b,
LG |
* Append 1 to pixel coordinate to get u, |
homogeneous coordinate pi=v
* Line given by cross product of two points
line; = p,x p,

Intersection of two lines given by cross

product of the lines q, =line, xline,

12/23/20
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Example: Intersection of Parallel lines

r=1 l:(_17071)T
r =2 l'= (_17072)T

2D Projective Plane

A2

12/23/20
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Projective Transformations

Projective transformations are combos of
+ Affine transformations, and '
* Projective warps

< %
I
e AU
=0 O
~ 0
S <=

=

Properties of projective transformations:
* Lines map to lines
Parallel lines do not necessarily remain parallel
Ratios are not preserved
Closed under composition
Models change of basis
Projective matrix is defined up to a scale (8 DOF)

2D image transformations (reference
table)

//_m projective
translation
v

A

Euclidean

Name Matrix #D.O.F. | Preserves: Icon

translation [ I ‘ t ]“\3 2 orientation + - - - ﬁl

rigid (Euclidean) | [ R | ¢ | 3 lengths + - - -

2x3

similarity [ sRI t ] 4 angles + - - -

2x3

affine [ A ].“3 6 parallelism + - - - ‘Homography’

Szeliski 2.1

mlinlie) ¢

projective [ H ]_‘ " 8 straight lines

12/23/20
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Bonus: Geometric transformations

Use different geometric transformations to deform
different images (or the same image)

and merge the deformed images

in a creative way.

Explain in text (math) what have you done.

Best outcome winner gets extra .5 bonus point.

https://lwww.google.co.il/search?g=giant+image+small&client=firefox-
b&dcr=0&tbm=isch&tbo=u&source=univ&sa=X&ved=0ahUKEwiPz5LDgJjYAhW
HF-wKHQtY CkcQsAQIJg&biw=1127&bih=739#imgrc=XIX7j4WkGBQ7uM:

Vanishing Points and Lines

Parallel lines in the world intersect in the image at a
“vanishing point”

12/23/20
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Vanishing Points and Lines

VANISHING POINT

THE POINT ON THE HORIZON
AT WHICH RECEEDING LINES
OF PERSPECTIVE CONVERGE

HORIZON LINE =

=37

.....

Example: vanishing points and lines

1 Vertical vanishing
point
(at infinity)

/'

Vanishing
point

Vanishing
point

Slide from Efros. Photo from Criminisi

12/23/20
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Vanishing Obijects

27



r /"' "]
Given matches, what is the

transformation?

<A

/]
Fitting and Alignment

Fitting:
Find the parameters of a model that best fit
the data.

Alignment:

Find the parameters of the transformation
that best aligns matched points.

12/23/20
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Image Alignment: Panography

Other applications

Medical imaging: match brain

Robotics: match point clouds

Kwok and Tang




Affine rectification with vanishing lines

Fitting and Alignment

- Challenges

- Design a suitable goodness of fit measure
- Similarity should reflect application goals
- Encode robustness to outliers and noise

- Design an optimization method
- Avoid local optima
- Find best parameters quickly

- Typically want to solve for a global transformation that accounts for
the most true correspondences
- Noise (typically 1-3 pixels)
- Outliers (often 50%)
- Many-to-one matches or multiple objects

12/23/20



]
Fitting and Alignment: Methods

- Global optimization / search for parameters
- Least squares fit
- Robust least squares
- lterative closest point (ICP)

- Hypothesize and test

- Generalized Hough transform
- RANSAC

]
Fitting and Alignment: Methods

- Global optimization / search for parameters
- Least squares fit
- Robust least squares
- lterative closest point (ICP)

- Hypothesize and test
- Generalized Hough transform
- RANSAC

12/23/20
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2D Alignment with Least Squares

Given a set of matched feature points {(x;, x})}

i
and a planar parametric transformation of the form:

x' = f(x;p)
How can we estimate P ?

P/ T T

Bus =3 _IIfGxisp) =il
: t

' Predicted  measured

Residual : o
(projection error) po— zy T3

2D Alignment with Least Squares

Ers = Z [1f(xi5p) — x|

Find parameters that minimize squared error

p= argzgninz I f (zi; ) — ;]|
7
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2D Alignment with Least Squares

General form of linear least squares

(Warning: change of notation. x is a vector of parameters!)
— § : 2
ELLS = |aia: — bzl
7
2
= ||Aa3 — b” (matrix form)

This function is quadratic.
How do you find the root of a quadratic?

]
2D Alignment with Least Squares

Minimize the error:

Expand

Fris=x' (ATA)a: — 2z (ATb) + ||b]|?

Take derivative, ( AT A) €T = ATb (normal equation)

set to zero

Solve for x [a) = (ATA) -1 ATbj




2D Alignment with Least Squares
Translation

x 1 0. €T T+t

y’ =101, yl=ly+ty

1 gLl | 1

bl @ ) [ 2] —x ]
0 . | Y1 — Y1
10 ThH — T2
0 1 ! o ] _ | -

. ly

| $In — In

i 1 i i y;z Yn |

2D Alignment with Least Squares

Affine transformations

T a b c T
y |=1d e f Y
1 0O 0 1 1

* How many unknowns?
* How many equations per match?
* How many matches do we need?

12/23/20



2D Alignment with Least Squares

For the Affine transformation &’ = f(x; p)

’ x
/ T (_|P1 P2 P3
@’ = Mz [y’] [P4 Ps Ps][‘?]
Vectorize transformation parameters

z/

Affine e 00 0 = 1 P2
x’ r oy 1 0 0 0 P3

y' 00 0 = y 1 Pa

Ps

Pe

Notation in b
general form

2D Alignment with Least Squares

Ers = Z [1f(xi5p) — x|

There is a linear relationship between the transformation
parameters (Translation, Similarity, Affine) and the differences

between the coordinates: Ax = x’ — x = J(x)p

0
where J = —= s the Jacobian of the transformation f

op

with respect to the motion parameters p

12/23/20
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2D Alignment with Least Squares

Bus = ) |J(@:)p— Azl

Z JT(mi)J(wi)] p—2pT [Z JT(mi)Awi] + Z | A2

2
= pTAp—2pTb+ec.

The minimum can be found by solving the symmetric positive definite

(SPD) system of normal equations: Ap =}

b=, J (z;) A

Hessian

where A — ZJT(mi)J(mi)

2D Coordinate Transformations and
Jacobians
Transform Matrix Parameters p Jacobian J
1,40 St 1. 0
translation 0 1 (tzs ty) | 1
co —89 Uz —1 0 —spr — cpy
Euclidean Sg cp ty (tz.ty,0) | 0 1 cpz—spy
1+a —-b it [1 0 @ —y
similarity b 1+a ty (tz.ty,a,b) (01 y =
iia a0 i [1 02z vy 00
affine ag 1+ay; ty (tz, ty, aoo, ao1,a10,a11) 0100 =y

12/23/20



Example: solving for translation

Given matched points in {A} and {B}, estimate the translation of the object

MEKH

Example: solving for translation

(to )

Least squares solution
1. Write down objective function
2. Derived solution

a) Compute derivative

b) Compute solution
3. Computational solution

a) Write in form Ax=p

b) Solve using closed-form solution 10 X, —x,

12/23/20
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for the case of translation —
the average translation
between corresponding points or,

equivalently, the translation of the point centroids

]
Least squares line fitting

-Data: (x;, y)), .., (x,, ¥,,)
-Line equation: y, =mx; + b

Find (m, b) to minimize
- y=mx+b

e (xi,lyi)

E=Y (y,—mx,~b)’

Modified from S. Lazebnik

11
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Eeas! squares ||ne ||H|ng

-Data: (x;, ), .-, (X, 1)
-Line equation: y, =mx; + b P
Find (m, b) to minimize yd

yd //l (x5 )
E=Y" (,~my,~b)

- y=mx+b

B 2

- 2 X, 1 —m Vi 2
E:Zz&l([xi l{b}_yij =l : b}_ : :||Ap—Y||
x, 1 Vu
=y'y-2(Ap)"y +(Ap)’ (Ap)
dE_ T _ Ty, —
E-zA Ap-2ATy=0 Matlab: p = A \ y;

A"Ap=A'y=p= (ATA)_1 ATy  (Closed form solution)

Modified from S. Lazebnik

Simple example: Fitting a line

- s L L s L s L s L L
-14 -12 -10 -8 -6 4 -2 0 2 4 [

12



Least squares: Robustness to noise

- Least °f

14

P

e

-12

-10 -8 -6 < -2 0

4 6

Problem: squared error heavily penalizes outliers

Outliers

outliers

12/23/20
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Least squares (global) optimization

Good
- Clearly specified objective
- Optimization is easy

Bad

- Sensitive to outliers
- Bad matches, extra points

- Doesn’t allow you to get multiple good fits
- Detecting multiple objects, lines, etc.

]
Robust (Welghted) Least Square

o
Ewrs = Z’wzﬂf xi;p) — xi|?

0
2
4L
]
8§

-10F

.14 1 1 1 1 1 1 1 1 1 1
-14 -12 -10 -8 -6 4 -2 0 2 4 3

The effect of the outlier is minimized

12/23/20
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Robust estimation: Details

- Robust fitting is a nonlinear optimization problem that
must be solved iteratively

- Scale of robust function should be chosen adaptively
based on median residual

- Least squares solution can be used for initialization

Other ways to search for parameters

for when no closed form solution exists

Line search

1. For each parameter, step through values and choose value
that gives best fit

2. Repeat (1) until no parameter changes

Grid search
1. Propose several sets of parameters, evenly sampled in the
joint set

2. Choose best (or top few) and sample joint parameters around
the current best; repeat

Gradient descent
1. Provide initial position (e.g., random)
2. Locally search for better parameters by following gradient

15



Hypothesize and test

1. Propose parameters
Try all possible
Each point votes for all consistent parameters
Repeatedly sample enough points to solve for parameters

2. Score the given parameters
Number of consistent points, possibly weighted by distance

3. Choose from among the set of parameters
Global or local maximum of scores

4. Possibly refine parameters using inliers

RANSAC

(RANdom SAmple Consensus) :

Fischler & Bolles in ‘81.

This data is noisy, but we expect a good fit
to a known model.

12/23/20
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RANSAC ° ¢ o
o ©
(RANdom SAmple Consensus) : . .
Fischler & Bolles in ‘81. . .
® ®
o
e ©
o ® o
® o
, o
Algorithm:

1. Sample (randomly) the number of points s required to fit the model
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC ° e
o o ©
Line fitting example ..
)
° e
o ©
O ® o
® o
Algorithm: ¢

| 1. Sample (randomly) the number of points required to fit the model (s=2) |
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

lllustration by Savarese

12/23/20
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RANSAC

Line fitting example

Algorithm:

2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC

Line fitting example

Algorithm:

1. Sample (randomly) the number of points required to fit the model (s=2)
2. Solve for model parameters using samples

| 3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

12/23/20
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RANSAC

Algorlthm *, . N[nliers = 14
1. Sample (randomly) the number of points required to fit the model (s=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence |

Example: solving for translation

Given matched points in {A} and {B}, estimate the translation of the object

MEEEN

12/23/20
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Example: solving for translation

(to ty)

Problem: outliers

RANSAC solution ¥B x4 t
1. Sample a set of matching points (1 pair) =t |+

2. Solve for transformation parameters
3. Score parameters with number of inliers
4. Repeat steps 1-3 N times

/7]
RANSAC conclusions

Good

- Robust to outliers

- Applicable for larger number of objective function
parameters than Hough transform

- Optimization parameters are easier to choose than Hough
transform

Bad

- Computational time grows quickly with fraction of outliers
and number of parameters

- Not good for getting multiple fits

Common applications
- Computing a homography (e.g., image stitching)
- Estimating fundamental matrix (relating two views)

12/23/20
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What if we want to align...
but we have no matched pairs?
- Hough transform and RANSAC not applicable

Problem: no initial guesses for correspondence

lterative Closest Points (ICP) Algorithm
Goal:

Estimate transform between two dense point sets S, and
S,

1. Initialize transformation

Compute difference in mean positions, subtract
Compute difference in scales, normalize

Assign each point in S, to its nearest neighbor in S,
Estimate transformation parameters T

Least squares or robust least squares, e.g., rigid transform
Transform the points in S, using estimated parameters T
Repeat steps 2-4 until change is very small (convergence)

21



|CP demonstration

Bouaziz et al.

Example: aligning boundaries

Extract edge pixels p,..p, and q;..q,,
Compute initial transformation (e.g., compute translation and
scaling by center of mass, variance within each image)

Get nearest neighbors: for each point p; find corresponding
match(i) = argmin dist(pi, qj)
J

Compute transformation T based on matches
Transform points p accordingto T
Repeat 3-5 until convergence

12/23/20
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Example: solving for translation

(te 1,)

Problem: no initial guesses for correspondence

ICP solution B 4
1. Find nearest neighbors for each point ’B = lA
2. Compute transform using matches Vi b2
3. Move points using transform
4. Repeat steps 1-3 until convergence

Algorithm Summaries

- Least Squares Fit
- Closed form solution
- Robust to noise
- Not robust to outliers
- Robust Least Squares
- Improves robustness to outliers
- Requires iterative optimization
- RANSAC
+ Robust to noise and outliers
- Works with a moderate number of parameters (e.g, 1-8)
- Iterative Closest Point (ICP)
- For local alignment only: does not require initial correspondences
- Sensitive to initialization
« Hough transform
+ Robust to noise and outliers
- Can fit multiple models
- Only works for a few parameters (1-4 typically)

12/23/20
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