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ARTICLE INFO ABSTRACT

Keywords: In this paper we perform an in depth study of how data augmentation techniques improve synthetic or
ASVspoof 2021 spoofed audio detection. Specifically, we propose methods to deal with channel variability, different audio
Audio data augmentation compressions, different bandwidths and unseen spoofing attacks. These challenges, have all been shown to
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significantly degrade the performance of audio based systems and anti spoofing systems. Our results are based
on the ASVspoof 2021 challenge, in the Logical Access (LA) and Deep Fake (DF) categories. Our study is Data-
Centric, meaning that the models are fixed and we significantly improve the results by manipulating the data.
We introduce two forms of data augmentation - compression augmentation for the DF part, and compression
and channel augmentation for the LA part. In addition, we introduce a double sided log spectrogram feature
design that improves the results significantly by centering the sub-bands of interest, where the discriminating
spoofing artifacts can be localized. Furthermore, a new type of online data augmentation, SpecAverage, is
introduced. This method includes masking the audio features with their average value in order to improve
generalization. Our best single system and fusion schemes both achieve state of the art performance in the
DF category, with an EER of 15.46% and 14.27%, respectively. Our best system for the LA task reduced the
best baseline EER by 50% and the min t-DCF by 16%. Our techniques to deal with spoofed data from a wide
variety of distributions can be replicated and can help anti spoofing and speech based systems enhance their
results.

1. Introduction Yamagishi et al., 2021) have been held in which the goal has been
to improve the ability to discriminate bonafide speech from spoofed

The use of the human voice for tasks such as Automatic Speaker speech.

Verification (ASV), spreading news on social media, and communicat-

ing using digital devices has become very popular. ASV, for example, is

used in many applications such as voice mail, telephone banking, call 1.1. Practical anti-spoofing challenges

centers, biometric authentication, forensic applications and more.
Nowadays, generating synthetic speech has become a doable task,

as many new algorithms emerge and technology advances. These

algorithms include Text to Speech (TTS) (Dutoit, 1997), and Voice

Conversion (VC) (converting speech from source speaker to target

Aside from the challenges of detecting whether a given audio sig-
nal is bonafide or spoofed, practical anti spoofing systems face the
following challenges.

speaker) (Zhao et al.,, 2020; Kobayashi et al., 2021) among others. 1. Compression: Lossy audio compressions typically contain some
Spoofing is the process of creating synthetic speech where the goal is form of non linear quantization together with selective fre-
either to fool algorithm based solutions/automatic solutions or the hu- quency reduction. Compression may be a cause of audio qual-
man ear, by creating perceptually natural sounding speech that mimics ity degradation and transmission mismatch that can degrade

a target speaker. Another form of spoofing can be physically replaying
a recorded audio sample of a specific speaker. Research has shown
that both audio technology and the human ear are vulnerable to voice
spoofing. In the past few years, anti spoofing for ASV has become a
field of interest in the research community; four bi-annual international
challenges (Wu et al., 2015; Kinnunen et al., 2017; Todisco et al., 2019;

the performance of audio systems such as ASV systems (Jarina
et al., 2017), speaker recognition systems (Stauffer and Lawson,
2009), and anti spoofing systems. Common compressions are
MP3 (Sterne, 2012), Advanced Audio Coding (AAC) (Bosi et al.,
1997) and G.722 (Mermelstein, 1988), among others.
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2. Channel effects: Transmitting compressed audio through a
channel might induce transmission related data loss such as
packet loss, noise and more. This type of data loss can degrade
the performance of audio feature based systems, as stated in Be-
sacier et al. (2003). Channels for example can be VoIP, landline,
cellular or satellite.

3. Bandwidth differences and filtering: Audio codecs can differ
by bandwidth, as some codecs are narrow band and others are
wide band. In addition, some include band pass filtering prior
to transmission, a fact that may cause information loss at high
frequencies, which may contain crucial information necessary
for detecting spoofing attacks (Tak et al., 2020a).

4. Unseen spoof attacks: One of the main challenges of an anti
spoofing system is to generalize and to detect unseen attacks
from an unknown distribution. In Zhang et al. (2021c), the au-
thors performed a cross dataset study that included the VCC2020
(Zhao et al., 2020) dataset, among others, and showed signifi-
cant degradation in performance.

1.2. Model-centric vs. Data-centric

An Artificial Intelligence (AI) system is typically composed of data
and a model, which go hand in hand in producing the desired results.
A normal optimization process consists of constantly improving the
statistical model and the data in an iterative manner. While both
are important, attention usually shifts towards one of the following
approaches.

1. Model-Centric Approach: In this approach, the data is fixed
and empirical tests are performed with respect to the model
architecture and training procedure in order to maximize the
results.

2. Data-Centric Approach: In this approach, the model is fixed
and changes/improvements are constantly made in the data set
in order to maximize the results.

Our study is mainly Data-Centric. We chose models that had displayed
good performance on the ASVspoof 2019 data, and focused our ef-
forts on data augmentation and feature design in order to tackle the
challenges of ASVspoof 2021.

1.3. Motivation

In Fig. 1, we can see how the channel mismatches caused by
compression, transmission effects, and bandwidth differences affect
the score distribution of the Resnet model 2.1 with log spectrogram
features. In this experiment, we trained the Resnet model using the
original ASVspoof 2019 training set. Scores were produced on both the
original ASVspoof 2019 development set, and a reference development
set that underwent simulated transmission, possible packet loss and
compression. Aside from the differences in the score range, we can
see that the original development set is relatively separable (bonafide
scores are mostly different from spoofed scores), whereas the transmit-
ted development set is not separable. This led to a high Equal Error Rate
(EER), both on our simulated transmitted data set and on the evaluation
data set. This demonstrates the sensitivity of audio based systems to
harsh changes in the channel, and the importance of channel related
data augmentation. We encountered similar effects using compression
augmentation without channel effects. These findings motivated our
current work.
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Fig. 1. Score histograms from ResNet trained on the original training data set and
tested on two development sets (original and transmitted). Each data set is separated
into spoof and bonafide. The original data scores (blue and orange) are quite separable,
while the augmented data scores are completely overlapping and indistinguishable
(purple and red). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

1.4. Compression and channel augmentation methods

Compression and channel augmentation are not new methods ap-
plied in the speech community, in the context of extensive efforts to
make speech related systems, such as automatic speech recognition
(ASR), work well in real life conditions. In Vu et al. (2019), the authors
use known audio codec simulations in order to train telephony speech
recognition systems. They classify the simulation methods into three
main categories according to their distortion severity in terms of their
spectrogram analysis. In Hailu et al. (2020), the authors improve the
results and robustness of an end-to-end ASR model in four languages
by expanding the training set. This was done by using different audio
codecs at the raw speech level: audio codecs with a changed bit rate,
sampling rate, and bit depth were considered. In Mayorga et al. (2003),
the authors researched the effect of packet loss on speech recognition
systems over IP connections. In the anti-spoofing domain, several aug-
mentation techniques were also proposed. In Chen et al. (2021b), the
authors proposed a compression augmentation pipeline that includes
MP3 and AAC. In addition, a channel and codec augmentation pipeline,
which includes device impulse response convolution to add robustness
was proposed. In Chen et al. (2020), the authors simulated a call center
environment by performing a playback of the ASVspoof 2019 data
over voice calls and recording the received audio at the receiver’s end.
Using VoIP channel characteristics, a reduced bandwidth of 8 kHz, and
Twilio’s default OPUS codec, the authors achieved good generalization
performance on the ASVspoof 2019 evaluation set. In Chen et al.
(2021a), the authors used the same playback simulation together with
reverberation and background noise in order to achieve good results in
ASVspoof 2021.

1.5. Database and setup

The ASVspoof 2021 challenge contained two scenarios that are re-
lated to the issues stated above 1.1. Both scenarios contained bonafide
and spoofed speech segments that had been generated with TTS and
VC algorithms. In the Deep Fake (DF) category, new and never-seen-
before spoofing methods had been used, and the audio files might have
undergone compression (such as MP3, m4a and others) with various
bit rates. In the Logical Access (LA) category, the audio files had been
communicated across telephony and VoIP networks with various coding
and transmission effects. Both scenarios contained unseen spoofing
attacks. We used these two scenarios to benchmark our ideas. In order
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to compare this work with the ASVspoof 2021 competition results, we
only used the ASVspoof 2019 LA data set for training and development,
as stated in the ASVspoof 2021 evaluation plan (Delgado et al., 2021).
Training and development partitions were kept the same as in ASVspoof
2019 for both the DF and LA parts of the competition. In this paper,
data that has not been augmented is referred to as original data.

1.6. Main contributions

In this paper we introduce several techniques that improve the
robustness of anti spoofing systems to channel variability and compres-
sion, which are listed below.

1. We introduce compression data augmentation methods that im-
prove anti spoofing system performance with compressed data.

2. We introduce channel robust data augmentation methods that
improve anti spoofing system performance with compressed data
that has been transmitted, filtered and down sampled.

3. We introduce a new feature design, double sided log spectro-
gram centering, which improves the learning process by re-
allocating the sub-bands of interest to the center of the receptive
field. We show how using this method improves the results
significantly.

4. We introduce a new form of online data augmentation, SpecAv-
erage, that generalizes the SpecAugment technique introduced
in Park et al. (2019). In our experiments, SpecAverage showed
good performance.

Our ideas were tested in the ASVspoof 2021 challenge in the DF
and LA categories: We achieved state of the art performance in the
DF category, both for our single system and for our system fusion. In
addition, we also tested our ideas on the ASVspoof 2019 database and
achieved strong results.

The rest of the paper is arranged as follows. Section 2 describes the
deep learning models we used. In Section 3 we elaborate on the features
we used and provide analysis regarding the effect that compression
and transmission have on them. In Section 4 we introduce our new
feature design. In Section 5 we present our data augmentation methods:
compression augmentation (for DF) and channel augmentation (for
LA). We then introduce SpecAverage. Sections 6 and 7 contain our
results and analysis for the DF and LA parts. In Section 8 we test our
ideas on the ASVspoof 2019 evaluation set and provide analysis. In
Section 9 we discuss insights obtained from our work, and Section 10
contains conclusions and future work. Our augmentation methods are
publicly available at: https://github.com/InbalRim/A-Study-On-Data-
Augmentation-In-Voice- Anti-Spoofing.

2. Models

In this section we present the deep learning models we used: ResNet-
34, SEnet and One Class Softmax (OCS) ResNet. The first two models
were chosen for this research due to the fact that they are simple and
well known, and have been used for the spoofing task with good results,
while the third model was used since it showed good performance
in the ASVspoof 2019 competition. All of the models are CNN based,
which allows them to treat the spectrogram as if it were an image and
thus capture the spatial relationship in time and frequency. While there
are a lot of existing solutions, the top performing systems are based
on CNNs together with the classical front-end and back-end partition.
End-to-end systems are also being researched, but to the best of our
knowledge do not achieve state of the art performance at this time.
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2.1. ResNet

ResNet-34 is commonly used for image and audio tasks, as described
in Dou et al. (2021) and He et al. (2016). The architecture we used
is based on ResNet as outlined in Dou et al. (2021), with 2 main
modifications based on experiments conducted prior to this work, as
follows.

1. Optimizer: We used the AdamW (Loshchilov and Hutter, 2017)
optimizer, which includes different parameters: Weight Decay
(WD), 5, and f,. We chose WD = 5-107® and f,,, =
(0.81,0.8991).

2. Loss Function: We experimented with the Binary Cross-Entropy
(BCE) and Binary Focal-Loss (BFL) functions, and with different
class weights. We got the best results using class weights where
the bonafide class is weighted 10 times more than the spoof
class with both loss functions. In addition, BCE provided slightly
better results than BFL.

2.2. SENet

While in ResNet blocks the input channels are equally weighted, in
SE blocks a different weight is given to each channel using Squeeze
and Excitation (SE). As suggested in Dou et al. (2021), the squeeze is
performed using average pooling. To simplify calculations, in order to
perform excitation the input dimension is first reduced, followed by a
ReLU activation, and then extended, followed by a sigmoid activation.

2.3. OCS-ResNet

In Zhang et al. (2021a), the authors presented a model based on
ResNet-18 with an attentive pooling layer, and a one class softmax
function as follows:

| N
- = Jalmy, —i; ) (=1
Locs = gj‘,log(lﬂ g ) ()
where my, m; € [—1. 1], m; > m, denote the angular margins between the
classes, 1y, denotes a normalized weight vector, y; € {0, 1} denotes the

class and % denotes the normalized vector of a target class embedding.
We used this model with the same parameters as stated in the paper.

2.4. Model training

Each one of the three models was trained separately, In order
to achieve minimal correlation and to maximize the fusion results.
Different augmentation methods were used for each model, both for
training and for development. All of the training and development data
was chosen without any additional knowledge about the evaluation
set, aside from what is stated in the evaluation plan. The specific
composition of the augmented data sets is stated in the upcoming
sections.

3. Audio processing and features

In this section we state the audio features we used with each model,
including pre-processing done prior to feature extraction. We visualize
and provide insights on how compressions, different channels and other
conditions affect those audio features.
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Fig. 2. Pre-emphasis filter frequency response.

3.1. Motivation for chosen input features

Research performed in Sriskandaraja et al. (2016), Paul et al. (2017)
and Tak et al. (2020a), showed that the most discriminating artifacts
for spoof detection are localized in the high and low frequencies (0-
1 kHz, 7-8 kHz). Due to that fact, we chose to use LFCC and log
spectrogram based features. The log spectrogram is a high resolution
feature containing all of the information for both significant sub-bands,
while LFCC contains information for both sub-bands with an equal
resolution. In addition, that can explain why the use of mel frequency
scale filters along the speech bandwidth (MFCC) might not be the best
feature choice for synthetic speech detection, even though it is the most
common approach for front-end filter design in speaker recognition
systems. Many of the high frequency artifacts are lost due to the low
cepstral resolution in the upper band caused by the mel filter spacing.

3.2. Pre-emphasis

A common pre-processing tool used to compensate for the average
spectral shape of a speech signal is pre-emphasis, which emphasizes
higher frequencies. Typically, pre-emphasis is applied as a time-domain
FIR filter with one free parameter. Unless specifically stated otherwise,
pre-emphasis was used for all features using the following filter:

x[n] = x[n] —0.97x[n — 1] (2)

This is a high pass filter which emphasizes the high frequencies, as
shown in Fig. 2. The use of pre-emphasis serves two main purposes:
first - to compensate for the average spectral shape, and second - to
emphasize the higher frequencies where the discriminating information
for spoof detection is located.

3.3. Log spectrogram (LogSpec)

The spectrogram of an audio signal was proven to be effective as a
neural network input in Cheuk et al. (2020), and specifically for spoof
detection in Lai et al. (2019). The spectrogram created using the STFT
(short-time Fourier transform) is calculated as follows:

LogSpee = log(|ST FT(x)[%) 3

where x is the audio signal. We used a frame length of 25 ms, a hop of
10 ms, and a total fixed length of 5 s. LogSpec was used with the SEnet
and ResNet models.

3.4. Linear Frequency Cepstral Coefficients (LFCC)

We used LFCC with a window size of 20 ms and an overlap of
10 ms. We used both A and A4 as dynamic features. 20 coefficients were
selected. The above resulted in a frequency dimension of 60, while the
time dimension was fixed at 450. We used repeat padding for shorter
utterances and randomly sliced the features out of longer utterances.
LFCC was used with the OCS-ResNet model.
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MP3, bitrate 128kbps

Fig. 3. LFCCs of compressed audio comparison. Compression affects the dynamic
features (4 and A4) significantly.

3.5. Compression effects on LFCC features

In Fig. 3 we can see four images of LFCCs of the same utterance.
Processing included MP3 compression with various bitrates and then
decompression back to 16 kHz and 16 bits per sample FLAC format,
to match the data format stated in the competition evaluation plan. As
seen in Fig. 3, MP3 compression affects the LFCC of a given input. While
the static part (lower 20 coefficients) are affected mildly, the dynamic
features (4 and A4) are changed significantly, even between different
bitrates of the same compression.

3.6. Compression and transmission effects on audio signals

In Fig. 4, we can see that for the same utterance, there are signifi-
cant differences in the frequency response between the original audio
file and processed versions of the original file that have undergone
compression, simulated transmission, packet loss, filtering and down
sampling. All of the above are clearly a source of channel mismatches
that degrade performance, as seen in Table 5.

4. Feature design

In this section, we propose a new feature design for anti-spoofing
that improved our results significantly. Our new feature design re-
allocates the discriminating features located at the high and low fre-
quencies of the spectrogram to the middle of the receptive field (Luo
et al., 2016), giving them a larger impact on the learning process. We
explore re-allocating both high and low frequencies, and in addition
test the effects of using pre-emphasis. Finally, we elaborate on our
online normalization methods.

4.1. Motivation

Much work has been invested in finding which part of the spectrum
is more relevant for the spoof detection task. In Sriskandaraja et al.
(2016), a sub-band analysis was performed based on the anti spoof-
ing (SAS) corpus. The authors showed that the sub-bands containing
the most discriminating information are 0-1 kHz and 7-8 kHz. More
evidence that high frequencies contain discriminating information was
shown in Paul et al. (2017). In Tak et al. (2020a), an in depth sub-band
analysis was performed, in which both CQCC and LFCC features were
tested with respect to the ASVspoof 2019 data base and a Gaussian
mixture model (GMM) classifier. The analysis shows that spoofing
attacks have different artifacts that can be highly localized to high and
low frequencies. This motivated us to search for an appropriate feature
design that would be more efficient in both capturing these artifacts
and learning from them.
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Fig. 4. Power spectrum of the same utterance, augmented with different transmissions and codecs. Differences are significant in the lower band (0 kHz-1 kHz), where speech
frequencies are located, mid band (3.5 kHz-4.5 kHz), where the effect of down sampling can be seen, and upper band (7 kHz-8 kHz). All emphasize the channel variation.

Table 1

Double sided LogSpec comparison, ResNet. The best results are achieved by using
pre-emphasis and centering the high frequencies, or centering the low frequencies
without using pre-emphasis. The frequency resolution is constant and equal to 512
in all experiments.

Double sided Size Frequencies centered Pre-emphasis DF EER
X 257 x 500 - v 25.24
v 512 x 500 High s 18.81
v 512 x 500 Low v 24.46
X 257 x 500 - X 20.7

v 512 x 500 High X 19.10
v 512 x 500 Low X 18.46

In addition, recent work regarding the receptive field in CNNs,
showed that the artifacts located in the center of the input have a
larger weight in the learning process (Luo et al., 2016). During training,
these artifacts propagate through a larger number of paths within the
network and thus have a larger weight on the gradients calculated. This
makes them more significant to the learning process. In this paper, we
propose a feature design that, by centering the areas where spoofing
artifacts are most likely to be located, enables the models to learn better
by focusing on the regions of impact.

4.2. Double sided log spectrogram

Due to the fact that audio is a real signal, the LogSpec is symmetrical
in frequency. Hence, it seems that using the double sided LogSpec
as a feature may not be useful, as it contains redundant data and
might just add run time. As a matter of fact, most common software
packages return a one sided log spectrogram as a default. Despite that
fact, motivated by the research conducted on the receptive field in
CNNs, we decided to test the use of double sided spectrograms in order
to center either the high or the low frequencies (which contain the
discriminating artifacts caused by the spoofing process) to the middle of
the receptive field. We conducted several experiments using the ResNet
model. We experimented centering both high and low frequencies, with
and without pre-emphasis. The evaluation set is the DF evaluation set,
which contains unseen spoof attacks, unseen compression methods and
a variety of unknown bitrates. The frequency resolution used depends
on the number of frequency bins/DFT points, nfft, and is equal in all
cases. nfft is typically chosen with respect to the frame length and
sampling rate:

nfft = 2[lt)g(framejengrhAf:)] (4)

where f's is the sampling frequency (16 kHz in our case) and the frame
length is 25 ms. In the case where the spectrogram is one sided - half
of the frequency bins are removed due to the symmetry (excluding the
DC frequency bin). The results of the experiment are shown in Table 1,
and a visualization is shown in Fig. 5.

As seen in Table 1, we provide a few conclusions listed below.
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Fig. 5. Double sided and one sided LogSpec feature design. While no new information
is added, the performance improves significantly when the discriminative information
in high and low frequencies is centered.

1. Using ResNet with the double sided LogSpec, pre-emphasis and
high frequency centering reduced the DF evaluation EER by
25.45% with respect to the one sided experiment (with pre-
emphasis).

2. Using ResNet with the double sided LogSpec, no pre-emphasis
and low frequency centering reduced the DF evaluation EER
by 11% with respect to the one sided experiment (without
pre-emphasis).

3. Pre-emphasis is important for high frequency centering, since
it emphasizes the high frequencies that contain the spoofing
artifacts.

4. When using low frequency centering, the results were better
without pre-emphasis. This makes sense since pre-emphasis does
weaken the lower frequency band.

5. The reason for the significant improvements is the allocation of
the high and low sub-bands to the center of the receptive field,
using the double sided LogSpec.

4.3. Feature normalization
One of the methods that displayed impressive empirical perfor-

mances in the DF category was feature (LFCC/LogSpec) normalization.
We experimented with 3 different types of normalizations:

Arin-ma) = L~ mino) 5)
__x—meanty)

Noea ) = o — a0 6)

‘M\landard(x) = M (7)

std(x)
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Table 2 Table 4
DF compression data set. LA data set channels and codecs used.
Bitrate [kbps] MP3 AAC/m4a Channel Landline Cellular VoIP Satellite
16 v Codecs G.711 AMR Silk G.728
48 v G.726 AMRWB G.722
64 v GSM SilkWB
96 v v G.729
128 ' '
160 v
Table 5
EER, min t-DCF performance on compressed data (LA data set) with and without
Table 3

EER performance on compressed data (DF data set) with and without augmentation in
the training and development sets.

System Augmentation DF Eval EER
OCS-resnet X 29.31
OCS-resnet ' 28.52
Resnet X 46.49
Resnet ' 17.51
SEnet X 40.32
SEnet ' 19.47

where x denotes the feature matrix. All normalization methods are
performed per individual sample, online (during training and testing).
The computational price is low, as neither of the methods above
affected our run time. We achieved the best performance in all systems
using Eq. (5), where a simple linear projection mapped the features to
[0, 1]. The N in_max Dormalization reduced the OCS-ResNet DF EER by
18%, and ResNets DF EER by 7%, as stated in Table 9.

5. Data augmentation techniques

In this section we introduce two forms of offline augmentation tech-
niques that were used to increase the performance of the anti spoofing
systems with compressed data and channel variation. In addition, we
will introduce SpecAverage, a new form of online data augmentation.

5.1. Compression augmentation

The augmentation was performed as follows:

. An audio file was chosen;

. A compression method was chosen out of: MP3 and AAC/m4a;

. A bitrate was chosen;

. The audio file was compressed with the chosen method and
bitrate.

5. The compressed audio file was de-compressed back to the FLAC

format, 16 kHz, 16 bits per sample.

W N =

The steps are performed to comply with the evaluation plan of
ASVspoof 2021, in the DF part. We used the Pydub (Robert et al., 2018)
and FFmpeg (Tomar, 2006) packages in order to first read the audio
files and then augment them. Table 2 contains the augmented part
of our DF dataset. MP3 and AAC/M4a codecs were chosen since they
were stated in the evaluation plan. The bitrates were chosen based on
standard usages for each compression method, including high quality
and low quality. This augmentation method was performed offline,
since performing it online and then extracting LFCC/LogSpec features
was incredibly costly in CPU usage due to the feature extraction (and
not due to the augmentation).

In Table 3 we see the effect that compression augmentation had on
our models. A significant decrease in the EER can be seen after applying
data augmentation.
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augmentation.

System Augmentation Eval min t-DCF Eval EER
OCS-resnet X 0.7500 21.41
OCS-resnet v 0.3639 6.59
Resnet X 0.9032 40.73
Resnet ' 0.2931 5.18
SEnet X 0.9696 38.20
SEnet v 0.2961 6.14

5.2. Codec, channel effect, bandwidth difference augmentation

In order to perform this augmentation we used the audio degrada-
tion simulator in Ferras et al. (2016) with some adjustments to augment
the training and development data as follows:

1. An audio file was selected;

2. For each channel (landline, cellular, VoIP or satellite) a random
codec out of the list in Table 4 was chosen;

3. RMS normalization was performed in order to simulate transmis-
sion gain changes and normalization values were chosen from a
uniform distribution from [—30,-10] in dB;

4. Downsampling and band pass filtering were performed depend-
ing on the chosen codec;

5. The audio file was compressed according to the chosen codec,
with a random bitrate;

6. Random packet loss was simulated;

7. The audio file was re sampled to either 8 kHz or 16 kHz,
depending on the data set we wanted to create.

This type of augmentation was tested on the LA part. The channels
and codecs we used are presented in Table 4. Augmenting the data
in this way, we kept the original training and development partitions,
and created a data set for down sampled data (8 kHz), regular data
(16 kHz) and wide band codec data (16 kHz), as stated in Table 12. In
Table 5, we can see that our augmentation improved the EER and min
t-DCF (Kinnunen et al., 2020) significantly. All three models are tested
on the LA evaluation data, with and without augmentation.

5.3. Augmentation differences

While other work has been done within speech related tasks to
increase the robustness of systems using compressions and channel
simulations, in this work there are a few fundamental differences, as
listed below:

1. Down sampling and band pass filtering are performed, in accor-
dance with the specific codec (not for all of the data);

2. All data is compressed and then decompressed back to the FLAC
format, at 16 kHz with 16 bits per sample;

3. We use RMS normalization chosen from a uniform distribution
[-30,-10] in order to simulate transmission gain changes;

4. No noise is added. This includes white noise, background noise,
and foreground noise;

5. No additional impulse responses are used (for example for rever-
beration simulation, microphone variation);

6. Our compression augmentation pipeline supports all FFmpeg
compressions, including MP3, AAC, Opus, Vorbis, and others.
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Table 6

Augmentation policy. m, and m, denote the number of frequency and time masks,
respectively. T and F represent the number of time values or frequency bins masked.
In the case of SpecAugment, the features have been normalized to have zero mean.

Policy Method Feature mg m, T F
None - - 0 0 0 0
SAvl SpecAverage LFCC 1 0 0 12
FAul FreqAugment LFCC 1 0 0 12
SAul SpecAugment LFCC 1 0 0 12
SAv2 SpecAverage LFCC 1 1 80 12
SAv3 SpecAverage LogSpec 0 1 10 0
FAu3 FreqAugment LogSpec 0 1 10 0
SAu3 SpecAugment LogSpec 0 1 10 0
SAv4 SpecAverage LogSpec 1 0 0 10
FAu4 FreqAugment LogSpec 1 0 0 10
SAu4 SpecAugment LogSpec 1 0 0 10

5.4. SpecAverage

Replacing random blocks of the input feature with a constant value
during the training process (masking) has been shown to force deep
neural networks to be more robust and to yield improved performance,
both in speaker recognition and in anti-spoofing. In Park et al. (2019),
the authors introduce SpecAugment, a technique that includes masking
log mel spectrograms that are normalized to have a zero mean. In Chen
et al. (2020), the authors introduce FreqAugment, where log filter
banks are masked using the value 0, regardless of their mean value
(normalization is performed on the utterance level). Here, we introduce
SpecAverage, a generalized variant of SpecAugment, for the situation
where the features do not have 0 as a mean value. In our experiments,
SpecAverage has shown better performance then FreqAugment. We first
define general parameters and then elaborate with regard to augmen-
tation policies that have been used both on LFCC and on LogSpec
features, as listed below:

1. Frequency masking: / consecutive frequency bins or coeffi-
cients [f;, f,, + f) are masked with a constant value, where f is
chosen from a uniform distribution from 0 to the frequency mask
parameter F, and f; is chosen from [0, v — /). v is the number of
frequency bins or coefficients;

2. Time masking: 1 consecutive time steps [f,.7, + 1) are masked
with a constant value, where t is first chosen from a uniform
distribution from 0 to the time mask parameter T, and 1, is
chosen from [0, 7 — 7). 7 is the total number of time steps;

3. FreqAugment: masking with the value 0;

4. SpecAugment: masking features that have been normalized to
have a zero mean with their mean value, 0;

5. SpecAverage: masking with the average feature value calcu-
lated online for each feature.

Keeping the same notation as in Park et al. (2019), Table 6 describes
the training policies used.

5.4.1. Comparative study

For mel-spectrograms, the mean value might be 0 due to mean
normalization. In this study, our features are not normalized to have a
zero mean, and thus the mean value and O are distinct. A histogram of
the average values for both features across the training set is presented
in Fig. 6.

An interesting question that arose from the comparison was: is
there a difference between SpecAugment and SpecAverage? In order
to test that, we conducted a few experiments. In Table 7 we display a
comparison between masking with the value 0 (FreqAugment), normal-
izing the features to have zero mean and then masking with the value
0 (SpecAugment), and masking with the mean value (SpecAverage).
We can see that SpecAverage has boosted the performance of both
ResNet and OCS-resnet with 2 different features, with respect to both
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Fig. 6. Histograms of the average feature values across the training set.

Table 7

Performance comparison: SpecAverage, SpecAugment and FreqAugment on the DF
evaluation. According to the experiments we conducted, SpecAverage showed better
performance.

Feature Model Policy DF Eval EER
LFCC OCS-resnet None 21.60
LECC OCS-resnet FAul 24.74
LFCC OCS-resnet SAul 23.25
LFCC OCS-resnet SAvl 21.51
LogSpec ResNet None 17.03
LogSpec ResNet FAu3 20.55
LogSpec ResNet SAu3 21.28
LogSpec ResNet SAv3 16.0
LogSpec ResNet FAu4 16.6
LogSpec ResNet SAu4 17.58
LogSpec ResNet SAv4 15.46

Fig. 7. LFCCs of utterances: from top to bottom - no masking, FreqAugment masking
in frequency, SpecAverage masking in frequency, SpecAverage masking in time and
frequency.

FreqAugment and SpecAugment. It is important to note that, in the
case that the features are normalized to have zero mean, SpecAverage
is equivalent to SpecAugment. In this sense, SpecAverage generalizes
SpecAugment to a non-zero mean situation (see Fig. 7).

6. Deep fake: Results & analysis

In this section we present our results for our compression robust
systems. We first present the data sets used, and then the results,
followed by analysis.
6.1. DF data sets

During evaluation, we aimed to create a diverse data set for training
and for development, while keeping the original partition of training
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Table 8 Table 10
Training and development data sets, DF. System fusion, DF.
Refr. Orig MP3 m4a Single systems Method Eval EER
16 48 96 128 160 64 96 128 D10+D12 Mean 14.27
Trl v v v
Tr2 v ' v
Tr3 v v
Tr4 v v v v ' v 40
Tr5 v
30
Dvl v v v v v ' '
Dv2 v v v v v 20 -
Dv3 v :\U_‘
10+
Table 9 E:"
Single system results, DF. The bottom three entries are the top competition results stated ﬁ 5 r
in Yamagishi et al. (2021). DSL-H and DSL-L stand for Double Sided LogSpec, with H ‘8
for high frequencies centered and L for low frequencies centered. For L, pre-emphasis a 5 |
was not used. 3
Refr. Features  Model Data, Policy @ Norm  Dev EER  Eval = 1r CQCC-GMM, 25.56%
EFR 05+ LFCC-GMM, 25.25%
Audio RawNet - X - 22.38 RawNet2, 22.38%
LFCC LCNN - X - 23.48 02 LFCC-LCNN, 23.48%
Base-li ) ’ o
ase-line | oo GMM _ x _ 25.25 01+ Our System, 14.27%
cQcc GMM = X - 25.56 - L . . . . L .
D1 LECC 0CS Tr4 X 3.76 28.52 0102 05 1 2 5 10 20 30 40
D2 LFCC ocs Tr4 v 2.85 21.60 False Alarm probability (in %)
D3 LFCC [o]e) Tr4, SAv2 v 2.92 21.94
D4 LFCC ocs Tr4, SAvl v 2.77 21.51 Fig. 8. DF DET curve.
D5 DSL-H ResNet Trl X 0.95 18.81
D6 DSL-H ResNet Tr2 X 0.97 18.21
D7 DSL-H SENet Tr3 X 1.22 19.47 Table 11
D8 DSL-H ResNet Trl v 0.88 17.03 DF evaluation data conditions. VBR denotes the variable bit rate range. DF-C8 and
D9 DSL-H ResNet Trl,SAv3 v 0.70 16.0 DF-C9 have been compressed twice.
D10 DSL-H ResNet Trl,SAv4 v 0.48 15.46 Cond. Compression (Quality) VBR [kbps] Double compression
LR mew s 0% oo ;
i esNet  TrlSAv : - DF-C2  MP3 (low) 80-120 X
T23 - - - - - 15.64 DF-C3 MP3 (high) 220-260 X
T20 - - - - - 16.05 DF-C4  m4a (low) 20-32 x
TO8 - - - - - 18.3 DF-C5 m4a (high) 96-112 X
DF-C6 ogg (low) 80-96 X
DF-C7 ogg (high) 256-320 x
DF-C8 MP3 (low) — mda (high) 80-120, 96-112 '
and development as in the ASVspoof 2019 competition. We chose the DE-C9 ogg (low) — m4a (high) 80-96, 96-112 4

training set so that it contained low quality and high quality augmented
audio with different compressions, and we chose the development set
in such a way that it would contain unseen bit rates. We trained
three different models with different features so we could reduce the
correlation between them and then maximize fusion results. Table 8
contains the training and development data sets we used in the DF
category.

Dv1 was used for the LFCC based models and Dv2 was used for the
LogSpec models.

6.2. DF results

Our results for single systems are presented in Table 9.
It can be seen that:

1. Feature normalization shows significant improvement in both
models - EER reduction of 24% in OCS-resnet, and 10% in
ResNet;

2. SpecAverage improves the results of both models;

3. Our best single system, D10, used double sided Logspec, com-
pression augmentation, feature normalization and SpecAverage,
and achieves state of the art performance;

4. Using DSL-L, state of the art performance is achieved as well
(D12).

6.2.1. DF fusion scheme
Our score level fusion scheme includes using the best two systems,
which are D10 and D12. Fusion was performed using the mean of the
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best two systems, as stated in Table 10. A detection error tradeoff (DET)
curve is presented in Fig. 8.

6.3. DF analysis

In this subsection we provide analysis regarding the sub-conditions
of the DF dataset. Table 11 contains the DF evaluation conditions.
Table 14 presents our system’s EER for each condition. Our best system
outperforms the baseline systems in all conditions. DF-C4 was the
condition with the worst performance. This can be explained by the fact
that DF-C4 is compressed using m4a with a very low bit rate, and we
assume that the low quality created this performance bias. Surprisingly,
the best performance was achieved in DF-C6, compressed using low
quality ogg. This is a compression method that our model had not seen
in training or development, emphasizing the compression robustness
our system offers. Another interesting fact is that our system performed
well in DF-C8. Compressing an audio file twice using different compres-
sion methods with different bit rates enlarges the information loss, and
our system performed relatively well in that case.

7. Logical access: Results & analysis

In this section we present our results for the LA category. We first
present the data sets used, and then the results, followed by analysis.
Results are provided in terms of EER and min t-DCF (referred to as
t-DCF), as stated in the ASVspoof 2021 evaluation plan.
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Table 12
LA data sets.
Reference Sample rate [kHz] Codecs
1 8 All
2 16 All
3 16 AMR-WB, Silk-WB, G.722
Table 13
Single systems, LA.
Refr. Features  Model Train set BR kHz Eval EER  Eval t-DCF
Audio RawNet - 16 9.50 0.425
Base-line LFCC LCNN - 8 9.26 0.344
: LFCC GMM - 8 19.30 0.575
CQCC GMM - 8 15.62 0.497
L1l LogSpec  ResNet 2 16 5.18 0.293
L2 LogSpec SENet 2 16 6.14 0.296
L3 LFCC OCSresnet 1 8 7.22 0.333
L4 LFCC OCSresnet 1 8 6.65 0.343
L5 LFCC OCSresnet 1, FAul 8 6.59 0.363
L6 LFCC OCSresnet 1, SAvl 8 5.99 0.323
L7 LFCC OCSresnet 1,3 Both 6.99 0.348

7.1. LA data sets

In Table 12 we present the data sets we used in the LA partition.
For each type of feature we needed to decide what sampling rate to
use, since some of the codecs include filtering and down sampling to
8 kHz (narrow band codecs) and some were wide band codecs that
were 16 kHz. For Logspec we used data that was resampled to 16 kHz
regardless of the codec (resulting in ‘half empty’ spectrograms for the
narrow band codecs). For LFCC, we either downsampled all of the
data to 8 kHz and then performed feature extraction, or we performed
effective bandwidth detection (using the obw() function in Matlab) and
then trained 2 different models in order to achieve a band selective
model, meaning that each new sample had its effective bandwidth
calculated and then sent to the appropriate model (L7 in Table 13).

7.2. LA results

Our results for single systems are presented in Table 13. It can be
seen that:

1. All of our single systems are trained with compression and
transmission augmentation and perform better than the baseline
systems;

2. SpecAverage improves the results of OCS-resnet and outperforms
FreqAugment;

3. Our best single system, L1, reduced the best baseline EER by 44%
and the best baseline min t-DCF by 15%.

7.2.1. LA fusion scheme

In the LA task, a weighted mean based on a grid search was
performed. The development set contained all channels, all codecs and
all conditions.
As seen in Table 15, the fusion scheme further improved the results.
The best baseline system EER was reduced by as much as 50%, and the
min t-DCF was reduced by 16%.

7.3. LA analysis

Table 16 contains the LA evaluation conditions.
Aside from LA-C1, LA-C4 and LA-C6, the codecs used are ones our
model has not been trained on. We can see that there are different
transmission settings as well. Table 17 shows the EER performance for
all conditions. It can be seen that our system surpasses the baseline
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EER performance by a large margin. In addition, the performance dif-
ference between narrow band data (C2,C3,C5,C6) and wide band data
(C1,C4,C7) is significant. We hypothesize that the removal of the high
frequencies caused a clear degradation in performance. Finally, it can
seen that our system performs relatively well even on unseen channels
and codecs, as even the worst EER value (5.82) is low compared to the
baseline equivalents.

8. Cross data set results

In this section we test the effectiveness of our ideas on a different
data base, using the ResNet model. We first present our results on the
ASVspoof 2019 evaluation set, and then present a comparison to other
state of the art single systems.

8.1. Performance on ASVspoof 2019 evaluation set

Ablation analysis was performed on the ASVspoof 2019 evaluation
set, the results are presented in Table 18. The training and development
data sets we used are Trl, Dv2 where we used compression augmenta-
tion for training, and Tr5, Dv3 in case where we did not. The evaluation
set used was not augmented by compressions in both cases. DSL-H
represents a double sided logspec with high frequencies centered. DSL-L
represents the case where low frequencies were centered. Pre-emphasis
was performed for one sided and DSL-H feature designs.

We can see that:

1. Using our double sided feature design increased the performance
on this data set as well, in all cases;

2. Using SpecAverage increased the performance - in some cases
moderately and in some cases significantly;

3. Centering the high frequencies eventually yielded better results
than centering the low frequencies;

4. Using compression augmentation increased the performance as
well;

5. Using all of our methods together (equivalent to system D10)
resulted in an EER of 1.61%, which is an 88% reduction of the
original EER for the system and is an overall strong performance
for a single system on this data set.

8.2. Comparison of top performing single systems

Table 19 displays a performance comparison of top performing
single systems. Our single system has strong performance with respect
to other systems that use different front-end features.

9. Discussion and insights

In this section we will discuss interesting points and insights that
we found during our research.

9.1. The importance of augmentation

Throughout this work, two different augmentation methods were
proposed: compression augmentation for the DF part, and codec, chan-
nel effect, and bandwidth difference augmentation for the LA part. We
have shown that both methods are crucial for the models to function
properly with data that has witnessed these effects, or similar ones.
Both augmentation types not only help models deal with the trained
data, but render the models robust to different kinds of compressions
and channels. The evidence of this is clear, as our best DF system has
the best result on an unseen compression (0gg), and our best LA system
has good results on unseen channels.
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Table 14
DF evaluation results for the different conditions.
Refr. DF-C1 DF-C2 DF-C3 DF-C4 DF-C5 DF-C6 DF-C7 DF-C8 DF-C9 EER
RawNet 26.98 27.63 27.49 26.72 27.23 18.80 18.67 18.74 19.10 22.38
LCNN 23.19 34.21 23.88 25.22 23.85 19.06 17.10 28.35 18.54 23.48
GMM LFCC 17.39 39.20 17.97 20.95 21.43 22.16 14.83 39.03 26.65 25.25
GMM CQCC 19.48 48.86 20.37 19.55 20.27 17.92 14.42 49.41 17.39 25.56
D10+D12 14.45 15.53 14.31 19.32 14.80 11.17 12.47 12.12 15.95 14.27
Table 15 9.3. LFCC vs. Log spectrogram
Fusion systems, LA.
Single systems Method Eval EER Eval tDCF We can see that the LFCC based model underperformed both of
L1-L7 Weighted mean 4.66 0.2882 the LogSpec models. We believe that a possible explanation for this
might lie in the dynamic LFCC features. As we visualized in Fig. 3, the
Table 16 differences between the same audio file uncompressed or compressed
LA evaluation conditions. with different bitrates can be clearly seen, especially in the high fre-
Cond. Codec Bandwidth Transmission quency range. While the LogSpec contains all of the information as
LA-C1 None 16 None it comes, we believe that an additional amount of noise is produced
LA-C2 a-law 8 VoIP during the LFCC extraction process while computing the high frequency
LA-C3 unk.+-law 8 PSTN+VolP derivatives. The differences in the dynamic features between bitrates
igg G.17 22 ;6 xog can be explained by the fact that lossy compression of an audio signal
- pelaw o . . . .
LA-C6 GSM 8 VoIP involves removing high frequencies that are not heard by the human
LA-C7 OPUS 16 VoIP ear, and the lower the quality the more information is lost, together
with harsher quantization. Future work could investigate using only
Table 17 parts of the dynamic LFCC features, or even removing them.
able
LA evaluation results for the different conditions.
Refr. LACL LACZ LAC3 LAC4 LAGCS LAC6 LAC7 EER 9.4. Dealing with unseen and double compressions
RawNet 584 659 1672 6.41 633 10.66 7.95  9.50 . )
LCNN 671 889 1202 634 925 1100 666 926 In the DF part, we encountered an interesting phenomenon: our
GMM LFCC 1272 2121 3555 1528 1876 1846 1273 19.30 model that has been trained on MP3 and m4a compressions performed
GMM CQCC 1057 1476 20,58 11.61 1358 14.01 11.21 1562 best on low quality ogg, which is a compression method that had not
L1-L7 3.03 504 582 321 480 582 429 4.66 been learned by the model. We believe this could be because, although
the compression methods are different, they do remove specific fre-
Table 18 quencies that are based on human hearing perception tests, and in that

Ablation analysis on ASVspoof 2019 evaluation set, ResNet. Using our augmentations
and feature design results in strong performance on this data set as well. DSL-H and
DSL-L stand for Double Sided LogSpec, with H for high frequencies centered and L for
low frequencies centered. For L, pre-emphasis was not used.

Feature design Trained with compressions SpecAverage EER
DSL-H v v 1.61
DSL-H ' X 4.44
DSL-H X v 6.81
DSL-H X X 11.99
DSL-L v v 3.30
DSL-L ' X 4.97
DSL-L X v 6.86
DSL-L X X 8.25
One sided v v 6.55
One sided v X 11.13
One sided X v 8.74
One sided X X 13.64

9.2. Online masking methods

Throughout this work, three different online masking methods were
considered. Based on the tests that we performed we hypothesize that
the reason SpecAverage had better performance is that the average
value is statistically meaningful relative to the input feature, offering
more information in addition to the regularization effect provided by
the masking. It is important to note that time warping, one of the
features in SpecAugment, has not been used as it is costly in computing
resources. Despite that fact, masking with the average value gave con-
sistently better results than masking with the value 0 (FreqAugment), or
performing zero mean normalization and then masking with the value
0.
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manner they are similar. We believe that this fact contributed to this
result. To further test this interesting fact we conducted an experiment,
as seen in Table 20. The results were consistent.

9.5. The bitrate effect

We experimented with a large variety of bitrates. One of the chal-
lenges was to decide which bitrates to use for training and development
for each compression method and which not to use. In order to further
understand how to decide, we performed internal tests and came up
with a few conclusions:

1. Knowing the exact bitrates in the test set gives the best perfor-
mance (given that they are, in fact, known);

2. If the bitrates in the test set are not known, the best performance
was achieved by using at least one low bitrate and at least
one high bitrate—the cost of using more is time (training and
testing), and does not always help;

3. The development set used in the training process should contain
bitrates unseen during training.

10. Conclusions and future work

In this paper we performed an in depth study of how data augmen-
tation affects voice anti spoofing systems. We presented two different
types of data augmentation (for DF and for LA), that both significantly
enhanced the results of the models we used. Our methods showed
improvement in tasks that involve new spoofing attacks that have
not been seen during training, compressed data, transmitted data and
data with different bandwidths. We introduced a new form of feature
design, double sided LogSpec centering, that by re-allocating the sub-
bands of interest in the center of the receptive field, increased the
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Performance comparison of top performing single systems on the ASVspoof 2019 evaluation part. Our system uses a simple

model, and by using our feature design we achieved strong performance.

System Front-end feature EER
LCNN (Lavrentyeva et al., 2019) LFCC 5.06
ResNet18-GAT-T (Tak et al., 2021) LFB 4.71
ResNet (Yang et al., 2021) CQT-MMPS 3.72
GMM (Tak et al., 2020b) LFCC 3.50
LCNN+CE (Das et al., 2021) DASC-CQT 3.13
SE-Res2Net50 (Li et al., 2021a) CcQT 2.50
Resnet18-OC-softmax (Zhang et al., 2021a) LFCC 2.19
Capsule network (Luo et al., 2021) LFCC 1.97
LCNN-LSTM-sum (Wang and Yamagishi, 2021) LFCC 1.92
MCG-Res2Net50+CE (Li et al., 2021b) CcQT 1.78
Res-TSSDNet (Hua et al., 2021) Raw-audio 1.64
D10 (ours) Double sided Logspec 1.61

Table 20
Compression robustness test. Our model performs well even on unseen compressions.
The test data set used for comparison was the ASVspoof 2019 LA evaluation set.

System Compression trained on Compression tested on EER
D4 MP3, M4a MP3, M4a 3.63
D4 MP3, M4a Opus 3.7

D4 MP3, M4a Ogg 3.82

results significantly. Furthermore, we introduced a new method of
online augmentation - SpecAverage, that contributed to our results. The
combination of our methods achieved state of the art results in the DF
category, both with a single system and with a system fusion scheme. In
addition, the use of our methods achieved very strong performance on
the ASVspoof 2019 evaluation data set as well. Given that our methods
are mostly used on audio frequency based features, we believe that they
can be used in other audio related tasks.
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