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Why Transfer Entropy (TE)?

TE measures directed information flow between two jointly stationary 
processes, for a fixed memory length 𝑘, 𝑙:

Captures causal influence beyond correlation or Mutual Information 
(MI)

Useful in neuroscience, communications, IoT, finance

During the presentation 𝑙 = 𝑘, unless stated otherwise.



Challenges in TE Estimation

Long contexts, continuous 
signals, non-Gaussian noise

Classical methods 
(KDE/kNN/copula) suffer 

from bias/variance trade-off

Generic neural MI estimators 
not tailored for finite-order 

TE



Why Transformers?

Attention captures long-range dependencies 
efficiently

Causal masking aligns with TE's finite history 
requirement

Scales better than RNNs for long contexts



TE vs. DI Rate
➢TE: finite-order conditional MI (CMI) 

➢Directed Information (DI) rate: infinite memory CMI

➢TE converges to DI rate under stationarity



What is TREET?
➢Transformer-based estimator of TE using Donsker-Vardhan (DV) 
representation

➢Shared-weights dual potentials with tailored attention.

➢Consistent for order-𝑙 TE.



DV Objective for TE
➢TE can be expressed as difference of two KL divergences

➢Each term is optimized via DV representation, where the potential 
function is a transformer. 

➢Reference sampling (Gaussian / Uniform) enables stable estimation of KL 
divergence terms



Consistency Guarantee
➢Under stationarity and ergodicity, TREET converges 
to true TE

➢Proven for fixed memory parameter 𝑙.

➢ ෨𝑌 is i.i.d. under absolutely continuous reference 
measure over the alphabet 𝒴.

➢Each term is a lower bound estimator of the DKL in 
Lemma 2, respectively.



TREET 
Architecture

Two passes through the same 
transformer (shared weights)

Fix-Past-Causal-Attention (FPCA) 
for main term; modified FPCA 
for reference term – reuses past 
keys and values to simulate the 
same conditionals

Stable training and interpretable 
lag-wise attention



Training & Implementation
➢Sampled order 𝑙 sequences of 𝕐 and joint 𝕏, 𝕐 
process for each DKL term – unsupervised 
training for maximization of DV representation.

➢Mini-batch optimization via gradient ascent. 
with reference sampling – tested on Uniform 
and Gaussian sampling

➢FPCA and modified FPCA enforce causal 
structure to preserve no past beyond order 𝑙 
and future leakage. Parallel (𝐿 − 𝑙) outputs for 
sequence length 𝐿.



TE Benchmark: Long-Memory 
Synthetic Data
➢Compared TREET vs. TENE and Copnet – both ignoring time settings 
and using the sequence as a whole vector.

◦ TENE – DV based TE estimator,

◦ Copnet – KNN based estimator – 4 coupla entropy estimators,

 

➢TREET robust to long context lengths (up to 𝑙 = 99)

Copula Entropy - Theory and Applications

https://majianthu.github.io/ce1ta.pdf
https://majianthu.github.io/ce1ta.pdf
https://majianthu.github.io/ce1ta.pdf


TE Benchmark: Long-Memory 
Synthetic Data

Process parameters:
𝜆 ∈ ℝ, 𝜌 = 0.9

For any order TE, 𝑙 ≥ 1, the value 
is constant since 𝑋 is i.i.d. and 𝑌 
is 1-order Markov.



Channel Capacity Estimation
As stated before, TE converges to the DI rate, thus TREET can estimate 
the DI rate – which achieves the channel capacity (for optimized input 
distribution)



Channel Capacity Estimation

Neural Density Generator (NDG) learns input distribution maximizing TE 
– thus, TE is optimized and estimated in an alternate procedure.



Channel Capacity Estimation

➢Applied to AWGN, AR(1), 
MA(1) channels with/without 
feedback.

➢TREET matches theoretical 
capacities and the DI rate 
neural estimator - DINE



Channel Capacity Estimation



Channel Capacity Estimation 
For Long Memory Analysis
Process capacity estimation – GMA(100),

FPCA visualization of influential lags for shorter or larger memory than the process’ order

Stab
le 
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True capacity = 0.405 [nat]



Density Estimation via TREET

➢Optimized potentials yield the following log-likelihood ratio (LLR) – 

➢The conditional density estimator can be derived out-of-the-box – 

➢Entire distribution derived from normalized values from grid input of 𝑦𝑡 ⊂ 𝒴 . 

➢Competitive with MDN, KDE, Kalman on HMM-like processes and handles long delays 
and noise models robustly

Same can be derived for causally conditioned on X process



Density Estimation via TREET

Where 𝑊𝑡 , 𝑉𝑡 are i.i.d noise, 𝒩(0,1) or 𝑈 −1,1 .

1-order process - 𝛽 = 0 𝑘-order process - 𝛽 ≠ 0 and 𝑘 > 1 



Apnea Case Study: Feature-
Level Causal Analysis
➢Analyzed respiration ⇄ heart-rate influence in sleep apnea patients

➢TE directionality aligns with clinical understanding – breathing affects heart rate

➢Different orders of TE estimation reveals causal relationships



Future Scope: TREET Time-
Series Applications

Cross-Domain Potential
Apply TREET across diverse fields such as:

Communications – analyzing feedback and 
memory in channels

Physiology – uncovering causal relationships 
in biomedical signals

Finance – detecting directional influence in 
market dynamics

Advanced Applications of TREET

TREET enables powerful time-series analysis 
across several domains, including:

Feature Selection: Identifying causally 
relevant variables in complex datasets.

Anomaly Detection: Detecting irregularities 
in single or joint processes.

Control & Decision Systems: Enhancing 
decision-making through causal insights.



Future Scope: Information Theory 
& Deep Learning Application
1. Diffusion Models for Improved KLD and MI Estimation:

➢Current estimators struggle with high dimensional KLD and MI

➢Diffusion models can break down each variational representation task 
(DV, MINE, NWJ, InfoNCE) to smaller ones



Future Scope: Information Theory 
& Deep Learning Application
1. Diffusion Models for Improved Mutual Information Estimation:

➢Proved lower bound for estimating the KLD, from optimal set of 
functions  𝑇𝑘

⋆
𝑘=0
𝐾−1



Future Scope: Information Theory 
& Deep Learning Application
2. Optimizing Inference of Discrete Diffusion Language Models 
Through MI:

➢Diffusion models, discrete ones in particular, suffer from many function 
evaluations until resulting with a good quality generated content

➢Dilated Unmasking Scheduler (DUS) - Assuming a Markov model, 
uncovering tokens at the same time can be done with minimal shared 
information between them, thus generation preserves its’ quality 



Future Scope: Information Theory 
& Deep Learning Application
2. Optimizing Inference of Discrete Diffusion Language Models 
Through MI:



Thank you!

• TREET: TRansfer Entropy Estimation via Transformers, IEEE Access, 2025 vol. 13, pp. 126477-126495, 2025 
Omer Luxembourg, Dor Tsur, Haim Permuter 

• Plan for Speed: Dilated Scheduling for Masked Diffusion Language Models, arXiv preprint arXiv:2506.19037, 2025 
Omer Luxembourg, Haim Permuter, Eliya Nachmani 
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