Transformers for Information Measures Estimation in Time Series Domain

RESEARCH PROPOSAL

OMER LUXEMBOURG · ADVISOR: PROF. HAIM PERMUTER · AUGUST 2025

Why Transfer Entropy (TE)?

TE measures directed information flow between two jointly stationary processes, for a fixed memory length k, l:

$$\mathsf{TE}_{X\to Y}(k,l) := \mathsf{I}\left(X^{l}; Y_{l}|Y_{l-k}^{l-1}\right).$$

Captures causal influence beyond correlation or Mutual Information (MI)

Useful in neuroscience, communications, IoT, finance

Challenges in TE Estimation

Long contexts, continuous signals, non-Gaussian noise

Classical methods (KDE/kNN/copula) suffer from bias/variance trade-off

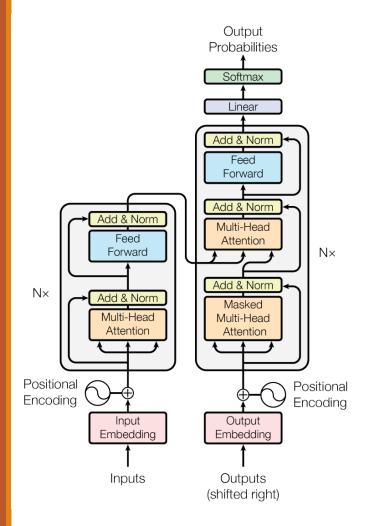
Generic neural MI estimators not tailored for finite-order TE

Why Transformers?

Attention captures long-range dependencies efficiently

Causal masking aligns with TE's finite history requirement

Scales better than RNNs for long contexts



TE vs. DI Rate

- ➤ TE: finite-order conditional MI (CMI)
- Directed Information (DI) rate: infinite memory CMI

$$I((X \to Y)) := \lim_{n \to \infty} \frac{1}{n} I(X^n \to Y^n)$$

$$= \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n I(X^i; Y_i | Y^{i-1})$$

$$= \lim_{n \to \infty} I(X^n; Y_n | Y^{n-1})$$

TE converges to DI rate under stationarity

What is TREET?

Transformer-based estimator of TE using Donsker-Vardhan (DV) representation

Theorem 2 (DV representation) For any, $P, Q \in \mathcal{P}(\mathcal{X})$, we have

$$\mathsf{D}_{\mathsf{KL}}(P||Q) = \sup_{f:\mathcal{X}\to\mathbb{R}} \mathbb{E}_P[f] - \log\left(\mathbb{E}_Q[e^f]\right),$$

where the supremum is taken over all measurable functions f with finite expectations.

- ➤ Shared-weights dual potentials with tailored attention.
- \triangleright Consistent for order-l TE.

DV Objective for TE

TE can be expressed as difference of two KL divergences

Lemma 2 (TE as KL Divergences) TE decomposes as

$$\mathsf{TE}_{X \to Y}(l) = \mathsf{D}_{Y_l | Y^{l-1} X^l \| \widetilde{Y}_l} - \mathsf{D}_{Y_l | Y^{l-1} \| \widetilde{Y}_l},$$

where

$$\begin{split} & \mathsf{D}_{Y_l \mid Y^{l-1} \parallel \widetilde{Y}_l} := \mathsf{D}_{\mathsf{KL}} \left(P_{Y_l \mid Y^{l-1}} \lVert \widetilde{P}_Y \middle| P_{Y^{l-1}} \right), \\ & \mathsf{D}_{Y_l \mid Y^{l-1} X^l \parallel \widetilde{Y}_l} := \mathsf{D}_{\mathsf{KL}} \left(P_{Y_l \mid Y^{l-1} X^l} \lVert \widetilde{P}_Y \middle| P_{Y^{l-1} X^l} \right) \end{split}$$

- Each term is **optimized via DV representation**, where the potential function is a transformer.
- ➤ Reference sampling (Gaussian / Uniform) enables stable estimation of KL divergence terms

Consistency Guarantee

- Under stationarity and ergodicity, TREET converges to true TE
- \triangleright Proven for fixed memory parameter l.
- $\succ \tilde{Y}$ is i.i.d. under absolutely continuous reference measure over the alphabet \mathcal{Y} .
- Each term is a lower bound estimator of the DKL in Lemma 2, respectively.

$$\begin{split} \widehat{\mathsf{TE}}_{X \to Y}(D_n; l) \\ &= \sup_{g_{xy} \in \mathcal{G}^{XY}_{\mathsf{ctf}}} \widehat{\mathsf{D}}_{Y_l | Y^{l-1} X^l \| \widetilde{Y}_l}(D_n, g_{xy}) \\ &- \sup_{g_y \in \mathcal{G}^{Y}_{\mathsf{ctf}}} \widehat{\mathsf{D}}_{Y_l | Y^{l-1} \| \widetilde{Y}_l}(D_n, g_y), \end{split}$$

where

$$\widehat{D}_{Y_{l}|Y^{l-1}||\widetilde{Y}_{l}}(D_{n}, g_{y}) := \frac{1}{n} \sum_{i=1}^{n} g_{y} \left(Y_{i}^{i+l}\right)$$

$$-\log \left(\frac{1}{n} \sum_{i=1}^{n} e^{g_{y} \left(\widetilde{Y}_{i+l}, Y_{i}^{i+l-1}\right)}\right),$$

$$\widehat{D}_{Y_{l}|Y^{l-1}X^{l}||\widetilde{Y}_{l}}(D_{n}, g_{xy}) := \frac{1}{n} \sum_{i=1}^{n} g_{xy} \left(Y_{i}^{i+l}, X_{i}^{i+l}\right)$$

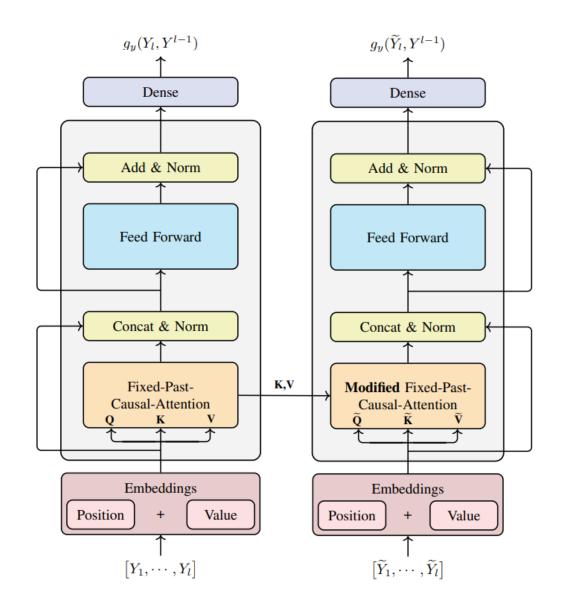
$$-\log \left(\frac{1}{n} \sum_{i=1}^{n} e^{g_{xy} \left(\widetilde{Y}_{i+l}, Y_{i}^{i+l-1}, X_{i}^{i+l}\right)}\right).$$

TREET Architecture

Two passes through the same transformer (shared weights)

Fix-Past-Causal-Attention (FPCA) for main term; modified FPCA for reference term – reuses past keys and values to simulate the same conditionals

Stable training and interpretable lag-wise attention



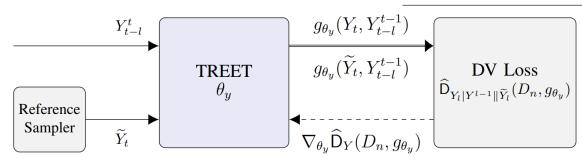
Training & Implementation

- \triangleright Sampled order l sequences of $\mathbb Y$ and joint $\mathbb X$, $\mathbb Y$ process for each DKL term – unsupervised training for maximization of DV representation.
- Mini-batch optimization via gradient ascent. with reference sampling – tested on Uniform and Gaussian sampling
- FPCA and modified FPCA enforce causal structure to preserve no past beyond order l and future leakage. Parallel (L-l) outputs for sequence length L.

Algorithm 1 TREET

Input: Joint process samples D_n ; Observation length $l \in \mathbb{N}$. **Output:** $\widehat{\mathsf{TE}}_{X\to Y}(D_n;l)$ - TE estimation.

- 1: NNs initialization g_{θ_y} , $g_{\theta_{xy}}$ with corresponding parameters θ_y, θ_{xy} .
- 2: Step 1 Optimization:
- 3: repeat
- Draw a batch B_m : m < n sub-sequences, length L > lfrom D_n , with reference samples $P_{\widetilde{V}}$ for each.
- 5: Compute both potentials $\widehat{\mathsf{D}}_{Y_l|Y^{l-1}X^l||\widetilde{Y}_l}(B_m,g_{\theta_{xy}}),$ $\mathsf{D}_{Y_l|Y^{l-1}||\widetilde{Y}_l}(B_m, g_{\theta_y}) \text{ via (20)}.$
- 6: Update parameters:
- $\theta_{xy} \leftarrow \theta_{xy} + \nabla_{\theta_{xy}} \widehat{\mathsf{D}}_{Y_l | Y^{l-1} X^l || \widetilde{Y}_l} (B_m, g_{\theta_{xy}})$
- 8: $\theta_y \leftarrow \theta_y + \nabla_{\theta_y} \widehat{\mathsf{D}}_{Y_l | Y^{l-1} | | \widetilde{Y}_l}(B_m, g_{\theta_y})$ 9: **until** convergence criteria.
- 10: **Step 2 Evaluation:** Evaluate for a sub-sequence (20) and (19a) to obtain $\widehat{\mathsf{TE}}_{X\to Y}(D_n;l)$.



TE Benchmark: Long-Memory Synthetic Data

- ➤ Compared TREET vs. TENE and Copnet both ignoring time settings and using the sequence as a whole vector.
 - TENE DV based TE estimator,

$$\mathsf{TE}_{X \to Y}(l) = \mathsf{I}(X^l; Y_l | Y^{l-1}) = \mathsf{I}(X^l; Y_l, Y^{l-1}) - \mathsf{I}(X^l; Y^{l-1})$$

Copnet – KNN based estimator – 4 coupla entropy estimators,

$$\begin{split} \mathsf{I}(X) &= -\mathsf{h}_C(X); \\ \mathsf{TE}_{X \to Y}(l) &= \mathsf{h}_C(Y_l, Y^{l-1}, X^l) + \mathsf{h}_C(Y_l, Y^{l-1}) + \mathsf{h}_C(Y^{l-1}, X^l) - \mathsf{h}_C(Y^{l-1}) \end{split}$$

TREET robust to long context lengths (up to l = 99)

TE Benchmark: Long-Memory Synthetic Data

$$Y_t = \begin{cases} Z_t, & \text{if } Y_{t-1} < \lambda, \\ \rho X_{t-1} + \sqrt{1 - \rho^2} Z_t, & \text{else,} \end{cases}$$

Process parameters:

$$\lambda \in \mathbb{R}$$
, $\rho = 0.9$

For any order TE, $l \ge 1$, the value is constant since X is i.i.d. and Y is 1-order Markov.

λ		-3	-2	-1	0	1	2	3
Model, l	Ground Truth	0.829	0.811	0.699	0.415	0.132	0.019	0.001
	1	0.812	0.792	0.667	0.395	0.126	0.016	0.0
	2	0.826	0.796	0.681	0.392	0.117	0.014	0
H	4	0.825	0.798	0.682	0.393	0.115	0.013	0
TREET	7	0.82	0.799	0.679	0.405	0.121	0.015	0.00
TR	9	0.815	0.802	0.686	0.403	0.126	0.017	0.00
	19	0.824	0.805	0.69	0.405	0.128	0.017	0.00
	49	0.829	0.811	0.694	0.409	0.128	0.018	0.00
	99	0.829	0.81	0.693	0.41	0.115	0.017	0.00
	1	0.823	0.807	0.696	0.416	0.126	0.014	0
	2	0.814	0.782	0.688	0.39	0.115	0.013	0
F-1	4	0.43	0.76	0.602	0.382	0.119	0.013	-0.00
TENE	7	>10	>10	0.698	0.354	0.09	0.013	0.0
Ξ	9	>10	>10	>10	0.359	0.091	0.014	0.0
	19	>10	>10	>10	1.796	0.038	0.021	0
	49	<-10.0	<-10.0	<-10.0	>10	0.027	0.01	-0.00
	99	>10	>10	>10	>10	0.102	-0.002	-0.00
	1	0.835	0.81	0.688	0.397	0.111	0.0	-0.02
	2	0.819	0.786	0.676	0.377	0.106	-0.004	-0.01
*	4	0.9	0.864	0.747	0.469	0.193	0.087	0.07
Copnet	7	1.297	1.268	1.135	0.903	0.649	0.571	0.57
S	9	1.703	1.679	1.558	1.357	1.106	1.054	1.05
	19	4.862	4.834	4.75	4.574	4.431	4.428	4.43
	49	>10	>10	>10	>10	>10	>10	>10
	99	>10	>10	>10	>10	>10	>10	>10

As stated before, TE converges to the DI rate, thus TREET can estimate the DI rate – which achieves the channel capacity (for optimized input distribution)

Remark 1 (Channel capacity) Consider channels with and without feedback links from the channel output back to the encoder. The feedforward capacity of a channel sequence $\{P_{Y^n||X^n}\}$, for $n \in \mathbb{N}$ is

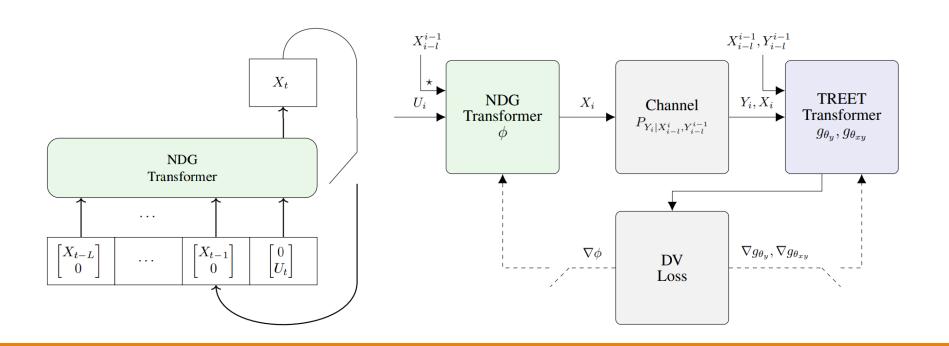
$$C_{\mathsf{FF}} = \lim_{n \to \infty} \sup_{P_{X^n}} \frac{1}{n} \mathsf{I}(X^n; Y^n),$$

and the feedback capacity is

$$C_{\mathsf{FB}} = \lim_{n \to \infty} \sup_{P_{X^n \parallel Y^{n-1}}} \frac{1}{n} \mathsf{I}(X^n \to Y^n). \tag{29}$$

The achievability of the capacities is further discussed in [38], [39]. [34] showed that for non-feedback scenario, the optimization problem over $P_{X^n||Y^n}$ can be translated to P_{X^n}

Neural Density Generator (NDG) learns input distribution maximizing TE – thus, TE is optimized and estimated in an alternate procedure.



Applied to AWGN, AR(1), MA(1) channels with/without feedback.

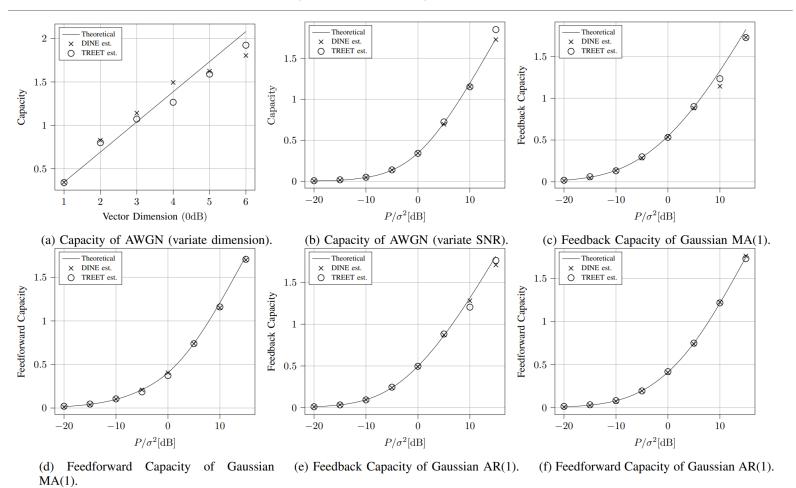
TREET matches theoretical capacities and the DI rate neural estimator - DINE

Algorithm 2 Continuous TREET optimization

Input: Continuous sequence-to-sequence system S; Observation length $l \in \mathbb{N}$.

Output: $\widehat{\mathsf{TE}}_{X \to Y}^{\star}(U^n; l)$, optimized NDG.

- 1: NNs initialization g_{θ_y} , $g_{\theta_{xy}}$ and h_{ϕ} with corresponding parameters θ_y , θ_{xy} , ϕ .
- 2: repeat
- 3: Draw noise U^m , m < n.
- 4: Compute batch B_m^{ϕ} sized m using NDG, \mathcal{S}
- 5: **if** training TREET **then**
- 6: Perform TREET optimization Step 1 in Algorithm 1.
- gorithm 1. 7: **else** Train NDG
- 8: Compute $\widehat{\mathsf{TE}}_{X\to Y}(B^\phi_m,g_{\theta_y},g_{\theta_{xy}},h_\phi;l)$ using (19a).
- 9: Update NDG parameters:
- 10: $\phi \leftarrow \phi + \nabla_{\phi} \widehat{\mathsf{TE}}_{X \to Y}(B_m^{\phi}, g_{\theta_y}, g_{\theta_{xy}}, h_{\phi}; l)$
- 11: until convergence criteria.
- 12: Draw U^m to produce l length sequence and evaluate $\widehat{\mathsf{TE}}_{X \to Y}(D_n^\phi; l)$.
- 13: **return** $\widehat{\mathsf{TE}}_{X\to Y}(U^n;l)$, optimized NDG.



Channel Capacity Estimation For Long Memory Analysis

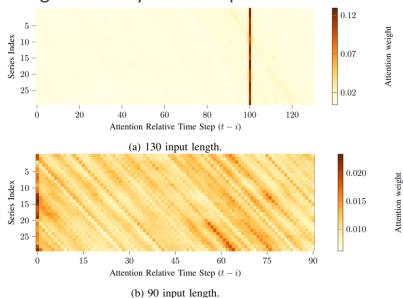
Process capacity estimation – GMA(100),

$$Z_t = N_t + \alpha N_{t-100},$$

$$Y_t = X_t + Z_t, \quad t \in \mathbb{Z}.$$

FPCA visualization of influential lags for shorter or larger memory than the process' order

	TREE	T	DINE			
l	Estimated capacity [nat]	Absolute error (%)	Estimated capacity [nat]	Absolute error (%)		
60	0.19	53	0.30	25		
70	0.29	29	0.35	15		
80	0.28	31	0.34	17		
90	0.29	28	0.30	26		
100	0.37	9	0.36	12		
110	0.38	. s 7	0.33	20		
120	0.38 0.36 0.36	Stable 11	0.33	18		
130	0.36	¹ 11	0.34	17		
140	0.35	14	0.26	35		



Density Estimation via TREET

➤ Optimized potentials yield the following log-likelihood ratio (LLR) —

$$f_{y,l}^{\star} := \log \left(\frac{dP_{Y^{l}}}{d(P_{X^{l}Y^{l-1}} \otimes \widetilde{P}_{Y_{l}})} \right) \qquad f_{y,l}^{\star} := \log \left(\frac{dP_{Y^{l}}}{d(P_{Y^{l-1}} \otimes \widetilde{P}_{Y_{l}})} \right)$$

$$= \log p_{Y_{l}|X^{l}Y^{l-1}} - \log \widetilde{p}_{Y_{l}} \qquad = \log p_{Y_{l}|Y^{l-1}} - \log \widetilde{p}_{Y_{l}}$$

➤ The conditional density estimator can be derived out-of-the-box —

$$P_{Y_t|Y^{t-1}}(y_t|y^{t-1}) \approx \exp\left(\widehat{\mathsf{D}}_{Y_t|Y^{t-1}||\widetilde{Y}_t}(D_n, g_y)\right) \cdot \widetilde{P}_{Y_t}(y_t)$$

- ightharpoonup Entire distribution derived from normalized values from grid input of $\{y_t\}\subset \mathcal{Y}$.
- Competitive with MDN, KDE, Kalman on HMM-like processes and handles long delays and noise models robustly

Density Estimation via TREET

$$X_t = \alpha X_{t-1} + \beta X_{t-k} + W_t,$$

$$Y_t = \gamma X_t + V_t,$$

Where W_t , V_t are i.i.d noise, $\mathcal{N}(0,1)$ or U[-1,1].

Model	Gau	ssian	Unit	Uniform			
	KLD	TV	KLD	TV			
Kalman	1.076	0.467	1.304	0.408			
KDE	1.135	0.608	0.847	0.417			
MDN	1.098	0.632	0.667	0.460			
DINE	0.795	0.525	0.475	0.291			
TREET	0.797	0.524	0.482	0.296			

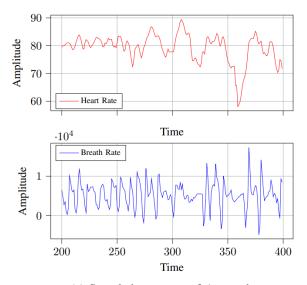
k	TREET		DINE		MDN		Kalman	
,,	KL	TV KL TV KL TV	KL	TV				
2	0.933	0.569	0.934	0.570	1.460	0.708	0.636	0.405
5	1.036	0.601	0.875	0.556	1.454	0.707	1.284	0.599
10	0.984	0.585	1.299	0.662	1.450	0.706	1.239	0.603
15	0.992	0.587	1.441	0.704	1.448	0.707	1.232	0.602
25	0.993	0.587	1.451	0.706	1.443	0.704	<u>1.196</u>	0.598
50	0.993	0.589	1.452	0.707	1.453	0.707	<u>1.193</u>	<u>0.597</u>

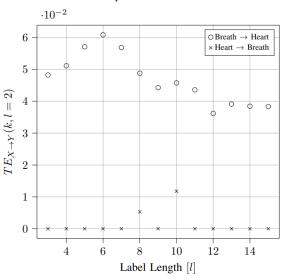
1-order process - $\beta = 0$

k-order process - $\beta \neq 0$ and k > 1

Apnea Case Study: Feature-Level Causal Analysis

- ➤ Analyzed respiration \rightleftharpoons heart-rate influence in sleep apnea patients
- >TE directionality aligns with clinical understanding breathing affects heart rate
- ➤ Different orders of TE estimation reveals causal relationships





(a) Sampled sequence of Apnea dataset.

(b) TE estimation for variable length history of Y.

Future Scope: TREET Time-Series Applications

Cross-Domain Potential

Apply TREET across diverse fields such as:

Communications – analyzing feedback and memory in channels

Physiology – uncovering causal relationships in biomedical signals

Finance – detecting directional influence in market dynamics

Advanced Applications of TREET

TREET enables powerful time-series analysis across several domains, including:

Feature Selection: Identifying causally relevant variables in complex datasets.

Anomaly Detection: Detecting irregularities in single or joint processes.

Control & Decision Systems: Enhancing decision-making through causal insights.

1. Diffusion Models for Improved KLD and MI Estimation:

- Current estimators struggle with high dimensional KLD and MI
- Diffusion models can break down each variational representation task (DV, MINE, NWJ, InfoNCE) to smaller ones

$$\begin{split} \mathsf{T}^{\star}_{\mathrm{sum}}(\mathbb{P}_{0},\mathbb{P}_{K}) &:= \sum_{k=0}^{K-1} \mathsf{T}_{k}(\mathbb{P}_{k} \parallel \mathbb{P}_{k+1}) \\ \mathsf{I}_{\mathrm{VR,diffused}}(X;Y) &:= \frac{1}{N} \sum_{(X_{i},Y_{i})_{i=1}^{N} \sim \mathbb{P}_{XY}} \mathsf{T}^{\star}_{\mathrm{sum}}(X_{i},Y_{i}) \\ &\stackrel{(a)}{=} \mathbb{E}_{\mathbb{P}_{XY}} \left[\log \frac{\mathbb{P}_{XY}(X,Y)}{\mathbb{P}_{X}(X)\mathbb{P}_{Y}(Y)} \right] \\ &= \mathsf{I}(X;Y) \end{split}$$

1. Diffusion Models for Improved Mutual Information Estimation:

Proved lower bound for estimating the KLD, from optimal set of functions $\{T_k^{\star}\}_{k=0}^{K-1}$

Bernoulli Diffusion Process: Define \mathbb{P}_k as a probabilistic mixture between \mathbb{P}_0 and \mathbb{P}_K , controlled by the parameter α_k :

$$\mathbb{P}_k = (1 - \alpha_k)\mathbb{P}_0 + \alpha_k\mathbb{P}_K.$$

This process results in a stochastic switching between samples from \mathbb{P}_0 and \mathbb{P}_K :

$$X_k = \begin{cases} X_0, & \text{with probability } 1 - \alpha_k, \\ X_K, & \text{with probability } \alpha_k. \end{cases}$$

Lemma (D_{KI} upper bound - Bernoulli)

$$D_{\mathsf{KL}}(P_0||P_K) \ge \sum_{k=0}^{K-1} D_{\mathsf{KL}}(P_k||P_{k+1}).$$

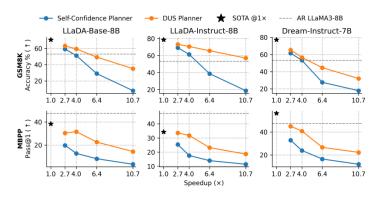
2. Optimizing Inference of Discrete Diffusion Language Models Through MI:

- Diffusion models, discrete ones in particular, suffer from many function evaluations until resulting with a good quality generated content
- Dilated Unmasking Scheduler (DUS) Assuming a Markov model, uncovering tokens at the same time can be done with minimal shared information between them, thus generation preserves its' quality

Lemma 1 *Under a fast-mixing first-order Markov chain, let* $i_1 < \cdots < i_k$ *be the indices selected by DUS. Then*

$$H(X_{i_1},\ldots,X_{i_k}\mid \mathcal{S}_t) \approx \sum_{j=1}^k H(X_{i_j}\mid \mathcal{S}_t).$$
 (8)

2. Optimizing Inference of Discrete Diffusion Language Models Through MI:



30 mph for 1 hour. What is the can's average speed in mph during this trip? Answer: The car drives 2 * 60 miles/hour = <<2*60=60>>120 miles in the first part of the trip. The car drives 1 * 30 miles/hour = <<1*30=30>>30 miles in the second part of the trip. The total distance traveled is 120 + 30 miles = <<120+30=150>>150 miles. The total time taken is 2 + 1 hours = <<2+1=3>>3 hours. The average speed is 150 miles / 3 hours = <<150/3=50>>50 miles/hour. #### 50

(b) DUS planner

Question: A car is on a road trip and drives 60 mph for 2 hours, and then 30 mph for 1 hours. What is the car's average speed in mph during this trip? Answer: The car went 60 30 = (<60+30=90>>90 miles. It took 2 1 = (<2+1=3>>3 hours. The average speed is 90 / 3 = (<90/3=30>>30 mph.

(c) Self-confidence planner

(a) Score vs. speedup - DUS and self-confidence MDLM planners.

Generation Start

Generation End

	Model	B=8 ×2.7		B=16 ×4		B=32 ×6.4		B=64 ×10.7	
		Conf.	DUS	Conf.	DUS	Conf.	DUS	Conf.	DUS
	LLaDA-Base	59.29	63.08	51.23	59.51	29.04	49.36	8.04	35.18
GSM8K	LLaDA-Instruct	69.22	73.24	61.41	70.66	38.74	65.73	18.73	57.09
	Dream-Instruct	61.64	65.28	53.22	56.63	27.60	44.66	17.89	32.07
our media transportant	LLaDA-Base	16.6	21.4	11.2	19.2	6.0	13.6	2.6	10.2
MATH500	LLaDA-Instruct	21.4	23.8	15.4	22.8	10.8	19.2	8.0	14.8
	Dream-Instruct	22.4	27.0	15.4	19.8	7.2	13.2	4.0	11.6
	LLaDA-Base	15.85	25.61	12.8	19.51	4.88	14.02	4.88	6.71
	LLaDA-Instruct	21.95	28.05	14.02	23.17	9.76	10.37	10.98	11.59
Humaneval	Dream-Instruct	8.54	14.63	5.49	11.59	6.71	6.71	6.10	9.15
	DiffuCoder-Base	17.07	28.66	6.71	38.41	2.44	21.95	0.61	6.10
	DiffuCoder-Instruct	7.93	22.56	14.02	20.12	13.41	12.80	17.89 2.6 8.0 4.0 4.88 10.98 6.10	8.54
	LLaDA-Base	19.8	30.4	12.8	31.6	8.2	22.6	3.4	14.4
	LLaDA-Instruct	25.4	33.6	17.6	31.8	14.0	23.2	11.4	18.6
MBPP	Dream-Instruct	32.8	45.0	23.8	40.8	16.4	26.6	11.8	22.2
	DiffuCoder-Base	29.2	48.6	17.4	43.0	10.2	27.4	3.4	17.2
	DiffuCoder-Instruct	31.8	46.4	25.6	43.6	21.0	26.6	13.0	18.2

Thank you!

- TREET: TRansfer Entropy Estimation via Transformers, IEEE Access, 2025 vol. 13, pp. 126477-126495, 2025 Omer Luxembourg, Dor Tsur, Haim Permuter
- <u>Plan for Speed: Dilated Scheduling for Masked Diffusion Language Models, arXiv preprint arXiv:2506.19037, 2025</u> <u>Omer Luxembourg, Haim Permuter, Eliya Nachmani</u>