Random codes in communication 11 June 2010
(Dr. Permuter Haim and Mr. lddo Naiss)

Final Exam - Solution
Total time for the exam: 3 hours!

This is a honor code assignment and each student should dtaly by himself/herself. Please copy
and sign the sentence below on your assignment (an assigmitkaut the following sentence won'’t be
graded.)

“I am respecting the honor code of this assignment: Sigeatur §

1) True or False (35 points)
Copy each relation to your notebook and wtitee or false Then, if it's true, prove it. If it is false
give a counterexample or prove that the opposite is true.

a) Let X,Y be two independent random variables. Then
H(X-Y)>H(X).
True @ ®
HX-Y)> HX-Y|Y)) > HX)

(a) Conditioning Reduces Entropy.
(b) GivenY, X — Y is a Bijective Function.

b) Let A, B,C.D be random variables with a finite alphabet that form the Mar&bain A —
B —C — D, namelyP(a,b,c,d) = P(a)P(bla)P(c|b)P(d|c). Then,

I(A;C|D) < H(B).

True
c) For any finite alphabet random variables

H(X,Y,Z)— H(X,Y) < H(X, Z) — H(X).

True

H(X)+ HX|Y) + H(Z|X,Y) — HX) - HY|X) =

(a)
H(Z|X)Y) <
H(Z|X)=H(Z,X)—- H(X)
(a) Conditioning Reduces Entropy.



d)

9)

Let {X;}:>1 be an i.i.d. source distributed according £&. In addition, let{Y;},~; and
{Z;}:;>1 be two i.i.d. side information sequences that may be aJailab the encoder and
decoder of a lossless source coding settingl(IX;Y) > I(X;Z), then the minimum rate
that is needed to compreg$s(; };>; losslessly with side informatiofY;};>; is smaller than
the minimum rate that is needed to comprgss };>; losslessly with with side information
{Z;}i>1. Assume the side information is known both to the encoderdembder.

True
I(X;Y)=H(X)-HX|Y)
[(X:Z)=H(X) - H(X|Z)
I(X;Y)>I(X;:Z)=> H(X|Z)- HX|Y) >0= HX|Y) < HX|Z)
Suppose thatX, Y, Z) are jointly Gaussian and thaf — Y — Z forms a Markov chain. LeX

andY have correlation coefficient; and letY and Z have correlation coefficien,. Let the
variance of each random variablg Y, andZ be 1. be Lety(z) be any deterministic function.
Then

WXlg(2)) =

1
> 5 log 2me(1 — pip3).

True

We've shown that for this Model:
I(X;7) = —% log 27e (1 — p1°p2?)
Moreover: @
H(X) - H(X|Z)=1(X;2) 2 I(X;9(Z))
Hence we get: .
) log 2me (1 - P12P22) > H(X) - H(X[g(2)) =

®1

1
H(X|G(Z)) > H(X) + 5 log 2me (1 — pi’pa?) > 5 log 2me (1 — pi°p2?)

(a) Data-Processing Inequality.
(b) H(X) > 0.

If f(z,y) is a convex function in the paitz,y), then for a fixedy, f(z,y) is convex inz,
and for a fixedr, f(z,y) is convex iny.

True
If the function is Convex for every combination @f,y) it is necessarily Convex for Affine
Function of the pair.

If for a fixed y the function f(z,y) is a convex function inc , and for a fixedr, f(z,y) is
convex function iny, then f(x,y) is convex in the paifz,y). (Examples of such functions

are f(z,y) = fi(z) + fa(y) or f(z,y) = f1(x)f2(y) where f;(x) and f»(y) are convex.)

False



2) Entropy and source coding of a source with infinite alphabet(15 points)
Let X be an i.i.d. random variable with an infinite alphabét,= {1,2,3,...}. In addition let
P(X =i)=27"
a) What is the entropy of the random variable?
b) Find an optimal variable length code, and show that it deed optimal.

Solution

a)

H(X) ==Y p(x)logp(x)

reX

b) Coding Scheme:
0

10
110
1110
11110

g wWNPE

Average Length:
L* =Y pla=i)L(i) = ZE =2=H(X)
i=1 i=1

Hence it is the Optimal Code.

3) Empirical distribution of a sequence (20 points)
A fair dice with 6 faces was thrown times, wheren is a very large number.

a) Using Stirling approximation! ~ (2)", find how many different sequences there exists with
an empirical pmf(py, po, ..., ps), Where p; is the portion of the sequence that is equal to
i€{1,2,...,6}.

b) Now, we were told that the portion of odd numbers in the sega is2/3 (i.e.,p; +p3 +ps =
2/3). For n very large, what is the most likely empirical pmf of the senge

Solution

a) Number of Combinations is given by:

n
n1naN3ngnsNe

n! (a)

n1!n2!n3!n4!n5!n6!



3

(=) .

()" () ()7 () ()7 ()"

Hence we get:

log N =nlogn —nqylogn, —nglogne — ... — nglogng =

6
T; 6 ) ng

— E nilog — = N a0 27 Zimimilog 5 —
n

i=1

gm0, MlogZi _ gnH(%L,%2 13 m 15 na) (b)

n

(a) Stirling’s Approximation.
(b) 5 = ¢.
(c) i.i.d.
The result is probable since the Typical Set and the set debgehe Law of Large Numbers
converge as the number of samples goes to Infinty.
b
) ny + ng + ns 2 2
——————— =P tptp=g
n 3 3
We would like to find{py, ps, p3, ps, ps, s} Which, under the given constraints Maximizes
Entropy. This results in the biggest Typical Set which metes event will be most likely.

Equivalently:
1 y4 2 b2 X 2
X = 3p3,Y: 4p4,Z: % i
5 Ds 6 pe 3
Next, creating an Indicator Auxiliary Variable:
7= 1 Z=X
0 Z=Y
Now, Maximizing the Entropy of7.
a 2 1 2
H(Z)Y H(Z,I)= HI) + HZ|I) = H(Z)+ 3H(Y) + SH(X)
@ H(Z,I)=H(Z)+ H(I|Z) = H(Z).
N——
Deterministic Given Z
Hence MaximizingH (Z) means Maximizingd (X ), H(Y).
As We've shown at class Uniform Distribution maximizes ©ply.
. 2 1
H(X), H(Y) ~ Uniform = pi, ps, ps = 9’ D2, P4, Pe = 9

4) For a Gaussian input in an additive channel, the worse noisesiGaussian. (30 points)

Fig. 1. Fig. 1. An additive channel



Prove, that for an additiv®” = X 4+ Z channel with Gaussian input, and power constraint
1 : .
~ E X? < P, with probability 1
n
=1

the worse noise with varaindé(Z) < N is a Gaussian noise. We use the following notation: when
a random variableX has a Gaussian distribution we denote it Xy.
In short, prove that fot” = X + Z, whereV(Z) < N

1 P
(X Y) > 3 log(1 + N) = I(X¢; Xe + Za),
whereZ; ~ N(0, N).
You can prove it on your own, or use the following steps

(a) Prove that for every € R,

I[(Xg;Y) > —log(2meP) — %log(QweE((XG —aY)?)),

DO | —

and justify your steps.

(b) Find sucha that minimize E((Xg — aY)?), i.e., Y is the best linear approximation df;
(hint: the orthogonality principle, or by differentiatipng

(c) Using the parameter you found, finish the question.

Conclude, what would you have done, as an adversary (sonvoo@ppose the communication,
and wants to block it), if you found out the encoder is usingaus$sian codebook?

Solution

The suggested solution is pretty straightforward.

There are 2 more approaches:

a) Using the Characteristic Function of a Normal Randomalde:
GivanY = X +Z, X ~ Normal, Z1X ThenY ~ Normal < Z ~ Normal.
The direction in whichZ ~ Normal is trivial sinceZ 1 X.
For the other direction we haveé ~ Normal. Examing its Characteristic Function:

oy (t) = F [eitY] — F [eit(X+Z):| @ E [eitX} E [eitZ] = E [eitZ] — FE [eitY} /E [eitX]
Now, one should recall that fak ~ N (1, 02) The C.F. ispx (t) = eith27"t*,
Which yields:

E [eitZ} - B [eitZ] - F [eitY] /E [eitX} _ ez‘t(uy—ux)_%(gy _sz)2t2
Which is the C.F. of a Normal Random Variable, Heri€e- N (uy — ux, oy? — ox?). The

resoning for that is simple. One could show that in order taimize the Mutual Information
the constrain or” would beY ~ Normal hence the proof holds.

(a) X, Y RV.st. X1Y <— §0X+y(t) = (px(t)(py(t)
b) Using Shannon Inequality (Entropy Power Inequality):

[(Xg + Z; X6) = h(Xe + Z) — h(Xe + Z|Xe) @ h(Xe + Z) — h(Z)
By Shannon Inequality (Entropy Power Inequality), f&rl Z:
22h(X+Z) > 22h(X) + 22h(Z)



92h(2)

Defining f(Z) = yields:

2me

log (22 4 92h(2)) _ p(7) =

WX+ 2) ~h(Z) > ]

%log((Qwe)P +2wef(Z)) — %log(Qwef(Z)) = %log(l + %)

Now, maximizing f(Z) minimizes I(X¢;Y'). By definition fo f(Z), maximizing it means
maximizingh(Z) under the Power constrain. As shown at class in order to doesoeed to
createZ ~ N(0, N).

Good Luck!



