

TREET: Transfer Entropy Estimation via Transformers

Omer Luxembourg, Dor Tsur, Prof. Haim Permuter

Introduction and Background

Transfer entropy (TE)

$$\mathsf{TE}_{X \to Y}(k, l) := \mathsf{I}\left(X^{l}; Y_{l} | Y_{l-k}^{l-1}\right)$$

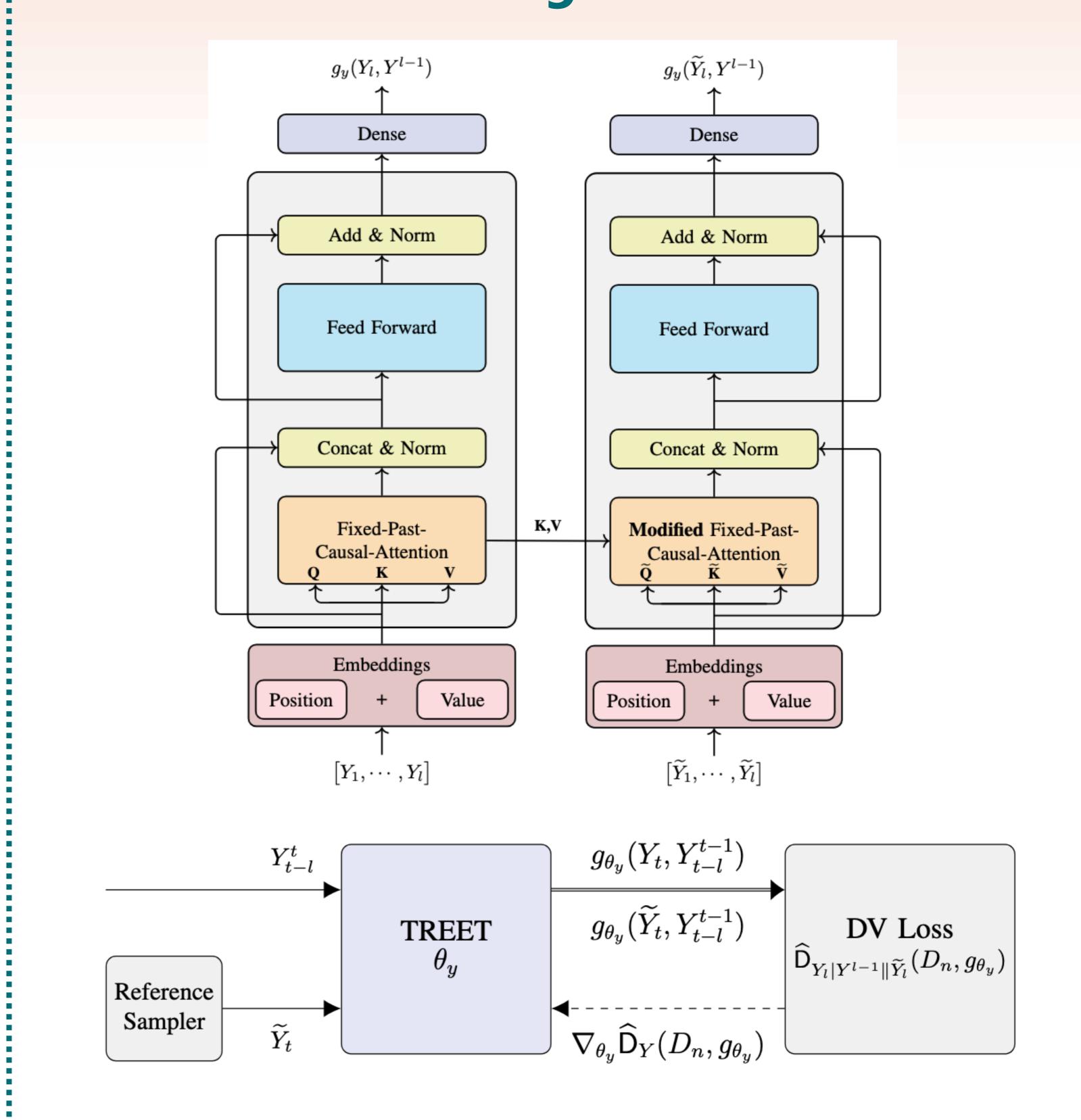
- **Applications** span neuroscience, embodied cognitive systems, social networks, and finance
- **Estimation challenges:** traditional methods suffer from TE estimation for long sequences.

Contributions

- TREET new estimator for TE with transformers.
- Various Applications TE estimation benchmark, capacity estimation, feature analysis, and probability density estimator.

Derivation

Donsker-Vardahan based variational formula,


$$\mathsf{D}_{\mathsf{KL}}(P||Q) = \sup_{f:\mathcal{X}\to\mathbb{R}} \mathbb{E}_{P}[f] - \log\left(\mathbb{E}_{Q}[e^{f}]\right)$$

• Unsupervised learning based on sequential data,

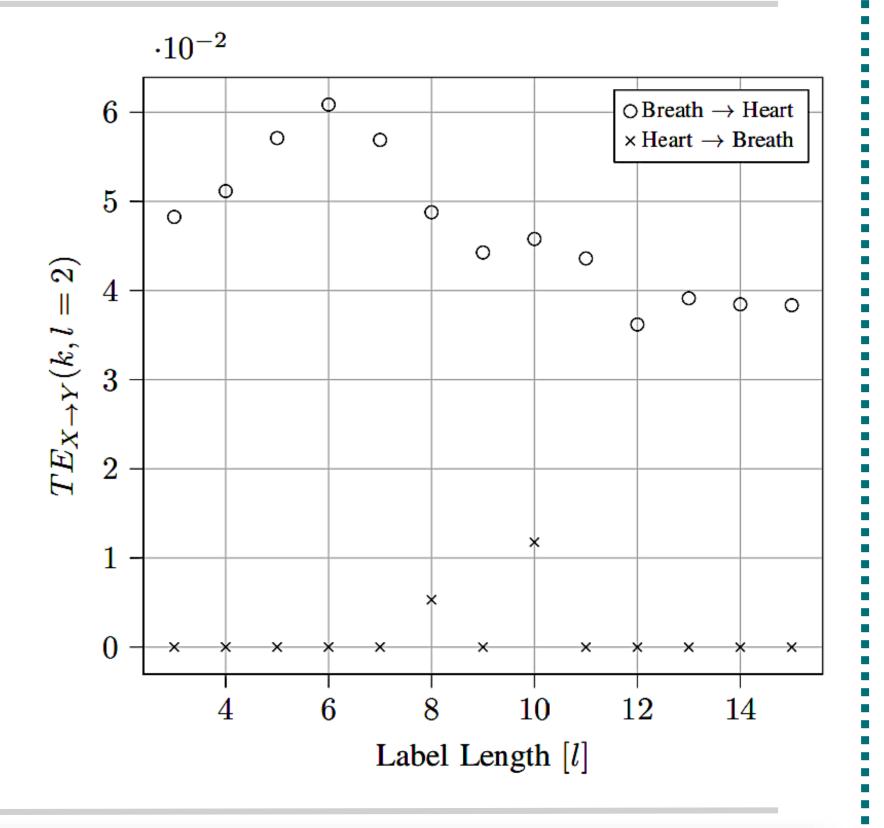
$$\widehat{\mathsf{TE}}_{X \to Y}(D_n; l) =$$

$$\sup_{g_{xy} \in \mathcal{G}_{\mathsf{ctf}}^{XY}} \widehat{\mathsf{D}}_{Y_l | Y^{l-1} X^l \| \widetilde{Y}_l}(D_n, g_{xy}) - \sup_{g_y \in \mathcal{G}_{\mathsf{ctf}}^Y} \widehat{\mathsf{D}}_{Y_l | Y^{l-1} \| \widetilde{Y}_l}(D_n, g_y)$$

Architecture and Algorithm

Results and Applications

TE Estimation Benchmark – TREET achieves stable and consistent results for all memory length \boldsymbol{l}


λ		-3	-2	-1	0	1	2	3
Model, l	Ground Truth	0.829	0.811	0.699	0.415	0.132	0.019	0.001
	1	0.812	0.792	0.667	0.395	0.126	0.016	0.0
	2	0.826	0.796	0.681	0.392	0.117	0.014	0
L	4	0.825	0.798	0.682	0.393	0.115	0.013	0
TREET	7	0.82	0.799	0.679	0.405	0.121	0.015	0.001
TR	9	0.815	0.802	0.686	0.403	0.126	0.017	0.001
	19	0.824	0.805	0.69	0.405	0.128	0.017	0.001
	49	0.829	0.811	0.694	0.409	0.128	0.018	0.001
	99	0.829	0.81	0.693	0.41	0.115	0.017	0.001
	1	0.823	0.807	0.696	0.416	0.126	0.014	0
	2	0.814	0.782	0.688	0.39	0.115	0.013	0
(-)	4	0.43	0.76	0.602	0.382	0.119	0.013	-0.001
TENE	7	>10	>10	0.698	0.354	0.09	0.013	0.0
Ξ	9	>10	>10	>10	0.359	0.091	0.014	0.0
	19	>10	>10	>10	1.796	0.038	0.021	0
	49	<-10.0	<-10.0	<-10.0	>10	0.027	0.01	-0.002
	99	>10	>10	>10	>10	0.102	-0.002	-0.002
	1	0.835	0.81	0.688	0.397	0.111	0.0	-0.022
	2	0.819	0.786	0.676	0.377	0.106	-0.004	-0.017
et	4	0.9	0.864	0.747	0.469	0.193	0.087	0.079
Copne	7	1.297	1.268	1.135	0.903	0.649	0.571	0.575
္ပိ	9	1.703	1.679	1.558	1.357	1.106	1.054	1.053
	19	4.862	4.834	4.75	4.574	4.431	4.428	4.432
	49	>10	>10	>10	>10	>10	>10	>10
	99	>10	>10	>10	>10	>10	>10	>10

TE Estimation and Optimization - channel capacity estimation of Gaussian moving average (GMA) with delay 100 - with sufficient context l, TREET is the best estimator.

	TREE	T	DINE		
l	Estimated capacity [nat]	Absolute error (%)	Estimated capacity [nat]	Absolute error (%)	
60	0.19	53	0.30	25	
70	0.29	29	0.35	15	
80	0.28	31	0.34	17	
90	0.29	28	0.30	26	
100	0.37	9	0.36	12	
110	0.38	7	0.33	20	
120	0.36	11	0.33	18	
130	0.36	11	0.34	17	
140	0.35	14	0.26	35	

Feature Analysis with TREET –

Sleep Apnea patients dataset feature analysis. TREET can identify the process that transfer most of the information. For Apnea patients, breathing is affecting the heart rate in contrast to healthy patients.

Continuous Time Probability Density Estimation with TREET – hidden Markov model (HMM) without (1) and with(2) state delay. As out-of-the-box estimator, TE is consistent probability estimator and robust for memory length interaction.

Model	Gaus	ssian	Uniform		
1110001	KLD	TV	KLD	TV	
Kalman	1.076	0.467	1.304	0.408	
KDE	1.135	0.608	0.847	0.417	
MDN	1.098	0.632	0.667	0.460	
DINE	0.795	0.525	0.475	0.291	
TREET	0.797	0.524	0.482	0.296	

-k	TREET		DINE		MDN		Kalman	
	KL	TV	KL	TV	KL	TV	KL	TV
2	0.933	0.569	0.934	0.570	1.460	0.708	0.636	0.405
5	1.036	0.601	0.875	0.556	1.454	0.707	1.284	0.599
10	0.984	0.585	1.299	0.662	1.450	0.706	1.239	0.603
15	0.992	0.587	1.441	0.704	1.448	0.707	1.232	0.602
25	0.993	0.587	1.451	0.706	1.443	0.704	1.196	0.598
50	0.993	0.589	1.452	0.707	1.453	0.707	<u>1.193</u>	0.597