october 25th, 2010

Lecture 3

Lecturer: Haim Permuter

Scribe: Iddo Naiss

I. RATE DISTORTION

As mentioned in the previous class, we have both the operational and the mathematical definition of the rate distortion. The operational definition is that given a distortion D, R(D) is the infimum of all achievable rates, where a rate R is achievable if there exists a sequence of codes such that the limit of the expected distortion is lesser than the distortion D. The mathematical definition is simply

$$R^{(I)}(D) = \min_{p(\hat{x}|x): E[d(\hat{X}, X)] \le D} I(X; \hat{X}).$$
(1)

Theorem 1 The operational definition R(D) is equal to $R^{(I)}(D)$.

Proof: The proof is divided to two parts. First, the converse: let R be an achievable rate with distortion D. Let us fix a code $(2^{nR}, n)$ with distortion D, i.e., $\frac{1}{n}E[d(X^n, \hat{X}^n(T))] \leq D$. Then

$$nR \ge H(T)$$

$$\stackrel{(a)}{\ge} I(X^{n};T)$$

$$\stackrel{(b)}{\ge} I(X^{n};T,\hat{X}^{n})$$

$$\ge I(X^{n};\hat{X}^{n})$$

$$= H(X^{n}) - H(X^{n}|\hat{X}^{n})$$

$$= \sum_{i=1}^{n} \left(H(X_{i}|X^{i-1}) - H(X_{i}|X^{i-1},\hat{X}_{n}) \right)$$

$$\stackrel{(c)}{\ge} \sum_{i=1}^{n} \left(H(X_{i}) - H(X_{i}|\hat{X}_{i}) \right)$$

$$= \sum_{i=1}^{n} I(X_{i};\hat{X}_{i}), \qquad (2)$$

where

- (a) follows from subtracting $H(T|X^n)$ or from the data processing inequality,
- (b) follow the fact that \hat{X}^n is a function of T which implies that $H(X^n|T) = H(X^n|T, \hat{X}^n)$.
- (c) Follows from the fact that X^n is i.i.d and the fact that conditioning reduces the entropy.

$$R \geq \frac{1}{n} \sum_{i=1}^{n} I(X_i; \hat{X}_i)$$

$$= I(X_Q; \hat{X}_Q | Q)$$

$$\stackrel{(a)}{=} I(X_Q; \hat{X}_Q, Q)$$

$$\stackrel{(b)}{\geq} I(X_Q; \hat{X}_Q)$$

$$\stackrel{(c)}{=} I(X, \hat{X}), \qquad (3)$$

where

- (a) follows from the fact that for all $q \in Q$, $p_{X_Q|Q} = p_{X|Q} = p_X = p_{X_Q}$, which implies that X_Q is independent of Q. In other words X_i is i.i.d and therefore X_Q is independent of Q.
- (b) follows from the fact that conditioning reduces entropy, and hence $H(X_Q|\hat{X}_Q, Q) \leq H(X_Q|\hat{X}_Q)$
- (c) follows from simply letting $X_Q = X$ and $\hat{X}_Q = \hat{X}$.
- As for the distortion,

$$E[d(X, \hat{X})] = E[d(X_Q, \hat{X}_Q)]$$

$$\stackrel{(a)}{=} E_Q \left[E[d(X_Q, \hat{X}_Q)|Q] \right]$$

$$= \frac{1}{n} \sum_{q=1}^n E[d(X_q, \hat{X}_q)]$$

$$= \frac{1}{n} E[d(X^n, \hat{X}^n)]$$

$$\stackrel{(b)}{\leq} D, \qquad (4)$$

where (a) is the smoothing property of the expectation, and (b) is due to the code construction. Therefore, we have $R(D) \ge R^{(I)}(D)$.

The next step is to show achievability of $R^{(I)}(D)$, and the theorem is proven.