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Lecture 2

Lecturer: Haim Permuter Scribe; Amit Toren and Liran Mishali

|. RATE DISTORTION

»  Encoder ———» f(X™) | Decoder ——»

Fig. 1. Communication system

Definition 1 (Distortion function.) A distortion function or distortion measure is a
mapping

d: X xX—>R* (1)
from the set of source alphabet-reproduction alphabet pato the set of

nonnegative real numbers. The distortif(, &) is a measure of the cost of representing

the symbol x by the symbat .

Definition 2 (Distortion Bound.) A distortion measure is said to be bounded if the

maximum value of the distortion is finite:

Az “ max d(z, ) < 0. (2)

TEX FEX

In most cases, the reproduction alphaets the same as the source alphalet

Example 1 : Examples of common distortion function are:

d(X;, XZ) =X, X, — Hamming Distance

d(Xi, Xz) = (X; — )A(z)Q — Mean Square Error
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Definition 3 (Distortion between sequences)he distortion between sequencésand

2" is defined by:

D(X" Xn) =~ Zd 5 (X)) (3)

Hence, the distortion for a sequence is the average of theywmebol distortion of the
elements of the sequence.
Definition 4 ((2"%,n)-rate distortion code) A (2", n)-rate distortion code consists of:
« Encoder:f(X"): X" — (1,2,3,,,2"%)
. Decoder:g(f(X™)): (1,2,3,,,2"F) — X"
The distortion associated with th&"? n) code is defined asE[D(X", X")] =
Ly Bld(X, X))
Definition 5 (Achivable Rate.) A rate distortion pair( R, D) is achivable if there exists
a sequence ofn, 2"F) codes s.t lim,, s E[D(X™, X" < D
Definition 6 (Rate Distortion function R(D)) Given a distortionD, rate distortion

function R(D) is the infimum of all achievable rates with Distortidn

Definition 7 (Distortion Rate function D(R)) Given a rateR, thedistortion rate func-
tion D(R) is the infimum of all distortionD such that(R, D) is in the rate distortion

region.

Let us define the mathematical measi#é' (D) as

R(D)Y) = min I(X;X), 4
(D) p(&|):E(d(z,2)) <D ( ) “)

where the minimization is over all conditional distribut®P(z|x) for which the joint

distribution P(z, &) = P(x)P(z|x) satisfies the expected distortion constrained.

Theorem 1 The rate distortion function function an i.i.d. sour&e~ Px and bounded

distortion functiond(zx, ) is equal to

R(D) = RY(D) = min I(X:; X 5
(D) (D) ,,@;@):zwp@)p(m)d(m,@gg( ) ®)
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A. CALCULATION OF THE RATE DISTORTION FUNCTION

1) Binary Source:

Theorem 2 (The rate distortion function for a Bernoulli(p) source hiHamming

distortion)
X~Ber(p) p< 1,D <}
dX;, X)) =X, ® &
R(D) =?
Proof
o) — |H@=HD) p>D

If D=0 X; =X, = R=Hyp)

A

I(X:X) = H(X)-H(X|X)
= H(X)— H(X® X;|X)
> H(X)- H(X® X))

Hy(p) — Ho(D)

We demand E[d(Xi,X'i)] <D , P[X;® X, = 11<D
We will achive it with:

X v Ber(p), X=X®Z, ZwBer(p), ZLX

I(X;X) = H(X)-H(X|X)
= H(X)— H(X® X,;|X)
> H(X)—-H(Z)

Hy(p) — Hy(D)
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Fig. 2. Rate distortion function for a Bernoull}f source.

Theorem 3 (The rate distortion function for aV(0,0?) source with squred-error

distortion)

2

logs 0<D<o?

1
2 D

0 D > o2

R(D) =

Proof : Let X be— N(0,0?).By the rate distortion theorem extended to continuous

alphabets, we have

R(D) = min 1(X;X). (6)
f(&|z):E(X—X)2<D

First we should find the lower bound for the rate distortiondtion and prove that this

is achievable.

I(X:X) = h(X)—hX|X)

1 A
=3 log(2me)o? — h(X — X|X)
1 .
> 5 log(2me)o? — h(X — X)
1 .
> 3 log(2me)o? — h(N(0, BE(X — X)?))
1

1 .
= —log(2me)o? — 5 log(2me) B(X — X)?

1
log(2me)o? — 5 log(2me) D

[\

g

1 _
OgD

N~ N~ DN
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Conclution:

(7)

If D < o2 we choose

X=X+2XwN(0,02-D),Z~N(0,D)

where X and Z are independent. For this joint distribution, we claitzi

- 1 o?
and £(X — X)? = D, thus achieving the bound.lp > o2, we chooseX = 0 with
probability 1, achievingk(D) = 0. Hence, the rate distortion function for the Gaussian

source with squared-error distortion is

log %2 0 <D< ¢?

R(D) =
0 D> o2

We can rewriteR(D) as D(R) : D(R) = 0%272%,

R(D)

Fig. 3. Rate distortion function for a Gaussian source.

[I. STRONG TYPICALITY SET

We define Weak Typicality set agieak typicality)

A = {x" IV ’—%logP(m") — H(X)’ < e} . 9)

€
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The expresionV(a|X™) = is defined as the number of appearances of symbol a in the

sequenceX™”
Example:X™ = 01011110=> N(0|X") =3, N(1|X") =5

Definition 8 (Strong Typicality) A sequence:™ € X" is said to be: — strongly typical
with respect to a distributio®(z) on X’ if:
. For all ac X with Px(a) > 0, we have:
N(alX™
N(alX™) Px(a)| < . (10)

n X

. Foralla € X with Px(a) =0, N(a|X") = 0.

Lemma 1 For X ~ i.i.d. and the expression% if we take n— oo then we get:
N(a|X™
NElX") -, py(a)
n
Proof:
N(a|X™) =) 1a(xs) (11)
=1
1 Xz =a
1,(X;) = (12)
0 Xz 7£ a

By the Law of large numbers , for any> 0, ¢ > 0 dn s.t

Pr('W—PX(a) <e) >1-96

Theorem 4 The typical setA” has the following propertires
1) If 2" € A" (z) then:

H(X)— 6 < —%logP(x") <H(X)+a (13)

2) For alld > 0 existsn sufficiently large s.Pr(X" € T\ (z)) > 1 -6
3) on(H@)—e) < ’Te(n) (x))’ < on(H(@)ter)
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Proof (1):

1 Xeiid 1 &
__1 Px Xn i __1 Px Xn
~log Po(X") log [T P(x7)

=1
= —%Z?:l log P,.(X™)
= S N(alX") log P (X7)
Example 2 For the series{™ = 0001011 with probabilities:p(0) = 1,p(1) = 2
N(O|X™) = 4, N(1|X") = 3
Instead of summingog 1 + log 1 +log 1 +log 2 + log1......

We will multiply the number of zeroes and ones in the the gpomded entropy

1 3 1
N(OJX")log 7+ N(1X")log 7 = |=H(X) = ~log P,(X")
n

1
= EaEXPx<a) long(a) - glong<Xn>

N(al X"
= BP0 = X g b 0)
€
< mzan |log Py (a)| = &
Definition 9 (Joint Typical Set)
N(a,b|X™ Y™) ' €
TMW(X,Y) = {X",Y": ————— — Py(a,b)| < } (14)
If P,,(a,b) =0, N(a,b|X",Y") =0
Definition 10 (Conditional strongly typical set)
Let Y™ € T\ (Y) then:
T(X|Y™) = {X": (X", Y") e T™(X,Y)} (15)
T(X]Y™)]| = 2 )
TY|X™") ={Y": (Y", X") e T"(X,Y)} (16)

IT(Y|X)] = 20101

T(X,Y)| = 2200 | T 2 (X [Y)| = 277 17



