
1st Semester 2010/11

Solutions to Homework Set #3

Broadcast channel, Marton’s region, Semi-deterministic BC

1. Degraded Erasure Broadcast Channel. Consider the following
degraded broadcast channel.
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(a) What is the capacity of the channel from X to Y1?

(b) From X to Y2?

(c) What is the capacity region of all (R1, R2) achievable for this
broadcast channel? Simplify and sketch.

Solution to Degraded Erasure Broadcast Channel

(a) The channel from X to Y1 is a standard erasure channel with
probability of erasure = α1, and hence the capacity is 1− α1

(b) We can show that the effective channel from X to Y2 is a binary
erasure channel with erasure probability α1+α2−α1α2, and hence
the capacity is 1− α1 − α2 + α1α2 = (1− α1)(1− α2)

(c) As in Problem 15.13, the auxiliary random variable U in the ca-
pacity region of the broadcast channel has to be binary. Hence we
have the following picture

We can now evaluate the capacity region for this choice of auxiliary
random variable. By symmetry, the best distribution for U is the
uniform. Let α = α1+α2−α1α2, and therefore 1−α = α = α1α2.
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Figure 1: Broadcast channel with auxiliary random variable

Hence

R2 = I(U ; Y2) (1)

= H(Y2)−H(Y2|U) (2)

= H

(

α

2
, α,

α

2

)

−H((βα1α2, α1 + α1α2, βα1α2) (3)

= H(α) + αH

(

1

2

)

−H(α)− αH(β, β) (4)

= α(1−H(β)). (5)

Also

R1 = I(X ; Y1|U) (6)

= H(Y1|U)−H(Y1|U,X) (7)

= H(βα1, α1, βα1)−H(α1) (8)

= α1H(β) +H(α1)−H(α1) (9)

= α1H(β) (10)

These two equations characterize the boundary of the capacity
region as β varies. When β = 0, then R1 = 0 and R2 = α. When
β = 1

2
, we have R1 = α1 and R2 = 0.

2. Deterministic broadcast channel.

A deterministic broadcast channel is defined by an input X , two out-
puts, Y1 and Y2 which are functions of the input X . Thus Y1 = f1(X)
and Y2 = f2(X). Let R1 and R2 be the rates at which information can
be sent to the two receivers.
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• Prove that

R1 ≤ H(Y1) (11)

R2 ≤ H(Y2) (12)

R1 +R2 ≤ H(Y1, Y2) (13)

• Suggest what would be the capacity region of the deterministic
broadcast channel.

• Prove the achievability of the region you have suggested. (Hint:
you may use Marton achievable region.)

Solution to Deterministic broadcast channel.

The solution is divided to two parts; Converse and achievability. The
achievability proof is given using the Marton region. We begin with
the converse. First, we show that R1 ≤ H(Y1).

nR1 = H(W1)

≤ I(W1; Y
n
1 ) + nǫn

≤ H(Y n
1 ) + nǫn

=

n
∑

i=1

H(Y1,i|Y
i−1
1 ) + nǫn

≤

n
∑

i=1

H(Y1,i) + nǫn

(a)
= nH(Y1,Q|Q) + nǫn

≤ nH(Y1,Q) + nǫn
(b)
= nH(Y1) + nǫn,

where (a) follows from the definition of Q ∼ U{1, 2, ..., n}, and (b)
follows from the definition of Y1 = Y1,Q. In much the same way we
obtain the inequality for R2, i.e., R2 ≤ H(Y2).
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As for the sum rate,

n(R1 +R2) = H(W1,W2)

≤ I(W1,W2; Y
n
1 , Y

n
2 ) + nǫn

≤ H(Y n
1 , Y

n
2 ) + nǫn

≤
n

∑

i=1

H(Y1,i, Y2,i) + nǫn

= nH(Y1,Q, Y2,Q|Q) + nǫn

≤ nH(Y1,Q, Y2,Q) + nǫn
(a)
= nH(Y1, Y2) + nǫn,

where (a) follows from the definition of Y1, Y2 as in the previous part.

The achievability proof is given using the Marton region, where U1 = Y1

and U2 = Y2. Hence,

R1 ≤ I(Y1, Y1) = (Y1)

R2 ≤ I(Y2; Y2) = H(Y2)

R1 +R2 ≤ I(Y1; Y1) + I(Y2; Y2) + I(Y2; Y1)

= H(Y1) +H(Y2)− I(Y2; Y1)

= H(Y1, Y2),

and the region given above is achievable.

3. Semi-Deterministic broadcast channel.

A semi deterministic broadcast channel is defined by an input X , two
outputs, Y1 and Y2 where Y1 is function of the inputX , i.e., Y1 = f1(X),
and Y2 is determined by a memoryless channel PY2|X . Let R1 and R2

be the rates at which information can be sent to the two receivers.

Prove that the capacity region is the set of R1, R2 that satisfies

R1 ≤ H(Y1) (14)

R2 ≤ I(U ; Y2) (15)

R1 +R2 ≤ I(U ; Y2) +H(Y1|U) (16)

Solution to Semi-Deterministic broadcast channel.
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The solution is divided to two parts; Converse and achievability. The
achievability proof is given using the Marton region. We begin with
the converse. First, as in (2), it is clear that R1 ≤ H(Y1). Now,

nR2 ≤ I(Y n
2 ;W2) + nǫn

=
n

∑

i=1

[

H(Y2,i|Y
i−1
2 )−H(Y2,i|Y

i−1
2 ,W2)

]

+ nǫn

≤

n
∑

i=1

[

H(Y2,i)−H(Y2,i|Y
n
1,(i+1), Y

i−1
2 ,W2)

]

+ nǫn

(a)
=

n
∑

i=1

[H(Y2,i)−H(Y2,i|Ui)] + nǫn

=

n
∑

i=1

I(Y2,i;Ui) + nǫn

(b)
= nI(Y2,Q;UQ|Q) + nǫn

≤ nI(Y2,Q;UQ, Q) + nǫn
(c)

≤ nI(Y2;U) + nǫn,

where (a) follows from the definition for Ui = {Y n
1,(i+1), Y

i−1
2 ,W2}, (b)

follows from the definition of Q be a uniformed distributed random
variable Q ∼ U{1, 2, ..., n}, and (c) follows from the definition of Y2 =
Y2,Q and U = {UQ, Q}.
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As for the sum rate,

n(R1 +R2) ≤ I(Y n
1 , Y

n
2 ;W1,W2) + nǫn

(a)
= I(Y n

2 ;W1,W2) + I(Y n
1 ;W1,W2|Y

n
2 ) + nǫn

(b)

≤ I(Y n
2 ;W2) + I(Y n

1 ;W2|Y
n
2 ) + I(Y n

1 ;W1|Y
n
2 ,W2) + nǫn

≤ nI(Y2, U) +H(W2|Y
n
2 ) +H(Y n

1 |Y
n
2 ,W2) + nǫn

≤ nI(Y2, U) +

1
∑

i=n

H(Y1,i|Y
n
1,(i+1), Y

n
2 ,W2) + nǫn

(c)

≤ nI(Y2, U) +

1
∑

i=n

H(Y1,i|Y
n
1,(i+1), Y

i−1
2 ,W2) + nǫn

= nI(Y2, U) +
1

∑

i=n

H(Y1,i|Ui) + nǫn

= nI(Y2, U) + nH(Y1,Q|UQ, Q) + nǫn

= nI(Y2, U) + nH(Y1, U) + nǫn,

where (a) follows from the mutual information chain rule, (b) follows
from the mutual information chain rule as well as removing W1 from the
conditioning in the first term, (c) follows from removing Y n

2,i from the
conditioning in the sum, and we use the definitions above to complete
the proof.

Thus, we showed that an upper bound to the rate region is the one
given in the question, i.e.,

R1 ≤ H(Y1)

R2 ≤ I(Y2;U)

R1 +R2 ≤ I(Y2;U) +H(Y1|U).

The achievability proof is given using the Marton region, where U1 = Y1
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and U2 = U . Hence,

R1 ≤ I(Y1, Y1) = (Y1)

R2 ≤ I(U ; Y2)

R1 +R2 ≤ I(Y1; Y1) + I(U ; Y2) + I(U ; Y1)

= H(Y1)− I(U ; Y1) + I(U ; Y2)

= H(Y1|U) + I(U ; Y2),

and the region given above is achievable.

4. Mutual Covering Lemma: Prove the following result.

Let (U1, U2) ∼ p(u1, u2) and ǫ > 0. Let Un
1 (m1), m1 ∈ [1, ..., 2nr1],

be pairwise independent random sequences, each distributed accord-
ing to

∏

i=1 PU1(u1,i). Similarly, Let Un
2 (m2), m2 ∈ [1, ..., 2nr2], be

pairwise independent random sequences, each distributed according to
∏

i=1 PU2(u2,i). Assume that Un
1 (m1) : m1 ∈ [1, ..., 2nr1] and Un

2 (m2) : m2 ∈ [1, ..., 2nr2]
are independent.

Then, there exists δ(ǫ) that goes to 0 as ǫ → 0 such that if

r1 + r2 > I(U1;U2) + δ(ǫ), (17)

then

lim
n=∞

Pr{(Un
1 (m1), U

n
2 (m1)) /∈ T (n)

ǫ (U1, U2) ∀m1 ∈ [1, ..., 2nr1], m2 ∈ [1, ..., 2nr2]} = 0

(18)

In addition to the prove, please explain, how it extends the covering
lemma.

Solution to Mutual Covering Lemma

The solution to the mutual covering lemma is closely related to the
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regular covering lemma.

Pr{∀m1, m2 : (U
n1(m1), U

n
2 (m1)) /∈ T (n)

ǫ (U1, U2)}

(a)
=

(2nr1 ,2nr2 )
∏

(m1,m2)=(1,1)

Pr{(Un
1 (m1), U

n
2 (m1)) /∈ T (n)

ǫ (U1, U2)}

(b)

≤

(2nr1 ,2nr2 )
∏

(m1,m2)=(1,1)

(

1− 2−n(I(U1,U2)+ǫ)
)

=
(

1− 2−n(I(U1,U2)+ǫ)
)2n(r1+r2)

(c)

≤ exp{−2n(r1+r2−I(U1,U2)−ǫ)} −−−−−−−−−−−−→
r1+r2>I(U1,U2), n→∞

0,

where (a) follows from the messages m1, m2 be independent, and (b)
follows from the fact that the probability of two independent sequences
un
1 , u

n
2 to be jointly typical is 2−n(I(U1,U2)+ǫ). (c) follows from the in-

equality (1− y)n ≤ exp{−yn}.

The extension is given by the fact that now we do not limit our selves
to one sequence un

1 , i.e., r1 = 0. In the covering lemma, where r1 = 0,
we need at least r2 > I(U1, U2) sequences from un

2 to be sure that one of
them is jointly typical. Now, we ask for the size of a group containing
sequences of {un

1 , u
n
2} such that a pair is jointly typical. Evidently, we

need the size to be at least 2nI(U1,U2), much like in the regular covering
lemma for r1 = 0.
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