
1st Semester 2010/11

Solutions to Homework Set #2

Broadcast channel, degraded message set, Csiszar Sum Equality

1. Convexity of capacity region of broadcast channel. Let C ⊆ R2

be the capacity region of all achievable rate pairs R = (R1, R2) for the
broadcast channel. Show that C is a convex set by using a timesharing
argument.

Specifically, show that if R(1) and R(2) are achievable, then λR(1) +
(1− λ)R(2) is achievable for 0 ≤ λ ≤ 1.

Solution to Convexity of Capacity Regions.

Let R(1) and R(2) be two achievable rate pairs. Then there exist a se-

quence of ((2nR
(1)
1 , 2nR

(1)
2 ), n) codes and a sequence of ((2nR

(2)
1 , 2nR

(2)
2 ), n)

codes for the channel with P
(n)
e (1) → 0 and P

(n)
e (2) → 0. We will now

construct a code of rate λR(1) + (1− λ)R(2).

For a code length n, use the concatenation of the codebook of length λn

and rate R(1) and the code of length (1− λ)n and rate R(2). The new
codebook consists of all pairs of codewords and hence the number of X1

codewords is 2λnR
(1)
1 2(1−λ)nR

(2)
1 , and hence the rate is λR

(1)
1 +(1−λ)R

(2)
1 .

Similarly the rate of the X2 codeword is λR
(1)
2 + (1− λ)R

(2)
2 .

We will now show that the probability of error for this sequence of
codes goes to zero. The decoding rule for the concatenated code is just
the combination of the decoding rule for the parts of the code. Hence
the probability of error for the combined codeword is less than the sum
of the probabilities for each part. For the combined code,

P (n)
e ≤ P (λn)

e (1) + P ((1−λ)n)
e (2) (1)

which goes to 0 as n → ∞. Hence the overall probability of error goes
to 0, which implies the λR(1) + (1− λ)R(2) is achievable.
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2. Joint typicality Let xn, yn be jointly strong-typical i.e., (xn, yn) ∈

T
(n)
ǫ (X, Y ), and let Zn be distributed according to

∏n

i=1 pZ|X(zi|xi)

(instead of pZ|X,Y (zi|xi, yi)). Then, P{(xn, yn, Zn) ∈ T
(n)
ǫ (X, Y, Z)} ≤

2−n(I(Y ;Z|X)−δ(ǫ)), where δ(ǫ) → 0 when ǫ → 0.

Solution to Joint typicality.

Since (xn, xn) ∈ T
(n)
ǫ (X, Y ) and Zn ∼

∏n

i=1 pZ|X(zi|xi) then if p(xn, yn) =
∏n

i=1 p(xi, yi) results in p(xn, yn, zn) = p{(xn)p(zn|xn)p(yn|xn).

p[(xn, yn, zn) ∈ T (n)
ǫ (X, Y, Z)] (2)

=
∑

(xn,yn,zn)∈T
(n)
ǫ (X,Y,Z)

p(xn, yn, zn) (3)

=
∑

(xn,yn,zn)∈T
(n)
ǫ (X,Y,Z)

p(xn)p(zn|xn)p(yn|xn) (4)

≤
∑

(xn,yn,zn)∈T
(n)
ǫ (X,Y,Z)

2−n(H(X)−ǫ)2−n(H(Y |X)−ǫ)2−n(H(Z|X)−ǫ)

(5)

≤ 2n(H(X,Y,Z)+ǫ)2−n(H(X)+H(Z|X)+H(Y |X)−3ǫ) (6)

= 2n(H(Y,Z|X)−H(Y |X)−H(Z|X)+4ǫ) (7)

= 2n(H(Y,Z|X)−H(Y |X)+4ǫ) (8)

= 2−n(I(Y ;Z|X)−δ(ǫ)) (9)

Note: p(zn|xn) ≤ 2−n(H(Z|X)−ǫ). (see Cover, page 522.)

3. Broadcast capacity depends only on the conditional marginals.

Consider the general broadcast channel (X, Y1×Y2, p(y1, y2 | x)). Show
that the capacity region depends only on p(y1 | x) and p(y2 | x). To do
this, for any given ((2nR1, 2nR2), n) code, let

P
(n)
1 = P{Ŵ1(Y1) 6= W1}, (10)

P
(n)
2 = P{Ŵ2(Y2) 6= W2}, (11)

P (n) = P{(Ŵ1, Ŵ2) 6= (W1,W2)}. (12)

Then show
max{P

(n)
1 , P

(n)
2 } ≤ P (n) ≤ P

(n)
1 + P

(n)
2 .
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The result now follows by a simple argument.

Remark: The probability of error P (n) does depend on the conditional
joint distribution p(y1, y2 | x). But whether or not P (n) can be driven
to zero (at rates (R1, R2)) does not (except through the conditional
marginals p(y1 | x), p(y2 | x)).

Solution to Broadcast channel capacity depends only on con-

ditional marginals

P
(n)
1 = P (Ŵ1(Y1) 6= W1) (13)

P
(n)
2 = P (Ŵ2(Y2) 6= W2) (14)

P (n) = P ((Ŵ1(Y1), Ŵ2(Y2)) 6= (W1,W2)) (15)

Then by the union of events bound, it is obvious that

P (n) ≤ P
(n)
1 + P

(n)
2 . (16)

Also since (Ŵ1(Y1) 6= W1) or (Ŵ2(Y2) 6= W2) implies ((Ŵ1(Y1), Ŵ2(Y2)) 6=
(W1,W2)), we have

P (n) ≥ max{P
(n)
1 , P

(n)
2 }. (17)

Hence P (n) → 0 iff P
(n)
1 → 0 and P

(n)
2 → 0.

The probability of error, P (n), for a broadcast channel does depend on
the joint conditional distribution. However, the individual probabilities
of error P

(n)
1 and P

(n)
2 however depend only on the conditional marginal

distributions p(y1|x) and p(y2|x) respectively. Hence if we have a se-
quence of codes for a particular broadcast channel with P (n) → 0, so
that P

(n)
1 → 0 and P

(n)
2 → 0, then using the same codes for another

broadcast channel with the same conditional marginals will ensure that
P (n) for that channel as well, and the corresponding rate pair is achiev-
able for the second channel. Hence the capacity region for a broadcast
channel depends only on the conditional marginals.

4. Degraded broadcast channel. Find the capacity region for the de-
graded broadcast channel in Figure 1.

Degraded broadcast channel. From the expression for the capacity re-
gion, it is clear that the only on trivial possibility for the auxiliary ran-
dom variable U is that it be binary. From the symmetry of the problem,
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Figure 1: Broadcast channel with a binary symmetric channel and an erasure
channel

we see that the auxiliary random variable should be connected to X

by a binary symmetric channel with parameter β.

Hence we have the setup as shown in Figure 2.
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Figure 2: Broadcast channel with auxiliary random variable

We can now evaluate the capacity region for this choice of auxiliary ran-
dom variable. By symmetry, the best distribution for U is the uniform.
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Hence

R2 = I(U ; Y2) (18)

= H(Y2)−H(Y2|U) (19)

= H

(

α

2
, α,

α

2

)

−H((βp+ βp)α, α, (βp+ βp)α) (20)

= H(α) + αH

(

1

2

)

−H(α)− αH(βp+ βp) (21)

= α(1−H(βp+ βp)). (22)

Also

R1 = I(X ; Y1|U) (23)

= H(Y1|U)−H(Y1|U,X) (24)

= H(βp+ βp)−H(p). (25)

These two equations characterize the boundary of the capacity region
as β varies. When β = 0, then R1 = 0 and R2 = α(1 −H(p)). When
β = 1

2
, we have R1 = 1−H(p) and R2 = 0.

5. Csiszar Sum Equality. Let Xn and Y n be two random vectors with
arbitrary joint probability distribution. Show that:

n
∑

i=1

I(Xn
i+1; Yi|Y

i−1) =

n
∑

i=1

I(Y i−1;Xi|X
n
i+1) (26)

As we shall see this inequality is useful in proving converses to several
multiple user channels. (Hint: You can prove this by induction or by
expanding the terms on both sides using the chain rule.)

Solution: Csiszar Sum Equality.
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n
∑

i=1

I(Xn
i+1; Yi|Y

i−1) =
n

∑

i=1

n
∑

j=i+1

I(Xj ; Yi|Y
i−1, Xn

j+1)

=

n
∑

j=2

j−1
∑

i=1

I(Xj; Yi|Y
i−1, Xn

j+1)

=
n

∑

j=2

I(Xj ; Y
j−1|Xn

j+1)

=

n
∑

j=1

I(Xj ; Y
j−1|Xn

j+1)

=
n

∑

i=1

I(Y i−1;Xi|X
n
i+1)

where the first and third equalities follow from chain rule, and the
second equality follows from switching of the summations.

6. Broadcast Channel with Degraded Message Sets. Consider a
general DM broadcast channel (X ; p(y1, y2|x);Y1;Y2). The sender X

encodes two messages (W0;W1) uniformly distributed over {1, 2..., 2nR0}
and {1, 2, ...2nR1}. Message W0 is to be sent to both receivers, while
message W1 is only intended for receiver Y1.

The capacity region is given by the set C of all (R0;R1) such that:

R0 ≤ I(U ; Y2) (27)

R1 ≤ I(X ; Y1|U) (28)

R0 +R1 ≤ I(X ; Y1) (29)

for some p(u)p(x|u).

(a) Show that the set C is convex.

(b) Provide the achievability proof

(c) Provide a converse proof. You may derive your own converse or
use the steps below.
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• An alternative characterization of the capacity region is the
set C′ of all (R0, R1) such that:

R0 ≤ min{I(U ; Y1); I(U ; Y2)} (30)

R0 +R1 ≤ min{I(X ; Y1); I(X ; Y1|U) + I(U ; Y2)} (31)

for some p(u)p(x|u). Show that C = C′.

• Define Ui = (W0; Y
i−1
1 , Y n

2,i+1). Show that

n(R0 +R1) ≤
n

∑

i=1

(I(Xi; Y1,i|Ui) + I(Ui; Y2,i)) + nǫn (32)

using the steps

n(R0 +R1) ≤ I(W1; Y
n
1 |W0) + I(W0; Y

n
2 ) + nǫn

≤

n
∑

i=1

I(Xi; Y1,i|Ui) + I(Y n
2,i+1; Y1,i|W0.Y

i−1
1 )

+I(Ui; Y2,i)− I(Y i−1
1 ; Y2,i|W0, Y

n
2,(i+1)) + nǫn.

(33)

Then use the identity from previous exercise to cancel the
second and fourth terms.
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Solution: Broadcast Channel with Degraded Message Sets.

1. Convex proof.

To show that the set C is convex is suffices to show that for any random
variable Q s.t. Q → (U,X) → (Y1, Y2) form a Markov chain, any rate
pair (R0, R1) s.t.:

R0 ≤ I(U ; Y2|Q), (34)

R1 ≤ I(X ; Y1|U,Q), (35)

R0 +R1 ≤ I(X ; Y1|Q), (36)

is in C. To show this, define U
′

= (Q,U). Then U
′

→ X → (Y1, Y2)
form a Markov chain, and

R0 ≤ I(U ; Y2|Q) ≤ I(U
′

; Y2), (37)

R1 ≤ I(X ; Y1|U,Q) ≤ I(X ; Y1;U
′

), (38)

R0 +R1 ≤ I(X ; Y1|Q) ≤ I(X ; Y1), (39)

This completes the proof of convexity

2. The achieveability proof

The proof of achievability of C uses superposition coding and is identical
to the proof of achievability for degraded broadcast channel.

First generate 2nR0 codewords un(w0) according to p(un) =
∏n

i=1 p(u1).
For each codeword un(w0), generate 2

nR1 codewords xn(w0, w1) accord-
ing to

∏n

i=1 p(xi|ui(w0)). To send the pair (w0, w1), send the corre-
sponding codeword xn(w0, w1).

At the receiver side, receiver 2 decodes W0 with arbitrarily small prob-
ability of error if R0 ≤ I(U ; Y2) and receiver 1 decodes W0,W1 with
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arbitrarily small probability of error if R0 + R1 < I(X ; Y1) and R1 <

I(X ; Y1|U). Thus, P n
e → 0 if

R0 ≤ I(U ; Y2), (40)

R1 ≤ I(X ; Y1|U), (41)

R0 +R1 ≤ I(X ; Y1), (42)

3. Converse proof.

Step 1

The converse in the following section proves that C ⊆ C
′

. To show that
C

′

⊆ C it suffices to show that any point on the boundary of C
′

is in C.

Consider any point on the boundary of C
′

, i.e., any point s.t.:

R0 ≤ min{I(U ; Y1); I(U ; Y2)} (43)

R0 +R1 ≤ min{I(X ; Y1), I(X ; Y1|U) + I(U ; Y2)} (44)

Clearly R0 ≤ I(U ; Y2) and R0 +R1 ≤ I(X ; Y1). Now, if R0 = I(U ; Y2),
then R1 = min {I (X ; Y1)− I (U ; Y2) , I(X ; Y1|U)} ≤ I(X ; Y1|U). If on
the other hand R0 = I(U ; Y1), then
R1 = min {I (X ; Y1|U) , I(X ; Y1|U) + I(U ; Y2)− I(U, Y1)} ≤ I(X ; Y1|U).
Thus, C

′

= C.

Step 1

nR0 = H(W0) (45)

≤ I(W0; Y
n
1 ) + nǫn (46)

= H(Y n
1 )−H(Y n

1 |W0) + nǫn (47)

≤

n
∑

i=1

(

H(Y1i)−H(Y1i|W0, Y
i−1
1 )

)

+ nǫn (48)

=
n

∑

i=1

(

H(Y1i)−H(Y1i|W0, Y
i−1
1 , Y n

2(i+1))
)

+ nǫn (49)

≤
n

∑

i=1

(H(Y1i)−H(Y1i|U1)) + nǫn (50)

=

n
∑

i=1

I(Ui; Y1i) + nǫ (51)
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Similarly, it can be shown that nR0 ≤
∑n

i=1 I(Ui; Y2i) + nǫn. Now,
consider

n(R0 +R1) = H(W0,W1) (52)

≤ I(W0,W1; Y
n
1 ) + nǫn (53)

≤ I(Xn; Y n
1 ) + nǫn (54)

= H (Y n
1 )−H(Y n

1 |X
n) + nǫn (55)

≤
n

∑

i=1

(H(Y1i)−H(Y1i|Xi)) + nǫn (56)

=

n
∑

i=1

I(Xi; Y1i) + nǫn. (57)
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Finally, consider

n(R0 +R1) = H(W0) +H(W1) (58)

= H(W1|W0) +H(W0) (59)

≤ I(W1; Y
n
1 |W0) + I(W0; Y

n
2 ) + 2nǫn (60)

=

n
∑

i=1

I(W1; Y1i|W0, Y
i−1
1 ) + I(W0; Y2i|Y

n
2(i+1)) + 2nǫn (61)

≤
n

∑

i=1

I(W1, Y
n
2(i+1); Y1i|W0, Y

i−1
1 ) + I(W0, Y

n
2(i+1); Y2i) + 2nǫn

(62)

=

n
∑

i=1

I(Y n
2(i+1); Y1i|W0, Y

i−1
1 ) + I(W1; Y1i|W0, Y

i−1
1 , Y n

2(i+1))

(63)

+ I(W0; Y
n
2(i+1); Y2i) (64)

+ I(Y i−1
1 ; Y2i|W0, Y

n
2(i+1))− I(Y i−1

1 ; Y2i|W0, Y
n
2(i+1)) + 2nǫn

(65)

=
n

∑

i=1

I(Y n
2(i+1); Y1i|W0, Y

i−1
1 ) + I(W1; Y1i|Ui) (66)

+ I(W0, Y
i−1
1 , Y n

2(i+1); Y2i)− I(Y i−1
1 ; Y2i|W0, Y

n
2(i+1)) + 2nǫn

(67)

=
n

∑

i=1

I(Y n
2(i+1); Y1i|W0, Y

i−1
1 ) + I(Xi; Y1i|Ui) (68)

+ I(Ui; Y2i)− I(Y i−1
i ; Y2i|Wo, Y

n
2(i+1)) + 2nǫn (69)

=
n

∑

i=1

I(Xi; Y1i|Ui) + I(Ui; Y2i) + 2nǫn (70)

Using the standard ’time-sharing’ argument, the converse follows.
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