1st Semester 2010/11

Homework Set #1 Sanov's Theorem, Typicality and Rate distortion

1. Sanov's theorem:

Prove the simple version of Sanov's theorem for the binary random variables, i.e., let X_1, X_2, \ldots, X_n be a sequence of binary random variables, drawn i.i.d. according to the distribution:

$$\Pr(X=1) = q, \quad \Pr(X=0) = 1 - q.$$
 (1)

Let the proportion of 1's in the sequence X_1, X_2, \ldots, X_n be $p_{\mathbf{X}}$, i.e.,

$$p_{X^n} = \frac{1}{n} \sum_{i=1}^n X_i.$$
 (2)

By the law of large numbers, we would expect $p_{\mathbf{X}}$ to be close to q for large n. Sanov's theorem deals with the probability that p_{X^n} is far away from q. In particular, for concreteness, if we take $p > q > \frac{1}{2}$, Sanov's theorem states that

$$-\frac{1}{n}\log\Pr\left\{(X_1, X_2, \dots, X_n) : p_{X^n} \ge p\right\} \to p\log\frac{p}{q} + (1-p)\log\frac{1-p}{1-q} = D((p, 1-p)||(q, 1-q)|)$$
(3)

Justify the following steps:

•

$$\Pr\{(X_1, X_2, \dots, X_n) : p_{\mathbf{X}} \ge p\} \le \sum_{i=\lfloor np \rfloor}^n \binom{n}{i} q^i (1-q)^{n-i} \quad (4)$$

- Argue that the term corresponding to $i = \lfloor np \rfloor$ is the largest term in the sum on the right hand side of the last equation.
- Show that this term is approximately 2^{-nD} .
- Prove an upper bound on the probability in Sanov's theorem using the above steps. Use similar arguments to prove a lower bound and complete the proof of Sanov's theorem.

2. Strong Typicality

Let X^n be drawn i.i.d.~ P(x). Prove that for each $x^n \in T_{\delta}(X)$,

$$2^{-n(H(X)+\delta')} \le P^n(x^n) \le 2^{-n(H(X)-\delta')}$$

for some $\delta' = \delta'(\delta)$ that vanishes as $\delta \to 0$.

3. Weak Typicality vs. Strong Typicality

In this problem, we compare the weakly typical set $A_{\epsilon}(P)$ and the strongly typical set $T_{\delta}(P)$. To recall, the definition of two sets are following.

$$A_{\epsilon}(P) = \left\{ x^{n} \in \mathcal{X}^{n} : \left| -\frac{1}{n} \log P^{n}(x^{n}) - H(P) \right| \le \epsilon \right\}$$
$$T_{\delta}(P) = \left\{ x^{n} \in \mathcal{X}^{n} : \left\| P_{x^{n}} - P \right\|_{\infty} \le \frac{\delta}{|\mathcal{X}|} \right\}$$

- (a) Suppose P is such that P(a) > 0 for all $a \in \mathcal{X}$. Then, there is an inclusion relationship between the weakly typical set $A_{\epsilon}(P)$ and the strongly typical set $T_{\delta}(P)$ for an appropriate choice of ϵ . Which of the statement is true: $A_{\epsilon}(P) \subseteq T_{\delta}(P)$ or $A_{\epsilon}(P) \supseteq$ $T_{\delta}(P)$? What is the appropriate relation between δ and ϵ ?
- (b) Give a description of the sequences that belongs to $A_{\epsilon}(P)$, vs. the sequences that belongs to $T_{\delta}(P)$, when the source is uniformly distributed, i.e. $P(a) = \frac{1}{|\mathcal{X}|}, \forall a \in \mathcal{X}$. (Assume $|\mathcal{X}| < \infty$.)
- (c) Can you explain why $T_{\delta}(P)$ is called **strongly** typical set and $A_{\epsilon}(P)$ is called **weakly** typical set?
- 4. Rate distortion for uniform source with Hamming distortion. Consider a source X uniformly distributed on the set $\{1, 2, ..., m\}$. Find the rate distortion function for this source with Hamming distortion, i.e.,

$$d(x, \hat{x}) = \begin{cases} 0 & \text{if } x = \hat{x}, \\ 1 & \text{if } x \neq \hat{x}. \end{cases}$$

5. Erasure distortion

Consider $X \sim \text{Bernoulli}(\frac{1}{2})$, and let the distortion measure be given by the matrix

$$d(x,\hat{x}) = \begin{bmatrix} 0 & 1 & \infty \\ \infty & 1 & 0 \end{bmatrix}.$$
 (5)

Calculate the rate distortion function for this source. Can you suggest a simple scheme to achieve any value of the rate distortion function for this source?

6. Rate distortion.

A memoryless source U is uniformly distributed on $\{0, \ldots, r-1\}$. The following distortion function is given by

$$d(u,v) = \begin{cases} 0, & u = v, \\ 1, & u = v \pm 1 \mod r, \\ \infty, & \text{otherwise.} \end{cases}$$

Show that the rate distortion function is

$$R(D) = \begin{cases} \log r - D - h_2(D), & D \le \frac{2}{3}, \\ \log r - \log 3, & D > \frac{2}{3}. \end{cases}$$

- 7. Adding a column to the distortion matrix. Let R(D) be the rate distortion function for an i.i.d. process with probability mass function p(x) and distortion function $d(x, \hat{x}), x \in \mathcal{X}, \hat{x} \in \hat{\mathcal{X}}$. Now suppose that we add a new reproduction symbol \hat{x}_0 to $\hat{\mathcal{X}}$ with associated distortion $d(x, \hat{x}_0), x \in \mathcal{X}$. Can this increase R(D)? Explain.
- 8. Simplification. Suppose $\mathcal{X} = \{1, 2, 3, 4\}, \hat{\mathcal{X}} = \{1, 2, 3, 4\}, p(i) = \frac{1}{4}, i = 1, 2, 3, 4, \text{ and } X_1, X_2, \ldots$ are i.i.d. $\sim p(x)$. The distortion matrix $d(x, \hat{x})$ is given by

	1	2	3	4
1	0	0	1	1
2	0	0	1	1
3	1	1	0	0
4	1	1	1 1 0 0	0

- (a) Find R(0), the rate necessary to describe the process with zero distortion.
- (b) Find the rate distortion function R(D).(*Hint*: The distortion measure allows to simplify the problem into one you have already seen.)

- (c) Suppose we have a nonuniform distribution $p(i) = p_i$, i = 1, 2, 3, 4. What is R(D)?
- 9. Rate distortion for two independent sources. Can one simultaneously compress two independent sources better than compressing the sources individually? The following problem addresses this question. Let the pair $\{(X_i, Y_i)\}$ be iid $\sim p(x, y)$. The distortion measure for X is $d(x, \hat{x})$ and its rate distortion function is $R_X(D)$. Similarly, the distortion measure for Y is $d(y, \hat{y})$ and its rate distortion function is $R_Y(D)$.

Suppose we now wish to describe the process $\{(X_i, Y_i)\}$ subject to distortion constraints $\lim_{n\to\infty} Ed(X^n, \hat{X}^n) \leq D_1$ and $\lim_{n\to\infty} Ed(Y^n, \hat{Y}^n) \leq D_2$. Our rate distortion theorem can be shown to naturally extend to this setting and imply that the minimum rate required to achieve these distortion is given by

$$R_{X,Y}(D_1, D_2) = \min_{p(\hat{x}, \hat{y} | x, y) : Ed(X, \hat{X}) \le D_1, Ed(Y, \hat{Y}) \le D_2} I(X, Y; \hat{X}, \hat{Y})$$

Now, suppose the $\{X_i\}$ process and the $\{Y_i\}$ process are independent of each other.

(a) Show

$$R_{X,Y}(D_1, D_2) \ge R_X(D_1) + R_Y(D_2).$$

(b) Does equality hold?

Now answer the question.

10. One bit quantization of a single Gaussian random variable. Let $X \sim Norm(0, \sigma^2)$ and let the distortion measure be squared error. Here we do not allow block descriptions. Show that the optimum reproduction points for 1 bit quantization are $\pm \sqrt{\frac{2}{\pi}}\sigma$, and that the expected distortion for 1 bit quantization is $\frac{\pi-2}{\pi}\sigma^2$. Compare this with the distortion rate bound $D = \sigma^2 2^{-2R}$ for R = 1.

11. Side information.

A memoryless source generates i.i.d. pairs of random variables (U_i, S_i) , i =

 $1, 2, \ldots$ on finite alphabets, according to

$$p(u^n, s^n) = \prod_{i=1}^n p(u_i, s_i).$$

We are interested in describing U, when S, called *side information*, is known both at the encoder and at the decoder. Prove that the rate distortion function is given by

$$R_{U|S}(D) = \min_{p(v|u,s): E[d(U,V)] \le D} I(U;V|S).$$

Compare $R_{U|S}(D)$ with the ordinary rate distortion function $R_U(D)$ without any side information. What can you say about the influence of the correlation between U and S on $R_{U|S}(D)$?