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Statistical Mechanics and Information Theory

Lecturer: Dror Vinkler Scribe: Dror Vinkler

. INTRODUCTION TOSTATISTICAL MECHANICS

In order to see the need for a statistical approach to mechalei’s look at a system
of N particles, each having a property called "a spin”, which ¢ten+m. Each of
those particles contribute to the total magnetic momenhefdystem, such that the total

moment is given by
N
M= "m. (1)
=1
Definition 1 (Spin Excess) For a system withV particles with spinstm, the spin excess

is given by how many particles more tha¥y2 have spin+m, i.e. S = Ny — % where

N; is the number of particles with spim.

From Definition[1 and Equatior](1) it follows that the total gnatic moment is given
by M = 2mS.

Theoretically, one could calculate the system’s magnetment at some point in time
by using Newton’s laws for each particle (given the forcest thct on each particle).
However, as there are abol?® particles in a gram of matter, this is not very practical.
A different approach would be to use statistical tools to tine probability of having a
certain magnetic moment at some point in time. Since thd toggnetic moment is a
deterministic function of the spin excess, this is equnate finding the probability of

a certain spin excess.

Definition 2 (Multiplicity Function) The multiplicity function states how many micro-
scopic states (a specific set of spins) result in the sameaos@mpic state (a certain
magnetic moment). This function is marked {5, N).

Lemma 1 The multiplicity function is given by

N N!
9(5, ) = <N/2+S) T N2+ S)I(N/2—9) @)




Looking at this system of spins as a sequence of bits, a nuopis state is equivalent
to a specific sequence’ and a macroscopic state is equivalent to some tipdhe
multiplicity function then becomes the size of the type sla®fined byS. l.e. P =
(3+2,2—2)andg(S,N) = [T(P)|.

Lemma 2 Under the assumption that the probability of each micromcsgate is the
same, and noticing that there are a tota2®fpossible microscopic states, the probability

of finding the system with a given spin excess is

g(g}VN ) (3)

Lemma 3 For S < N, PY(S) is a normal distribution with a mean of and variance
of N/4.

PY(S) =

Proof: For S < N the Stirling approximation applies and it follows that
PY(S) _ (NV/2)1(N/2)!
PN(0) N/2+ S)Y(N/2 —

2((N NN)(ZHs)m( +s)

In

- = 4
- (4)
where (a) follows from the Taylor expansion ne%r: 0. Thus

PV(S) = PN(0)e (5)

From Lemma B follows that the system will most likely have soze@magnetic moment,
and that there’s a very low chance of finding the system witligh Bxcess spin relative
to the number of particles.



We will now use the insights we have gained so far to analyzatesys which are a
bit more complex. The analysis is done by setting certaimpaters of the system as
constant, and analyzing the behaviour of the system une@setbonditions. Depending
on what parameters are constant, the system is said to beiffer@iot “Thermodynamic

Ensemble”.

II. THE MICROCANONICAL ENSEMBLE

In the microcanonical ensemble, the constant parametertharsystem’s total energy
U, volume V, and number of particlesv. In order to visualize such a system, let's
consider a rigid box completely isolated from its enviromt& his box is divided into
two parts by a divider which allows only energy to flow from quert to the other (see
Fig.[d). In other words)Vy, Ny, Vi, V5 are all constant, and only; can change over time.
Notice that, sinced/ is constant, we can writ€/, = U — U; and use only one variable

to describe our system over time.
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Fig. 1. The microcanonical ensemble model system - a syssatatéd from its environment divided into two

subsystems, where only energy can flow from one subsystematber.

Suppose this box contains spin particles as discussed impriéwgous section, and
there’s an external magnetic field which affects the system’s energy according to the
formulaU = —M B. Thus, sincel is constant, M/ must also be constant, which means
the macroscopic state of the box is constant. However, tteeoseopic state of each side
of the box can change, with the only limitation being tddt + M, = M = const.

Lemma 4 The probability of finding the left part of the box with someeegy U, is



given by
U1,N1)9(U— U1>N2)

9(U,N)
Proof: The left part of the box has an energylof, which means it a the spin excess
S1 = —U;/2mB and that the right part of the box has an energy/of U;. According

P(ty) = 4 6)

to Equation [(B), the probability of this is given by the numingicroscopic states that
yield this macroscopic result, divided by the number of @gible microscopic states.
As this is a multiplication of Gaussians, the expected valilebe the same as the
most probable value. The most probable valueUpfis given by the point where the
derivative of P(U,) is zero, but for ease of calculation the derivativéwof (U, ) will be

considered. Setting

0
Wln[g(UlaNl)ga]_UhNQ)] =0 (7)
1
yields the following equality
0 0
a—lelng(Ul,Nl)— mlng(U—Ul,Ng) (8)

Definition 3 (Entropy) The entropy of a system is markecand defined as the logarithm
of the multiplicity function. l.e.
o =Ing(U,N) 9)

Definition 4 (Temperature) The temperature of a system is markednd defined through
the derivative of the system’s entropy by the system’s gnengthe following manner

1 Oo
- _ Y 1
T oU (10)

Theorem 1 When two systems are isolated from the environment andlegthto one
another such that only energy can flow between them, the teghstate is the one where

the systems have the same temperature.

Proof: Follows directly from Equation (8) and the definition of teenature.
Looking at our system again as a sequence of equiprobalse &itl remembering
that the multiplicity function is now the size of the type s$awe see the definition of
entropy given here agrees with what we know about the sizgpef tlasses, namely that

IT(P)| = 2"#X), Also, this microcanonical setting can be seen as takinggaesee



of bits and dividing it randomly to two subsets of constamiglis N;, N,. Substituting
g(-) in Equation [(8) with the Gaussian we found in Lemipha 3, anda@pt U with its
equivalentS, one finds that the expected state is that both sequencebawvél the same
type.

Theorem 2 (The First Law of Thermodynamics) In a microcanonical system where the

entropy depends on the volunieand the energy/, the full differential of the energy is
dU = 1do — pdv, (11)
wherep is pressure.

Theorem 3 (The Second Law of Thermodynamics) In an isolated system, over a long

enough period of time, the entropy always rises.

[1l. THE CANONICAL ENSEMBLE

In the canonical ensemble, the constant parameters areystenss temperature,
volume V' and number of particlesv. The way to keep the system, mark&d in a
constant temperature is to put it in contact with a much lagystem, called "a heat
bath” and markedr (see Fig[R).

R

Fig. 2. The canonical ensemble model system - an isolate@raydivided in two: a very big heat bati®, and a

small systemS.

The systemand the heat bath are a microcanonical ensemble, with constergye
Uy. Marking the system’s energ§, and notingé < U, — &, it is easy to see that the
system’s energy has negligible affect on the heat bath’'mggnmeaning its temperature is
constant. According to Theorelm 1, this means the systemipaeature will be constant

as well, thus realizing the canonical ensembile.



Theorem 4 The probability of the system to be in a certain microscopatesn is given
£(m)

by Ps(m) = 2e "+, whereZ is a normalization factor anél(m) is the energy of the
system when its microscopical statenis

Proof: For a given microscopic state of the system, the number dfiplesstates

overall is given only by the number of possible states of teatlbath. Thus,

Py(m) = %gR(UO _ &)
1
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where (a) follows from€ < U, and the Taylor expansion ofy.

Definition 5 (Partition Function) The normalization factorZ is called the partition
function of the system, and is given by

7 = Ze—@. (13)

Lemma 5 Much like Shannon’s entropy, the statistical mechanicsropyt can be
calculated using the formula

==Y PE)PE) (14)

Proof:

~ g((€))e T VN, (15)



where(€) is the expected value ¢f and (a) follows from the fact that(€) is a Gaussian
of width v/N. Taking the logarithm on both sides yields

InZ =1Ing({(£)) (€) + %lnN

T

@, & (16)

where (a) follows from the fact thah V < o. Thus,
{€)
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