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I. INTRODUCTION TOSTATISTICAL MECHANICS

In order to see the need for a statistical approach to mechanics, let’s look at a system

of N particles, each having a property called ”a spin”, which canbe ±m. Each of

those particles contribute to the total magnetic moment of the system, such that the total

moment is given by

M =
N
∑

i=1

mi. (1)

Definition 1 (Spin Excess) For a system withN particles with spins±m, the spin excess

is given by how many particles more thanN/2 have spin+m, i.e. S = N↑ − N
2

where

N↑ is the number of particles with spin+m.

From Definition 1 and Equation (1) it follows that the total magnetic moment is given

by M = 2mS.

Theoretically, one could calculate the system’s magnetic moment at some point in time

by using Newton’s laws for each particle (given the forces that act on each particle).

However, as there are about1023 particles in a gram of matter, this is not very practical.

A different approach would be to use statistical tools to findthe probability of having a

certain magnetic moment at some point in time. Since the total magnetic moment is a

deterministic function of the spin excess, this is equivalent to finding the probability of

a certain spin excess.

Definition 2 (Multiplicity Function) The multiplicity function states how many micro-

scopic states (a specific set of spins) result in the same macroscopic state (a certain

magnetic moment). This function is marked byg(S,N).

Lemma 1 The multiplicity function is given by

g(S,N) =

(

N

N/2 + S

)

=
N !

(N/2 + S)!(N/2− S)!
. (2)
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Looking at this system of spins as a sequence of bits, a microscopic state is equivalent

to a specific sequencexn and a macroscopic state is equivalent to some typeP . The

multiplicity function then becomes the size of the type class defined byS. I.e. P =

(1
2
+ S

N
, 1
2
− S

N
) andg(S,N) = |T (P )|.

Lemma 2 Under the assumption that the probability of each microscopic state is the

same, and noticing that there are a total of2N possible microscopic states, the probability

of finding the system with a given spin excess is

PN(S) =
g(S,N)

2N
. (3)

Lemma 3 For S ≪ N , PN(S) is a normal distribution with a mean of0 and variance

of N/4.

Proof: For S ≪ N the Stirling approximation applies and it follows that

ln
PN(S)

PN(0)
= ln

(N/2)!(N/2)!

(N/2 + S)!(N/2− S)!

= 2

(

N

2
ln

N

2
− N

2

)

−
(

N

2
+ S

)

ln

(

N

2
+ S

)

+

(

N

2
+ S

)

−
(

N

2
− S

)

ln

(

N

2
− S

)

+

(

N

2
− S

)

= N ln
N

2
−
(

N

2
+ S

)

ln

(

N

2
+ S

)

−
(

N

2
− S

)

ln

(

N

2
− S

)

= −
(

N

2
+ S

)

ln

(

1 +
2S

N

)

−
(

N

2
− S

)

ln

(

1− 2S

N

)

(a)
≈ −

(

N

2
+ S

)(

2S

N
− 2S2

N2

)

+

(

N

2
− S

)(

2S

N
+

2S2

N2

)

= −2S2

N
, (4)

where (a) follows from the Taylor expansion near2S
N

= 0. Thus

PN(S) = PN(0)e−
2S2

N . (5)

From Lemma 3 follows that the system will most likely have a zero magnetic moment,

and that there’s a very low chance of finding the system with a high excess spin relative

to the number of particles.
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We will now use the insights we have gained so far to analyze systems which are a

bit more complex. The analysis is done by setting certain parameters of the system as

constant, and analyzing the behaviour of the system under these conditions. Depending

on what parameters are constant, the system is said to be in a different “Thermodynamic

Ensemble”.

II. THE M ICROCANONICAL ENSEMBLE

In the microcanonical ensemble, the constant parameters are the system’s total energy

U , volume V , and number of particlesN . In order to visualize such a system, let’s

consider a rigid box completely isolated from its environment. This box is divided into

two parts by a divider which allows only energy to flow from onepart to the other (see

Fig. 1). In other words,N1, N2, V1, V2 are all constant, and onlyU1 can change over time.

Notice that, sinceU is constant, we can writeU2 = U − U1 and use only one variable

to describe our system over time.

N1, V1, U1 N2, V2, U − U1

Fig. 1. The microcanonical ensemble model system - a system isolated from its environment divided into two

subsystems, where only energy can flow from one subsystem to another.

Suppose this box contains spin particles as discussed in theprevious section, and

there’s an external magnetic fieldB which affects the system’s energy according to the

formulaU = −MB. Thus, sinceU is constant,M must also be constant, which means

the macroscopic state of the box is constant. However, the macroscopic state of each side

of the box can change, with the only limitation being thatM1 +M2 = M = const.

Lemma 4 The probability of finding the left part of the box with some energy U1 is
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given by

P (U1) =
g(U1, N1)g(U − U1, N2)

g(U,N)
. (6)

Proof: The left part of the box has an energy ofU1, which means it a the spin excess

S1 = −U1/2mB and that the right part of the box has an energy ofU − U1. According

to Equation (3), the probability of this is given by the number microscopic states that

yield this macroscopic result, divided by the number of all possible microscopic states.

As this is a multiplication of Gaussians, the expected valuewill be the same as the

most probable value. The most probable value ofU1 is given by the point where the

derivative ofP (U1) is zero, but for ease of calculation the derivative oflnP (U1) will be

considered. Setting
∂

∂U1

ln[g(U1, N1)g(U − U1, N2)] = 0 (7)

yields the following equality

∂

∂U1
ln g(U1, N1) =

∂

∂(U − U1)
ln g(U − U1, N2). (8)

Definition 3 (Entropy) The entropy of a system is markedσ and defined as the logarithm

of the multiplicity function. I.e.

σ = ln g(U,N) (9)

Definition 4 (Temperature) The temperature of a system is markedτ and defined through

the derivative of the system’s entropy by the system’s energy, in the following manner

1

τ
=

∂σ

∂U
(10)

Theorem 1 When two systems are isolated from the environment and attached to one

another such that only energy can flow between them, the expected state is the one where

the systems have the same temperature.

Proof: Follows directly from Equation (8) and the definition of temperature.

Looking at our system again as a sequence of equiprobable bits, and remembering

that the multiplicity function is now the size of the type class, we see the definition of

entropy given here agrees with what we know about the size of type classes, namely that

|T (P )| = 2nH(X). Also, this microcanonical setting can be seen as taking a sequence
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of bits and dividing it randomly to two subsets of constant lengthsN1, N2. Substituting

g(·) in Equation (8) with the Gaussian we found in Lemma 3, and replacingU with its

equivalentS, one finds that the expected state is that both sequences willhave the same

type.

Theorem 2 (The First Law of Thermodynamics) In a microcanonical system where the

entropy depends on the volumeV and the energyU , the full differential of the energy is

dU = τdσ − pdv, (11)

wherep is pressure.

Theorem 3 (The Second Law of Thermodynamics) In an isolated system, over a long

enough period of time, the entropy always rises.

III. T HE CANONICAL ENSEMBLE

In the canonical ensemble, the constant parameters are the system’s temperatureτ ,

volume V and number of particlesN . The way to keep the system, markedS, in a

constant temperature is to put it in contact with a much larger system, called ”a heat

bath” and markedR (see Fig. 2).

R

S

Fig. 2. The canonical ensemble model system - an isolated system divided in two: a very big heat bath,R, and a

small system,S.

The systemand the heat bath are a microcanonical ensemble, with constant energy

U0. Marking the system’s energyE , and notingE ≪ U0 − E , it is easy to see that the

system’s energy has negligible affect on the heat bath’s energy, meaning its temperature is

constant. According to Theorem 1, this means the system’s temperature will be constant

as well, thus realizing the canonical ensemble.
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Theorem 4 The probability of the system to be in a certain microscopic statem is given

by PS(m) = 1
Z
e−

E(m)
τ , whereZ is a normalization factor andE(m) is the energy of the

system when its microscopical state ism.

Proof: For a given microscopic state of the system, the number of possible states

overall is given only by the number of possible states of the heat bath. Thus,

PS(m) =
1

Z
gR(U0 − E)

=
1

Z
eln gR(U0−E)

=
1

Z
eσR(U0−E)

(a)
=

1

Z
exp

(

σR

∣

∣

∣

∣

U0

−
(

∂σR

∂E

)
∣

∣

∣

∣

U0

· E
)

=
1

Z
exp

(

σR

∣

∣

∣

∣

U0

− E
τ

)

=
1

Z
e−

E
τ , (12)

where (a) follows fromE ≪ U0 and the Taylor expansion ofσR.

Definition 5 (Partition Function) The normalization factorZ is called the partition

function of the system, and is given by

Z =
∑

m

e−
E(m)

τ . (13)

Lemma 5 Much like Shannon’s entropy, the statistical mechanics entropy can be

calculated using the formula

σ = −
∑

m

P (E) lnP (E) (14)

Proof:

Z =
∑

m

e−
E(m)

τ

=
∑

E

g(E)e− E
τ

(a)
≈ g(〈E〉)e−

〈E〉
τ

√
N, (15)
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where〈E〉 is the expected value ofE and (a) follows from the fact thatg(E) is a Gaussian

of width
√
N . Taking the logarithm on both sides yields

lnZ = ln g(〈E〉)− 〈E〉
τ

+
1

2
lnN

(a)
≈ σ − 〈E〉

τ
, (16)

where (a) follows from the fact thatlnN ≪ σ. Thus,

σ = lnZ +
〈E〉
τ

=
1

Z

∑

m

e−
E
τ lnZ +

1

τ

1

Z

∑

m

Ee− E
τ

=
1

Z

∑

m

(

lnZ − ln e−
E
τ

)

e−
E
τ

= −
∑

m

1

Z
e−

E
τ ln

e−
E
τ

Z

= −
∑

m

P lnP. (17)
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