```
Multi-User Information Theory 2
December 13th, 2012
    Lecture 6
Lecturer: Haim Permuter
    Scribe: Tal Kopetz
```


I. Gaussian Broadcast Channel

Let us consider the Gaussian Broadcast Channel depicted in Fig. 1 where for $i \in[1,2]$, $Z_{i} \sim N\left(0, \sigma_{i}^{2}\right)$ and $Z_{1} \perp Z_{2}$. Additionaly, there is a power constraint on the input $E\left[\sum_{i=1}^{n} X_{i}^{2}\right] \leq P$.

Fig. 1. The Gaussian Broadcast Channel

The capacity of the degraded broadcast channel is the set of all pairs $\left(R_{1}, R_{2}\right)$ that satisfies

$$
\begin{align*}
& R_{1}<I\left(X ; Y_{1} \mid U\right) \tag{1}\\
& R_{2}<I\left(U ; Y_{2}\right) \tag{2}
\end{align*}
$$

for some joint distribution $p(u) p(x \mid u) p\left(y_{1}, y_{2} \mid x\right)$.

Theorem 1 (Gaussian BC) The capacity region of the gaussian broadcast channel is the set of all pairs $\left(R_{1}, R_{2}\right)$ that satisfies

$$
\begin{align*}
& R_{1}<\frac{1}{2} \log \left(1+\frac{\alpha P}{\sigma_{1}^{2}}\right) \tag{3}\\
& R_{2}<\frac{1}{2} \log \left(1+\frac{\bar{\alpha} P}{\alpha P+\sigma_{1}^{2}+\sigma_{2}^{2}}\right) \tag{4}
\end{align*}
$$

Where $\alpha \in[0,1]$.
Proof: We will find the capacity region of the gaussian broadcast channel under the power constraint of $\frac{1}{n} \sum_{i=1}^{n} E\left[X_{i}^{2}\right] \leq P$.

Proof of Achievability: We start by setting the following distributions:

$$
\begin{align*}
Z_{i} & \sim N\left(0, \sigma_{i}^{2}\right) \tag{5}\\
X & \sim N(0, P) \tag{6}\\
U & \sim N(0, \alpha P) \tag{7}\\
V & \sim N(0, \bar{\alpha} P) \tag{8}
\end{align*}
$$

where $0 \leq \alpha \leq 1$ and $\bar{\alpha}=1-\alpha$. Therefore

$$
\begin{align*}
R_{1} & =I\left(X ; Y_{1} \mid U\right) \tag{9}\\
& =I\left(U+V ; U+V+Z_{1} \mid U\right) \tag{10}\\
& =I\left(V ; V+Z_{1}\right) \tag{11}\\
& =\frac{1}{2} \log \left(1+\frac{\alpha P}{\sigma_{1}^{2}}\right) \tag{12}
\end{align*}
$$

and similarly,

$$
\begin{align*}
R_{2} & =I\left(U ; Y_{2}\right) \tag{13}\\
& =I\left(U ; U+V+Z_{1}+Z_{2}\right) \tag{14}\\
& =\frac{1}{2} \log \left(1+\frac{\bar{\alpha} P}{\alpha P+\sigma_{1}^{2}+\sigma_{2}^{2}}\right) \tag{15}
\end{align*}
$$

thus obtaining an achievable region.
In order to prove the converse we will use the following lemma.

Lemma 1 (Entropy power inequality) The Entropy Power Inequality (EPI) states that for any independent $X \sim f(x)$ and $Z \sim f(z)$

$$
\begin{equation*}
2^{2 h(X+Z)} \geq 2^{2 h(X)}+2^{2 h(Z)} \tag{16}
\end{equation*}
$$

in the vector case, where $X^{n} \sim f\left(x^{n}\right), Z^{n} \sim f\left(z^{n}\right)$,

$$
\begin{equation*}
2^{\frac{2}{n} h\left(X^{n}+Z^{n}\right)} \geq 2^{\frac{2}{n} h\left(X^{n}\right)}+2^{\frac{2}{n} h\left(Z^{n}\right)} \tag{17}
\end{equation*}
$$

and in the conditional case

$$
\begin{equation*}
2^{2 h(X+Z \mid U)} \geq 2^{2 h(X \mid U)}+2^{2 h(Z \mid U)} \tag{18}
\end{equation*}
$$

Lemma 2 (Alternative representation of EPI) Let X, Z be independent r.v and X^{\prime}, Z^{\prime} gaussian independent r.v. If $h(Z)=h\left(Z^{\prime}\right)$ and $h(X)=h\left(X^{\prime}\right)$ then

$$
\begin{equation*}
2^{2 h(X+Z)} \geq 2^{2 h\left(X^{\prime}+Z^{\prime}\right)} \tag{19}
\end{equation*}
$$

is equivalent to (16).
Proof:

$$
\begin{align*}
2^{2 h(X+Z)} & \geq 2^{2 h\left(X^{\prime}+Z^{\prime}\right)} \tag{20}\\
& =2^{2 \frac{1}{2} \log \left(2 \pi e\left(\sigma_{x}^{2}+\sigma_{z}^{2}\right)\right)} \tag{21}\\
& =2 \pi e\left(\sigma_{x}^{2}+\sigma_{z}^{2}\right) \tag{22}\\
& =2^{2 \frac{1}{2} \log \left(2 \pi e \sigma_{x}^{2}\right)}+2^{2 \frac{1}{2} \log \left(2 \pi e\left(\sigma_{z}^{2}\right)\right)} \tag{23}\\
& =2^{2 h\left(X^{\prime}\right)}+2^{2 h\left(Z^{\prime}\right)} \tag{24}\\
& =2^{2 h(X)}+2^{2 h(Z)} \tag{25}
\end{align*}
$$

Thus we have shown that (16) is equivalent to (19).
Proof for the EPI conditional case given the scalar case: We will now prove the conditional case (18) based on the scalar case (16). We need to show that

$$
\begin{equation*}
2^{2 h(X+Z \mid U)} \geq 2^{2 h(X \mid U)}+2^{2 h(Z \mid U)} \tag{26}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
2 \sum_{u \in \mathcal{U}} p(u) h(X+Z \mid U=u) \geq \log \left(2^{2 \sum_{u \in \mathcal{U}} p(u) h(X \mid U=u)}+2^{2 \sum_{u \in \mathcal{U}} p(u) h(Z \mid U=u)}\right) \tag{27}
\end{equation*}
$$

Let us consider the following function

$$
\begin{equation*}
f(x, y)=\ln \left(e^{x}+e^{y}\right) \tag{28}
\end{equation*}
$$

we will show that $f(x, y)$ is convex in the pair (x, y) by showing that its hessian is positive semi-definite.

$$
\begin{equation*}
\frac{\partial^{2} f(x, z)}{\partial x^{2}}=\frac{\partial^{2} f(x, z)}{\partial z^{2}}=-\frac{\partial^{2} f(x, z)}{\partial x \partial z}=-\frac{\partial^{2} f(x, z)}{\partial y \partial x}=\frac{e^{x+z}}{\left(e^{x}+e^{z}\right)^{2}} \tag{29}
\end{equation*}
$$

thus,

$$
\begin{align*}
\left(\begin{array}{cc}
\frac{\partial^{2} f(x, z)}{\partial x^{2}} & \frac{\partial^{2} f(x, z)}{\partial x \partial z} \\
\frac{\partial^{2} f(x, z)}{\partial z \partial x} & \frac{\partial^{2} f(x, z)}{\partial z^{2}}
\end{array}\right) & =\left(\begin{array}{cc}
\frac{e^{x+z}}{\left(e^{x}+e^{z}\right)^{2}} & -\frac{e^{x+z}}{\left(e^{x}+e^{z}\right)^{2}} \\
-\frac{e^{x+z}}{\left(e^{x}+e^{z}\right)^{2}} & \frac{e^{x+z}}{\left(e^{x}+e^{z}\right)^{2}}
\end{array}\right) \tag{30}\\
& =\frac{e^{x+z}}{\left(e^{x}+e^{z}\right)^{2}}\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right) \tag{31}\\
& =\frac{e^{x+z}}{\left(e^{x}+e^{z}\right)^{2}}\binom{1}{-1}\left(\begin{array}{ll}
1 & -1
\end{array}\right) \tag{32}
\end{align*}
$$

which means that the hessian is positive semi-definite thus $f(x, z)$ is convex for any pair (x, z). Now we set $x=h(X \mid U=u), z=h(Z \mid U=u)$. From the convexity of $f(x, z)$, by Jensen's Inequality,

$$
\begin{equation*}
\sum_{u \in \mathcal{U}} p(u) \ln \left(e^{h(X \mid U=u)}+e^{h(Z \mid U=u)} \geq \ln \left(e^{\sum_{u \in \mathcal{U}} p(u) h(X \mid U=u)}+e^{\sum_{u \in \mathcal{U}} p(u) h(Z \mid U=u)}\right)\right. \tag{33}
\end{equation*}
$$

which is the same as in our problem hence (18) holds.
We now proceed with the converse.
Proof of Converse: By Fano's Inequality,

$$
\begin{equation*}
R_{2}<I\left(Y_{2} ; U\right)=h\left(Y_{2}\right)-h\left(Y_{2} \mid U\right) \tag{34}
\end{equation*}
$$

For the first term

$$
\begin{equation*}
h\left(Y_{2}\right) \leq \frac{1}{2} \log \left(2 \pi e\left(P+\sigma_{1}^{2}+\sigma_{2}^{2}\right)\right) \tag{35}
\end{equation*}
$$

where (a) follows from the concavity of \log function. We now bound the second term as follows

$$
\begin{equation*}
\frac{1}{2} \log \left(2 \pi e\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)\right)=h\left(Y_{2} \mid X\right) \leq h\left(Y_{2} \mid U\right) \leq h\left(Y_{2}\right) \leq \frac{1}{2} \log \left(2 \pi e\left(P+\sigma_{1}^{2}+\sigma_{2}^{2}\right)\right) \tag{36}
\end{equation*}
$$

by the Markov chain $Y_{2}-X-U$. From the two bounds we conclude that there must exist some $0 \leq \alpha \leq 1$ s.t

$$
\begin{equation*}
h\left(Y_{2} \mid U\right)=\frac{1}{2} \log \left(2 \pi e\left(\alpha P+\sigma_{1}^{2}+\sigma_{2}^{2}\right)\right) \tag{37}
\end{equation*}
$$

and by combining (35) and (38) we obtain

$$
\begin{equation*}
R_{2} \leq \frac{1}{2} \log \left(1+\frac{\bar{\alpha}}{\alpha P+\sigma_{1}^{2}+\sigma_{2}^{2}}\right) \tag{38}
\end{equation*}
$$

We now continue to R_{1}. By Fano's Inequality,

$$
\begin{align*}
R_{1} & \leq I\left(X ; Y_{1} \mid U\right) \tag{39}\\
& =h\left(Y_{1} \mid U\right)-h\left(Y_{1} \mid X, U\right) \tag{40}\\
& =h\left(Y_{1} \mid U\right)-h\left(Y_{1} \mid X\right) \tag{41}\\
& \stackrel{(a)}{\leq} \frac{1}{2} \log \left(2 \pi e\left(\alpha P+\sigma_{1}^{2}\right)\right)-\frac{1}{2} \log \left(2 \pi e \sigma_{1}^{2}\right) \tag{42}\\
& =\frac{1}{2} \log \left(1+\frac{\alpha P}{\sigma_{1}^{2}}\right) \tag{43}
\end{align*}
$$

where (a) follows from the EPI since

$$
\begin{equation*}
2^{2 h\left(Y_{2} \mid U\right)} \geq 2^{2 h\left(Y_{1} \mid U\right)}+2^{2 h\left(Z_{2} \mid U\right)} \tag{44}
\end{equation*}
$$

therefore,

$$
\begin{align*}
2^{2 h\left(Y_{1} \mid U\right)} & \leq 2^{2 h\left(Y_{2} \mid U\right)}-2^{2 h\left(Z_{2} \mid U\right)} \tag{45}\\
& =2 \pi e\left(\alpha P+\sigma_{1}^{2}+\sigma_{2}^{2}\right)-2 \pi e \sigma_{2}^{2} \tag{46}\\
& =2 \pi e\left(\alpha P+\sigma_{1}^{2}\right) \tag{47}
\end{align*}
$$

thus we conclude that

$$
\begin{align*}
R_{1} & \leq \frac{1}{2} \log \left(1+\frac{\alpha P}{\sigma_{1}^{2}}\right) \tag{48}\\
R_{2} & \leq \frac{1}{2} \log \left(1+\frac{\bar{\alpha}}{\alpha P+\sigma_{1}^{2}+\sigma_{2}^{2}}\right) \tag{49}
\end{align*}
$$

Bergmans (1974) established the converse for the capacity region of the Gaussian BC using the entropy power inequality. The EPI was first stated by Shannon (1948) in [4]. the first formal proofs are due to Stam [5] and Blachman [6]. More versions of the EPI are available in [1] and [2]. For further reading, see references below.

II. Appendix

A. The duality between the EPI and the Brunn-Minkowski Inequality

We introduce the following theorem from mathematics.
Theorem 2 (Brunn-Minkowski Inequality) The volume of the set-sum of two sets A and B is greater than the volume of the set-sum of two spheres A^{\prime}, B^{\prime} with the same volume as A^{\prime} and B^{\prime}. In other words

$$
\begin{equation*}
\operatorname{Vol}(A+B) \geq \operatorname{Vol}\left(A^{\prime}+B^{\prime}\right) \tag{50}
\end{equation*}
$$

$\forall A^{\prime}, B^{\prime}$ s.t $\operatorname{Vol}(A)=\operatorname{Vol}\left(A^{\prime}\right)$ and $\operatorname{Vol}(B)=\operatorname{Vol}\left(B^{\prime}\right)$.
The Brunn-Minkowski Inequality (BMI) is very similar to the EPI. In information theory, the differential entropy $h(X)$ relates to volume in the following way:

Let $\left\{X_{i}\right\}_{i \geq 1}$ be an i.i.d process with a probability density function $f(x)$. Also, let S_{n} be a sequence of sets s.t

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(x^{n} \in S_{n}\right)=1 \tag{51}
\end{equation*}
$$

Then

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \operatorname{Vol}\left(S_{n}\right) \geq 2^{n h(x)} \tag{52}
\end{equation*}
$$

and for any $\epsilon>0$ there exists a sequence of volumes s.t

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{Vol}\left(S_{n}\right) \leq 2^{n(h(x)+\epsilon)} \tag{53}
\end{equation*}
$$

Hence, we can see that the volume of the set-sum in the BMI is the analogue of $h(X+Z)$ in the EPI.

References

[1] Abbas El Gamal and Young-Han Kim, "Network Information Theory", Lecture notes, Available online
[2] Thomas Cover and Joy Thomas, "Elements of Information Theory", 2nd ed., Wiley- Interscience, 2006.
[3] Patrick P. Bergmans, "A simple converse for broadcast channels with additive white Gaussian noise, IEEE Trans. Inform. Theory, vol. IT-20, pp. 279280.
[4] Claude E. Shannon, "A mathematical theory of communication". Bell System Tech. J. 27: 379423, 623656. 1948
[5] A. Stam. "Some inequalities satisfied by the quantities of information of Fisher and Shannon". Inf. Control, 2:101112, June 1959.
[6] N. Blachman. "The convolution inequality for entropy powers". IEEE Trans. Inf. Theory, IT-11:267271, Apr. 1965.

