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Multi-user Information Theory October 23rd, 2013

Lecture 1

Lecturer: Haim Permuter Scribe: Oron Sabag

I. INTRODUCTION

This lecture gives an overall review and motivation for the Interference Channel(IC).

The interference channel is based on a network consisting inits general formN senders

andN receivers. Specifically, in our class we study the case whereN = 2. There exists

a one-to-one correspondence between senders and receivers. Each sender only wants to

communicate with its corresponding receiver, and each receiver only cares about the

information form its corresponding sender. However, each channel interferes the others.

Motivation for this model can be found in satellite communication. For instance,

two satellites send information to its corresponding ground station simultaneously.

Each ground station can receive the signals from both of the two satellites and its

communication is interfered by the other pair’s communication. The interference channel

models also a wireless communication and a wired communication on a twisted pair

due to e .

The IC was first studied in 1974 by Ahlswede in [1], where innerand outer bounds

were derived. Later, Han and Kobayashi derived in [2] the best known-inner bound on the

capacity region of the DM-IC. This inner bound was found to betight for any any special

case which has a capacity region; such that deterministic ICand strong interference IC.

However, this channel has not been solved in general case even in the general Gaussian

case.

In this lecture note, Section II describes the problem definition of the IC, and Section

III includes 3 capacity regions regarding theCognitive IC including detailed proofs.

II. PROBLEM DEFINITION

The IC is described in Fig. 1. The DM-IC model(X1,X2, PY1,Y2|X1,X2
,Y1,Y2), consists

of four finite alphabetsX1,X2,Y1,Y2 and a collection of conditional pmfsPY1,Y2|X1,X2
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on Y1,Y2.
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Fig. 1. Interference Channel for two users.

Definition 1 (Code for the IC) A (2nR1, 2nR2, n) code for the interference channel

consists of:

• Two message setsW1 = {1, . . . , 2nR1} andW2 = {1, . . . , 2nR2}

• Encoding functiongj : Wj → X n
j , for j = 1, 2

• Decoding functionφj : Y
n
j → Ŵj , for j = 1, 2

We assume that the message pair(W1,W2) is uniformly distributed over{1, . . . , 2nR1}×

{1, . . . , 2nR2}. The average probability of error is defined asP (n)
e = Pr((W1,W2) 6=

(Ŵ1, Ŵ2)). A rate pair(R1, R2) is said to beachievable for the DM-IC if there exists a

sequence of(2nR1, 2nR2, n) codes such thatlimn→∞ P
(n)
e = 0.

Thecapacity region is defined as the closure of the set of achievable rate pairs(R1, R2).

III. COGNITIVE INTERFERENCECHANNEL

A. Deterministic Cognitive Interference Channel

In this section we study a special case for the IC, theDeterministic-Cognitive IC. The

setup is described in Fig. 2. In this model we assume that the messageW2 is known at

both encoders. Moreover, the channel is memoryless and induced by two deterministic
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functionf1 andf2 with the input arguments(X1, X2), that is,PY1,Y2|X1,X2
= 1Y1=f1(X1,X2)·1Y2=f2(X1,X2).
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=
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1Y1i=f1(X1,X2)·1Y2i=f2(X1,X2)

Fig. 2. Deterministic Cognitive Interference Channel for two users.

Theorem 1 (Capacity Region for the Deterministic-Cognitive IC) The capacity re-

gion is the set of rate pairs(R1, R2), such that:

R1 ≤ H(Y1|X2),

R2 ≤ H(Y2|X2) + I(X2; Y2),

R1 +R2 ≤ H(Y1, Y2|X2) + I(X2; Y2), (1)

for some joint distributionPX1,X2
1Y1=f1(X1,X2)1Y2=f2(X1,X2).

Proof:

Achievability: The achievability comprises of two steps; first, we use the the determin-

istic broadcast channel (BC) coding scheme to transmit fromencoder1 at rates(R1, R
′
2),

then encoder2 transmits additional information at rateR′′
2. Combining both steps, we

conclude that the rate pair(R1, R
′
2 +R′′

2) is achievable.

Let us remind to the reader the capacity region of the deterministic BC where non-

causal side informationSn is given to the encoder:

R1 ≤ H(Y1|S),
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R2 ≤ H(Y2|S),

R1 +R2 ≤ H(Y1, Y2|S).

Encoder1 is using the coding scheme of the deterministic BC at rates ofrates(R1, R
′
2),

but where the considered SI isXn
2 . Then, we use a simple point to point result for the

rate can be achieved from encoder2 to decoder2,i.e.R′′
2 ≤ I(X2; Y2). Combining these

two coding schemes, we achieve the region:

R1 ≤ H(Y1|X2), (2)

R2 ≤ H(Y2|X2) + I(X2; Y2), (3)

R1 +R2 ≤ H(Y1, Y2|X2) + I(X2; Y2). (4)

Converse: For the converse part, we assume that there exists a code(2nR1, 2nR2, n)

such thatlimn→∞ P
(n)
e = 0.

For the rateR1, consider

nR1 = H(W1)

(a)
= H(W1|W2)

(b)
= H(W1|W2, X

n
2 )

(c)
= H(W1, Y

n
1 |W2, X

n
2 )

= H(Y n
1 |W2, X

n
2 ) +H(W1|Y

n
1 ,W2, X

n
2 )

(d)

≤

n∑

i=1

H(Y1i|X2i) + nǫn

where:

(a) follows from the fact that the messagesW1 andW2 are independent;

(b) follows from the fact thatXn
2 is a deterministic function ofW2;

(c) follows from the deterministic channel characterization;

(d) follows from Fano’s inequality, i.e.H(W1|Y
n
1 ,W2, X

n
2 ) ≤ nǫn and the fact that

conditioning reduces entropy.
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For the rateR2, consider

nR2 = H(W2)

(a)

≤ I(W2; Y
n
2 ) + nǫn

(b)

≤ H(Y n
2 ) + nǫn

(c)

≤

n∑

i=1

H(Y2i) + nǫn

where:

(a) follows from Fano’s inequality, i.e.H(W2|Y
n
2 ) ≤ nǫn;

(b) follows from the non-negativity of the termH(Y n
2 |W2);

(c) follows from the fact that conditioning reduces entropy.

For the sum rateR1 +R2, consider

n(R1 +R2) = H(W1,W2)

= H(W1|W2) +H(W2)

(a)

≤ H(W1|W2, X
n
2 ) + I(W2; Y

n
2 ) + nǫn

(b)
= H(Y n

1 ,W1|W2, X
n
2 ) +H(Y n

2 )−H(Y n
2 |W2) + nǫn

(c)

≤ H(Y n
1 ,W1|W2, X

n
2 ) +H(Y n

2 ) + nǫn

(d)

≤ H(Y n
1 |W1,W2, X

n
2 ) +H(Y n

2 ) + 2nǫn

(e)
= H(Y n

1 |W1,W2, X
n
2 , Y

n
2 ) +H(Y n

2 ) + 2nǫn

(f)

≤

n∑

i=1

H(Y1i|X2i, Y2i) +H(Y2i) + 2nǫn

where:

(a) follows from the fact thatXn
2 is a deterministic function ofW2 and Fano’s inequality,

i.e. H(W2|Y
n
2 ) ≤ nǫn;

(b) follows from the deterministic channel characterization;

(c) follows from the non-negativity of the termH(Y n
2 |W2);

(d) follows from Fano’s inequality, i.e.H(W1|Y
n
1 ,W2, X

n
2 ) ≤ nǫn;
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(e) follows from the fact thatY n
2 is a deterministic function of(W1,W2);

(f) follows from the fact that conditioning reduces entropy.

B. Semi-Deterministic Cognitive IC with state known at the cognitive user

The setup is described in Fig. 3, theSemi-Deterministic (SD) channel is character-

ized by the channel distributionPY1,Y2|X1,X2,S = 1y1=f(x1,x2,s)P (y2|x1, x2, s) for each

time instance. Two independent messagesM1,M2 are distributed uniformly in the set

{1, . . . , 2nR1} × {1, . . . , 2nR2} and the state of the channel isi.i.d. and distributed

according toP (s), independently from each messages. Encoder1 transmits the signal

Xn
1 to the channel, based on both messages and the non-causal side information sequence

Sn. Encoder2 has access to the messageM2 only, and transmits the signalXn
2 to the

channel. Based on the outputY n
i , Decoderi decodes the messageMi, wherei ∈ {1, 2}.

Encoder 1

Encoder 2

m1

m2

PY1,Y2|X1,X2,S

Xn
1

Xn
2

Sn

Y n
1

Decoder 1
m̂1

Decoder 2
Y n
2 m̂2

Cognitive User

Primary User

Fig. 3. Cognitive interference channel, where the cognitive transmitter knows the state non causally.

Definition 2 A (2nR1, 2nR2 , n) code of blocklengthn for the setting in Fig. 3 consisting

of two encoding functions

fe1 : {1, ..., 2
nR1} × {1, ..., 2nR2} × Sn 7→ X n

1 ,
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fe2 : {1, ..., 2
nR2} 7→ X n

2 , (5)

and two decoding functions

gd1 : Y
n
1 7→ {1, ..., 2nR1},

gd2 : Y
n
1 7→ {1, ..., 2nR2}. (6)

Let us denote byM̂1(Y
n
1 ) andM̂2(Y

n
2 ) the outputs of Decoder 1 and 2, respectively.

Definition 3 The probability of error,P (n)
e of a code of blocklengthn is defined as

P (n)
e = Pr{M1 6= M̂1(Y

n
1 ) or M2 6= M̂2(Y

n
1 )}. (7)

We use the standard definition of an achievable pair-rate andthe capacity region.

The next Theorem was introduced and proved in [4].

Theorem 2 (Capacity of the SD Cognitive IC with State known tothe Cognitive User [4])

The capacity region of the semi-deterministic interference channel with state known to

the cognitive user is the set of all pair rates(R1, R2) that satisfies

R1 ≤ H(Y1|S,X2)

R2 ≤ I(U,X2; Y2)− I(U,X2;S)

R1 +R2 ≤ H(Y1|S,X2, U) + I(U,X2; Y2)− I(U,X2;S) (8)

for some joint distribution of the formP (s)P (x2)P (x1, u|x2, s)1y1=f(x1,x2,s)P (y2|x1, x2, s).

Theorem 3 (Capacity of the Deterministic Cognitive IC with State known to the Cognitive User)

The capacity region of the deterministic interference channel with state known to the

cognitive user is the set of all pair rates(R1, R2) that satisfies

R1 ≤ H(Y1|S,X2)

R2 ≤ H(Y2)− I(Y2, X2;S)

R1 +R2 ≤ H(Y1|S,X2, Y2) +H(Y2)− I(Y2, X2;S) (9)

for some joint distribution of the formP (s)P (x2)P (x1|x2, s)1y1=f1(x1,x2,s)1y2=f2(x1,x2,s).
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The achievability of Theorem 3 follows in a straightforwardmanner from Theorem 2 by

replacingU with Y2. It is also possible to write (9) as

R1 ≤ H(Y1|S,X2)

R2 ≤ H(Y2|S,X2) + I(X2; Y2)

R1 +R2 ≤ H(Y1|S,X2) +H(Y2|S,X2, Y1) + I(Y2;X2). (10)

Note that the capacity region defined only by the entropy expressions of (10) are the

capacity region of the deterministic BC with state (X2, S) known non-causally at the

encoder, and the additional rateI(Y2;X2) is the point-to-point capacity of the primary

user where(S,X2, Y1) are treated as noise.

Proof of Theorem 2:

Sketch of achievability: The main idea in the achievability is to split messageM2 into

two parts with ratesR′
2 andR′′

2. Then send the bit-rateR′′
2 via a point-to-point channel to

Decoder 2, whereX1 andS are treated as noise. The bit-ratesR1 andR′
2 are sent from

Encoder 1 using a semi-deterministic broadcast channel coding scheme with known state

and the encoder [3], where the state is (S,X2).

Here is a more detailed description. Fix a joint distribution P (s)P (x2)P (x1, u|x2, s).

Split the messageM2 into two messagesM ′
2 andM ′′

2 with ratesR′
2 andR′′

2, respectively,

such that

R2 = R′
2 +R′′

2 . (11)

Code design:Generate2nR
′′

2 random codewordsXn
2 using i.i.d. p(x2). Generate a

random code(2nR1, 2nR
′

2 , n) for a semi deterministic BC with state known at the encoder

non causally as described in [3] where the state is(Sn, Xn
2 ). The outputs of the BC are

Y1 and (Y2, X2).

Encoding:Map the messageM ′′
2 to a codewordXn

2 and transmit it. Map the message

pair (M1,M
′
2) to Xn

1 where the state is(Sn, Xn
2 (M

′′
2 )), and transmitXn

1 .

Decoding:Decoder 2 receivesY n
2 and uses point-to-point decoding in order to decode

M̂ ′′
2 . Then Decoder 1 and Decoder 2 uses semideterministic BC withstate known at

the encoder to decoder̂M1 and M̂ ′
2 at decoder 1 and 2, respectively. The state of the
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semideterministic BC is(Xn
2 , S

n) and Decoder 1 usesY n
1 to decodeM̂1 and Decoder 2

uses(Y n
2 , X2(M̂

′′
2 )) to decodeM̂ ′

2.

Error analysis:We would like to show that if the rate-pair(R1, R2) satisfies (8) with

a strict inequality then asn goes to infinityP (n)
e goes to zero.

First note that if

R′′
2 < I(X2; Y2), (12)

then Decoder 2 would be able to decodeM ′′
2 with a probability of error that goes to zero.

Now considering a semi deterministic BC with state (the state is (Xn
2 (M

′′
2 ), S

n))

known at the encoder, where the first decoder obtainY n
1 and the second decoder obtains

(Y n
2 , X

n
2 (M̂

′′
2 ). Using the achievability from [3] if(R1, R

′
2) satisfies

R1 < H(Y1|S,X2)

R′
2 < I(U ; Y2, X2)− I(U ;S,X2)

R1 +R′
2 < H(Y1|S,X2) + I(U ; Y2, X2)− I(U ;S,X2, Y1) (13)

then Decoder 1 and 2 would be able to decodeM1 andM ′
2, respectively, with a probability

of error that goes to zero. Using Fourier-Mozkin elimination on (11), (12) and (14) we

obtain

R1 < H(Y1|S,X2)

R2 < I(U ; Y2, X2)− I(U ;S,X2) + I(X2; Y2)

R1 +R2 < H(Y1|S,X2) + I(U ; Y2, X2)− I(U ;S,X2, Y1) + I(X2; Y2). (14)

Finally, using simple chain rules and the fact thatX2 is independent ofS we obtain

I(U ; Y2, X2)− I(U ;S,X2) + I(X2; Y2)

= I(U ; Y2|X2)− I(U ;S|X2) + I(X2; Y2)

= I(U,X2; Y2)− I(U ;S|X2)

= I(U,X2; Y2)− I(U,X2;S), (15)

and

H(Y1|S,X2) + I(U ; Y2, X2)− I(U ;S,X2, Y1) + I(X2; Y2)
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= H(Y1|S,X2) + I(U ; Y2|X2)− I(U ;S, Y1|X2) + I(X2; Y2)

= H(Y1|S,X2) + I(X2, U ; Y2)− I(U ;S, Y1|X2)

= H(Y1|S,X2) + I(X2, U ; Y2)− I(U ;S|X2)− I(U ; Y1|X2, S)

= H(Y1|S,X2, U) + I(X2, U ; Y2)− I(U,X2;S), (16)

and this prove that (14) is identical to (8).

Proof of Converse:Let us fix a code(2nR1, 2nR2, n) with a probability of error,P (n)
e .

Now consider the following inequalities,

nR1 = H(M1)

= H(M1|S
n,M2)

(a)

≤ I(M1; Y
n|Sn,M2) + nǫn,

≤ H(Y n|Sn,M2) + nǫn,

= H(Yi|Y
i−1, Sn,M2, X2,i(M2)) + nǫn,

≤

n∑

i=1

H(Yi|Si, X2,i) + nǫn, (17)

where step (a) follows from Fano’s inequality andǫn , (R1+R2)P
(n)
e + 1

n
. The second set

of inequalities is very similar to the converse of point-to-point channel with non causal

state known at the encoder (Gelfand-Pinsker).

nR2 =H(M2)

(a)

≤I(M2; Y
n
2 )− I(M2;S

n) + nǫn

=
n∑

i=1

I(M2; Y2,i|Y
i−1
2 )− I(M2;Si|S

n
i+1) + nǫn,

=
n∑

i=1

I(M2, S
n
i+1; Y2,i|Y

i−1
2 )− I(Sn

i+1; Y2,i|Y
i−1
2 ,M2)

− I(M2, Y
i−1
2 ;Si|S

n
i+1) + I(Y i−1

2 ;Si|S
n
i+1,M2) + nǫn

(b)
=

n∑

i=1

I(M2, S
n
i+1; Y2,i|Y

i−1
2 )− I(M2, Y

i−1
2 , Sn

i+1;Si) + nǫn
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≤

n∑

i=1

I(M2, S
n
i+1, Y

i−1
2 ; Y2,i)− I(M2, Y

i−1
2 , Sn

i+1;Si) + nǫn,

(c)
=

n∑

i=1

I(X2,i,M2, S
n
i+1, Y

i−1
2 ; Y2,i)− I(X2,i,M2, Y

i−1
2 , Sn

i+1;Si) + nǫn,

(d)
=

n∑

i=1

I(X2,i, Vi; Y2,i)− I(X2,i, Vi;Si) + nǫn, (18)

where step (a) follows from Fano’s inequality, step (b) fromCsiszar sum identity, i.e.,
∑n

i=1 I(A
i−1;Bi|B

n
i+1) =

∑n

i=1 I(B
n
i+1;Ai|A

i−1), step (c) from the fact thatX2,i is a

function ofM2 and step (d) from defining

Vi , (M2, Y
i−1
2 , Sn

i+1). (19)

To prove the converse of the third inequality in (8) we would use the following identity

which follows simply from the chain rule of mutual information.

H(Y1|S,X2, U) + I(U,X2; Y2)− I(U,X2;S) (20)

= H(Y1|S,X2, U)−H(Y1|S) +H(Y1|S) + I(U,X2; Y2)− I(U,X2;S)

= −I(Y1;X2, U |S) +H(Y1|S) + I(U,X2; Y2)− I(U,X2;S)

= H(Y1|S) + I(U,X2; Y2)− I(U,X2;S, Y1) (21)

Now consider,

n(R1 +R2) (22)

= H(M1) +H(M2)

(a)

≤ H(M1|S
n) + I(M2; Y

n
2 )− I(M2;M1, S

n) + nǫn

= H(M1|S
n) + I(M2; Y

n
2 )− I(M2;M1, S

n, Y n
1 ) + I(M2; Y

n
1 |M1, S

n) + nǫn

(b)
= H(M1, Y

n
1 |S

n) + I(M2; Y
n
2 )− I(M2;M1, S

n, Y n
1 ) + nǫn

(c)

≤ H(Y n
1 |S

n) + I(M2; Y
n
2 )− I(M2;S

n, Y n
1 ) + 2nǫn

= H(Y n
1 , S

n)−H(Sn) + I(M2; Y
n
2 )− I(M2;S

n, Y n
1 ) + 2nǫn

=

n∑

i=1

H(Y1,i, Si|Y
n
1,i+1, S

n
i+1)−H(Si) + I(M2; Y2,i|Y

i−1
2 )− I(M2; Y1,i, Si|Y

n
1,i+1, S

n
i+1) + 2nǫn
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=

n∑

i=1

H(Y1,i, Si)−H(Y1,i, Si) +H(Y1,i, Si|Y
n
1,i+1, S

n
i+1)−H(Si)

+ I(M2; Y2,i|Y
i−1
2 )− I(M2; Y1,i, Si|Y

n
1,i+1, S

n
i+1) + 2nǫn

=
n∑

i=1

H(Y1,i|Si)− I(Y1,i, Si; Y
n
1,i+1, S

n
i+1) + I(M2; Y2,i|Y

i−1
2 )− I(M2; Y1,i, Si|Y

n
1,i+1, S

n
i+1) + 2nǫn

=

n∑

i=1

H(Y1,i|Si) + I(M2; Y2,i|Y
i−1
2 )− I(M2, Y

n
1,i+1, S

n
i+1; Y1,i, Si) + 2nǫn

=

n∑

i=1

H(Y1,i|Si) + I(M2, Y
n
1,i+1, S

n
i+1; Y2,i|Y

i−1
2 )− I(Y n

1,i+1, S
n
i+1; Y2,i|M2, Y

i−1
2 )

− I(M2, Y
n
1,i+1, S

n
i+1, Y

i−1
2 ; Y1,i, Si) + I(Y i−1

2 ; Y1,i, Si|M2, Y
n
1,i+1, S

n
i+1) + 2nǫn

(d)
=

n∑

i=1

H(Y1,i|Si) + I(M2, Y
n
1,i+1, S

n
i+1; Y2,i|Y

i−1
2 )− I(M2, Y

n
1,i+1, S

n
i+1, Y

i−1
2 ; Y1,i, Si) + 2nǫn

≤

n∑

i=1

H(Y1,i|Si) + I(X2,i,M2, Y
n
1,i+1, S

n
i+1, Y

i−1
2 ; Y2,i)− I(X2,i,M2, Y

n
1,i+1, S

n
i+1, Y

i−1
2 ; Y1,i, Si) + 2nǫn

(e)
=

n∑

i=1

H(Y1,i|Si) + I(X2,i, Vi, Ti; Y2,i)− I(X2,i, Vi, Ti; Y1,i, Si) + 2nǫn, (23)

where (a) and (c) follows from Fano’s inequality and the independence ofM1,M2 and

Sn, from the fact thatY n
1 is a deterministic function ofM1,M2, S

n), (d) from Csiszar

sum identity, and (e) from the definition ofVi which is given in (19) and the definition

of Ti,

Ti , Y i−1
2 . (24)

Now we are using the trick that was introduced in [3] to overcome the fact that the

auxiliary T is not present in the converse of the second inequality givenin (18). We

need to find aU for which

I(X2, V ; Y2)− I(X2, V ;S) ≤ I(X2, U ; Y2)− I(X2, U ;S)

H(Y1|S) + I(X2, V, T ; Y2)− I(X2, V, T ; Y1, S) ≤ H(Y1|S) + I(X2, U ; Y2)− I(X2, U ; Y1, S).

(25)

As in [3] we will show there always exists such aU . Note that if

I(X2, T ; Y2|V )− I(X2, T ; Y1, S|V ) ≤ 0, (26)
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then we can chooseU = V , and (25) will hold, and if

I(X2, T ; Y2|V )− I(X2, T ;S|V ) ≥ 0 (27)

then we canU = (V, T ), and (25) will hold. Furthermore, note that one of the conditions

(26) or (27) will always hold, therefore there exists a choice of U for which (25) holds.

Converse proof of Theorem 3: Let us fix a code(2nR1, 2nR2, n) with a probability

of error,P (n)
e . The inequality

nR1 ≤
n∑

i=1

H(Yi|Si, X2,i) + nǫn, (28)

follows from identical steps as (17). Now consider the rateR2,

nR2 = H(M2)

= H(M2|S
n)

≤ H(M2, Y
n
2 |S

n)−H(M2, Y
n
2 ) +H(M2, Y

n
2 )

(a)
= H(Y n

2 )− I(M2, Y
n
2 ;S

n) + nǫn

(b)

≤

n∑

i=1

H(Y2,i)−H(Si) +H(Si|X2,i, Y2,i) + nǫn,

≤
n∑

i=1

H(Y2,i)− I(Si;X2,i, Y2,i) + nǫn, (29)

where (a) follows from Fano’s Inequality and definingǫn , (R1 + R2)P
(n)
e + 1

n
, and

(b) from the facts thatSn is distributed i.i.d., conditioning reduces entropy andX2,i is a

function ofM2. For the sum rate consider,

n(R1 +R2) = H(M1,M2)

= H(M1,M2, S
n)−H(Sn)

(a)
= H(Y n

1 , Y
n
2 ,M1,M2, S

n)−H(Sn),

(b)

≤ H(Y n
1 , Y

n
2 , S

n)−H(Sn) + nǫn,

≤ H(Y n
2 ) +H(Y n

1 , S
n|Y n

2 )−H(Sn) + nǫn,
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≤ H(Y n
2 ) +H(Xn

2 , Y
n
1 , S

n|Y n
2 )−H(Sn) + nǫn,

(c)

≤ H(Y n
2 ) +H(Y n

1 , S
n|Y n

2 , X
n
2 )−H(Sn) + 2nǫn,

≤

n∑

i=1

H(Y2,i) +H(Y1,i, Si|Y2,i, X2,i)−H(Si) + 2nǫn,

=
n∑

i=1

H(Y2,i) +H(Y1,i|Si, X2,i, Y2,i)− I(Y2,i, X2,i;Si) + 2nǫn, (30)

where:

(a) follows from the deterministic channel characterization;

(b) follows from Fano’s inequality, i.e.H(M1,M2|Y
n
1 , Y

n
2 , S

n) ≤ nǫn;

(c) follows from Fano’s inequality, i.e.H(Xn
2 |Y

n
2 ) ≤ nǫn.
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