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Multi-User Information Theory December, 2013

Lecture 3

Lecturer: Haim Permuter Scribe: Ziv Goldfeld

. HAN-KOBAYASHI INNER BOUND

The Han-Kobayashi inner bound is the best-known bound ordbacity region of the
discrete memoryless interference channel (DM-IC) [1]. tludes all the inner bounds
we discussed so far, and is tight for all interference chisnmigh known capacity regions.

We consider the following characterization of this inneubd.

Theorem 1 (Han-Kobayashi Inner Bound) Let C be the capacity region of the DM-
IC Py, v;x1,x.- L€t Ry be the region defined by the union of all sets of rate pairs
(R1, Ry) € R satisfying:

Ry < I(X1;Y1|Us, Q), (1a)
Ry < I(Xg; Y3|U1, Q), (1b)
Ri+ Ry < I(X1,Us; Y1|Q) + 1(Xa; Yo Uy, Us, Q), (1c)
Ry + Ry < I(X2,Up; Y2|Q) + I(X1; Y1|UL, Us, Q), (1d)
Ri+ Ry < I(X1,Us; Y1|U1, Q) + 1(X2, Uy; Yo|Us, Q), (le)

2Ry + Ry < I(X41, U Y1|Q) + (X1 Y1 U, Us, Q) + 1(Xs, Uy Ya|Us, Q), (1)

Ry 4+ 2Ry < I(X, Uy; Ya|Q) + I(Xa; Yo Uy, Us, Q) + 1( X4, Us; Y1|UL, Q), (19)

where the union is taken over all joint distributions of thw@nh Py Py, x,10 P, xs)0:
U] < || +4, [Us| < |X] +4, and|Q| < 6. Then the the following inclusion holds:

Rux CC. (2)

Remark 1 The Han-Kobayashi inner bound reduces to the interferasesise inner

bound by setting/; = U, = (). At the other extreme, the Han-Kobayashi inner bound
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reduces to the simultaneous-nonunique-decoding innendby settingl; = X; and
U, = X,. Thus, the bound is tight for the class of DM-ICs with strontgiference.

Remark 2 The Han-Kobayashi inner bound can be readily extended t&thessian IC
with average power constraints and evaluated using GausSiaX;), j € {1,2}. It is

not known, however, if the restriction to the Gaussian iistion is sufficient.

Proof: The proof uses rate splitting. We represent each mess$ageg < {1, 2},
by independent “public” messagl/;, at rate R;, and “private” messagé/;; at rate
R;;. Thus,R; = Rjy + R;;. These messages are sent via superposition coding, whereby
the cloud centel/; represents the public messagg, and the satellite codeword;
represents the message pdif;,, M,;). The public messages are to be recovered by both
receivers, while each private message is to be recovergdhbynits intended receiver.

We First show that the tupleR,g, R, R11, R22) IS achievable if

Ry < I(X1;Y1|Uy, Us, Q), (3a)

Riy + Rio < I(X1;: Y1[Us, Q), (3b)

Ry + Roo < I(X4,Us; Y1 |UL, Q), (3c)

Ry1 + Rio + Rao < I(X1, Us; Y11Q), (3d)
Ras < I(Xa; Y2|Ur, Uz, Q), (3e)

Rz + Rog < I(X2;Y>|Uh, Q), (3)

Ry + Rig < 1(X5,Us; Ya|Us, Q), (39)

Ras + Rao + Rig < 1(Xy, Uy; Y2|Q), (3h)

for some PMFP, Py, x,10FPu,, x,|q-

Throughout this proof we denote a sequence of lengthth symbol from the alphabet
X by a boldface letter, i.ex.

Codebook Generation: Fix a PMF PPy, x,0Fu,, x,)o and e > 0. Generate a
sequenceq in an i.i.d. manner according t&,. For j € {1,2}, randomly and

conditionally independently generap&’io sequencesi;(m;o), mjo € {1,...,2" %o},
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TABLE I: The joint PMFs induced by differentmq, msg, m1) triples.

] \ mio \ Mo \ mi \ Joint PMF \ Rate Bound \
1] 1 1 1 | p(uy,x1)p(ug)p(y1|x1, us) -
21 1 1 * p(ur, xq)p(uz)p(yi|uy, uz) Ry < I(Xy;Y1|Uy, Us, Q)
3| * 1 * p(ug, xq)p(uz)p(yi|uz) Rio + Riy < I(Xy,Uy; Y1|Us, Q)
41 * 1 1 p(uy, x1)p(ug)p(y1|uz) Rio < I(X1,Uy; Y1|Us, Q)
3) * * p(ug, x1)p(uz)p(y:|u) Rao + Riy < I(Xy,Us; Y4 |UL, Q)
6| * * 1 p(uy, x1)p(ug)p(y1) Rio + Rao < I(X1,Uy, Uy Y1|Q)
7| * * * p(uy, x1)p(uz)p(y1) Rio + Roo + Riy < I(X4,Uy, Uy Y11Q)
8| 1 * 1 p(uy, x1)p(ug)p(y]x1) Ryy < 1(X1;Y1|Uy, Us, Q)

each according tq[; , Py, q(ujlg). For eachm;,, randomly and conditionally inde-
pendently generat®"%ii sequences;(m;o, m;;), m;j € {1,...,2"%i}, each according
to [T, Px;jv;.0(wjilwsi(myo), a:).

Encoding: To sendm; = (m;o,m;;), j € {1,2}, Encoderj transmitsx;(m;o, m;;).

Decoding: We use simultaneous nonuniqgue decoding. Upon receiving
y1, Decoder 1 finds the wunique message pairig, 1) sSuch that
(q, s (rn10), Up(map), 1 (1o, 111 ), y1) € T, for some myy € {1,...,2nR0};
otherwise it declares an error. Decoder 2 finds the messagérpa, 1o2) Similarly.

Analysis of the Probability of Error: Assume message paft1,1),(1,1)) is sent.
We bound the average probability of error for each decodest €onsider Decoder 1. As
shown in Table I, we have eight cases to consider (here ¢onlif onq is suppressed).
Cases 3 and 4, and 6 and 7, respectively, share the same PMéasn8 does not cause
an error. Thus, we are left with only five error events. Acaogty, Decoder 1 makes an

error only if one or more of the following events occur:

&0 ={(Q UI(1), Ua(1). Xu(1,1), Y1) ¢ TV |, (4)
811 = {Elmu 7A ]_, (Q,U1<].),UQ(l),Xl(l,mn),Yl) € 7;(70}, (5)

Ep = {Hmw # 1,may, (QuU1<m10)7U2(1)7X1(m107m11)7Y1) € 7;(”)}7 (6)
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&3 = {3m20 #1,my #1,(Q,Ui(1), Us(mag), Xi(1,m11), Y1) € t(n)}, (7)
&1y = {Hmlo # 1mgo # 1,may, (Q, Ui(mag), Us(mag), X1 (mag, mn1), Y1) € t(n)}
(8)

Hence, the average probability of error for Decoder 1 is ufgeeinded as

4

Pl&] <) Pl&]. (9)

=0

We bound each term. By the LLNP:[&O} tends to zero as — oo. By the packing
lemma,P[£),] tends to zero as — oo if Ry < I(Xy;Y1|Uy, Us, Q) —6(e€). Similarly, by
the packing lemmaP[&1,], P[€13] andP[£14] tend to zero as — o if the conditions
Ri1+ Ryp < I(X1; Y1|Us, Q) — 6(€), Ryt + Rao < I(X1, Up; Y1|U1, Q) — d(€), and Ryy +
Rio + Roo < I(X4,Us; Y1|Q) — 0(€) are satisfied, respectively. The average probability
of error for decoder 2 can be bounded similarly.

Finally, substitutingR;; = R; — Ryo and Ry; = Ry — Ry, and using the Fourier-
Motzkin procedure with the constraints< R;, < R;, j € {1,2}, to eliminateR,, and
Rsy, we obtain the region given in Theorem 1. Furthermore, thdicality bound on
Q can be proved using the convex cover method (see [2, Appédidigr details). This

completes the proof of the HanKobayashi inner bound. [ |

1. THE SEMI-DETERMINISTIC INJECTIVE INTERFERENCE CHANNE

Consider the semi-deterministic interference channelatiegiin Figure 1. Here the
functionsy, andy, satisfy the condition that for every, € X}, y,(z1,t2) IS a one-to-
one function oft, and for everyz, € Xs, ya2(x2,t1) iS @ one-to-one function aof;. Note
that these conditions imply that(Y;|X,) = H(1,) andH (Y5|Xs) = H(T}). The channel
is semi-deterministic in the sense that the mapping foto 7;, wherei € {1,2}, is
random.

Note that if we assume the channel variables to be real-dahsead of finite, the
Gaussian IC becomes a special case of this semi-detenmil@sith by taking7; =

91 X1 + Zy andTy = g12Xs + Z;.
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Fig. 1: Semi-deterministic interference channel.

Consider the following bound on the capacity region of theisdsterministic I1C [3].

Theorem 2 (Outer Bound) Let Csp be the capacity region of the semi-deterministic

IC. Let R be the region defined by the union of all sets of rate péfts R,) € R

satisfying:
Ry < H(Y1]X2, Q) — H(T2| Xa), (10a)
Ry < H(Y2| X1, Q) — H(T| Xn), (10b)
Ry + Ry < H(Y1|Q) + H(Ya|Us, X1, Q) — H(T1| X,) — H(T|X,), (10c)
Ri+ Ry < HY1|U1, X2, Q) + H(Y2|Q) — H(Th| X1) — H(T2]X2), (10d)
Ry + Ry < H|Uy, Q) + H(Ya|Us, Q) — H(Ty|X1) — H(T2|X2), (10e)

2R + Ry < HY|Q) + HY Uy, Xo, Q) + H(Y2|Us, Q) — H(T1|X1) — 2H (15| X5),
(10f)

Ry + 2Ry < H(Y2|Q) + H(Ya2|Us, X1, Q) + HY1 U1, Q) — 2H(T1[Xy) — H(T3]X2)
(109)

where the union is taken over all joint distributions of theornf
PQPX1|QPX2\QPU1\X1PU2\X21 where PU].‘X]. = PTj\X]' for VS {1,2} Then the the

following inclusion holds:
Csp € Ro. (11)
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Proof: Consider a sequence @p 1, 2"%2) codes withlim, . P™ = 0. Fur-
thermore, letXy, X7, 17, T3, Y and Y, denote the random variables resulting
from encoding and transmitting the independent messddesand M,. Define the
random variabled/* and U3 such thatUj; is jointly distributed with X;; according
to Pr,x,(ujlx;), conditionally independent of’j; given Xj; for j € {1,2} and

i € {1,...,n}. By Fanos inequality,

nRj = H(M])
< I(My;Y[") + ney

< I(X}Y)) + ney (12)
Next, observe that

(X7 Y = HY)") = H(Y'[XT)

Y H(Y) - H(T3|XT)
O H(vy) - H(TY)
< Z H(Yy) — H(T3) (13)

where (a) follows from the fact that” and7’' are one-to-one giveA 7, while (b) follows
from the fact that7’) is independent ofX}'. The second terni (73'), however, is not

easily upper-bounded in a single-letter form. Now consitierfollowing augmentation

X7 < TXE Y U X))

= (X5 U7) + L(XT5 X5|UT) + TXT YUY X))

(a) n n|yn n|rmn n n|yn 7 n
:H(Ul)_H(Ul |X1)+H(Y1 |U17X2)_H(Y1 |X17U17X2)

(b) mn n n n n n mn n
= H(Tl)_H(Ul ‘X1>+H(Y1 ’UleQ)_H(TQ ‘X2>

=1
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First, note that (a) follows from the fact by the choice of jbi@t distribution in Theorem
2, T and U} are identically distributed and the fact th@k}', X7') are independent
conditioned onU;". To see that (b) holds consider the fact that the second amthfo
terms in (b) represent the output of a memoryless channelngits input; thus, they
readily single-letterize with equality. The third term ih)(can be upper-bounded in a
single-letter form. The first ter# (77") will be used to cancel terms lik& (773') in (13).

Similarly, we can write

I(XT5 YY) < (XT3 Y, U7)
= I(X7; U7) + L(XT Y |UY)
= H(UY) — H(UT|XT) + H(Y'|UT) — H(Y"| X7, UY)

= H(17") — H(UY[XY) + H(Y"|UY) — H(T3')
:H(TI”)—H(TZ")—Z [H(U1i|X1i)+H(Yu|U1i) (15)
i=1
and
TXT; V) < IOXT5 Y, X))
= T(X75 X3) + I(XT; Y| XS)
= H(Y"|X3) — H(Y;"[XT, X3)

= H(Y!"[Xy) - H(T3|X5)
= [H(YM|X%) + H(Ty| Xoy) (16)
i=1
By symmetry, similar bounds can be established iK' ; Y5"), namely,

I(X5: Y9 < ZH (Yo;) — H(TT), (17)

n

I(X3:Yy) < | H (Uil Xoi) + H (Yail Usi, Xu3) = H(Tul Xa0)|, - (28)

=1
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X33 Y9) < H(E) — HUT) — 3 [H(UXa0) + HOYaU)], 19)
I1(X3;Yy") < Z |:H(}/2i‘X1i) + H(T1i|X1i)i| . (20)

Finally, consider linear combinations of the inequalitias(13)-(20) where all the
multi-letter terms, namely (7}*) and H (7', are canceled. Combining them with the
bounds in (12) and using a time-sharing variable- U{1,...,n} completes the proof
of the outer bound. u

Having the result of Theorem 2, recall the Han-Kobayasheiyound. By introducing
the restriction that’y, 1,0, x,,x, = Pr|x, P x., the HK region in (1) reduces to the one

presented subsequently, which gives rise to the followinigltary.

Corollary 1 (Han-Kobayashi Inner Bound for the Semi-Deterministic IC) Let Csp
be the capacity region of the semi-deterministic IC. [t be the region defined by

the union of all sets of rate pais?;, R,) € R? satisfying:

Ry < HN|Uy, Q) — H(T3|Us, Q), (21a)
Ry < H(Y2|Uy, Q) — H(T1|Uy, Q), (21b)
Ry + Ry < HN|Q) + H(Y2|Uy, Uy, Q) — H(Th|Uy, Q) — H(T3|Us, Q), (21c)
Ri+ Ry < HY1[UL, U2, Q) + H(Y2|Q) — H(T1[U1, Q) — H(T3|Us, Q), (21d)
Ry + Ry < HY|UL, Q) + H(Ya|Uz, Q) — H(Th|UL, Q) — H(T3|Us, Q), (21e)

2Ry + Ry < HW1|Q) + H(Y1|U1, Uz, Q) + H(Ys|Us, Q) — H(T1|Uy, Q) — 2H (T5|Us, Q),
(21f)

Ry + 2Ry < H(Y2|Q) + H(Ya|Uy,Us, Q) + H(Y1|U1, Q) — 2H(T3|Uy, Q) — H(T3|Us, Q),
(219)

where the union is taken over all joint distributions of theornf
PqPx,10Px,10Puv, 1x, Pusx,, Where Py x, = Prx, for j € {1,2}. Then the the
following inclusion holds:

R C Csp. (22)
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The inner bound in (21) is obtained by substituting the jaiistribution

PoPx,10 Puyix, Px,1o Puaixs Prijx: Projxs (vi=pi(10,X0)) {Ya=ya(T2,X2)}s  (23)
S~—— S~——
=Pryx, =Pr,|x,
with the one stated in Theorem 1.
For a fixed(Q, X1, X2) ~ Py Px,10Px, |0, let Ro(Q, X1, X) be the region defined by
the set of inequalities in (10), and I1&;(Q, X1, X») denote the closure of the region

defined by the set of inequalities in (21).

Lemma 1 (Gap Between the Inner and Outer Bounds [3]) If (R1, R») €
Ro(Q, X1, X3), then <R1 — [(Xy; T5|Us, Q), Ry — I1(Xy; T1|Un, Q)) € Ri(Q, X1, Xa).

The result of lemma 1 straightforwardly follows from theustiure of the rate bounds
in (10) and the fact that/ (Y;|U;, Q) > H(Y;|X;,Q), for j € {1,2}.

A. Half-Bit Theorem for the Gaussian IC

We show that the outer bound in Theorem 2, when specializeédet@saussian IC, is
achievable within half a bit per dimension. For the Gauss@nthe auxiliary random

variables in the outer bound can be expressed as

Uy = gn X1 + Zy (24a)
Us = g12 X5 + 7, (24b)
where Z; and Z} are N'(0,1), independent of each other and @K, X, Z1, Zs).

Substituting in the outer bound in Theorem 2, we obtain arerobbundR$ on the

capacity region of the Gaussian IC that consists of all ratespR;, R,) € R such that

R, <C(51), (25a)
Ry < C(S,), (25b)
S
R1+R2§C(1+112) + C(I + S,), (25¢)
S
R1+R2§C<1+2[1) + O+ 5), (25d)
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S, + I, + I, 1, Sy + I + I 1,
< L S SN N 2
Rruﬁ_c< Ty )+C< 2 ) (25€)
S So+ I+ 11 1o
< e
ﬂﬁ+R2_C<1+b)+%Xh+SUC( T ), (25f)
Sy S+ 1+ L1,
< e
R1+2R2_C(1+[1)+C(]2+SQ)C( s ) (250)

whereC(z) = 5 log(1 + z).

Now we show thatR$ is achievable with half a bit.

Theorem 3 (Half-Bit Theorem [4]) For the Gaussian IC, iRy, R;) € R, then

(Ri — 1, Ry — 1) is achievable.

Proof: To prove Theorem 3, consider Lemma 1 for the Gaussian IC Wélatixiliary

random variables in (24). Then, fgre {1,2}, consider

(X 5|05, Q) = W(T5|U;, Q) — h(T}]U;, X, Q)
= W(T;|U;) — h(T};]X;)

= h(T;|U;) — h(Z;)

(a)
< h(T; = U;) — h(Z;)

= h(Z; — Z;) — h(Z;)

1
2
where (a) follows from the fact that conditioning reduces@py. [ |

[1l. DEGREE OF FREEDOM

Consider the symmetric Gaussian IC with = Sy = S andl; = I, = I . Note that
S and [ fully characterize the channel. Define thgnmetric capacity of the channel as

Coym = max {R :(R,R) € C} and thenormalized symmetric capacity as

Csym

dom = Gigy

We find thesymmetric degrees of freedom (DoF) d?,,,, which is the limit ofdy,,, as

sym?
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the SNR and INR approach infinity. Note that in taking the fjmare are considering a
sequence of channels rather than any particular channisl lifitit, however, sheds light

on the optimal coding strategies under different regimebigih SNR/INR.
Specializing the outer bourRS in (25) to the symmetric case yields

Csym < Csym
. 1 S 1 S+I1+1%\ 2 S 1 5
(26)
By the half-bit theorem, - -
ngm, 1 Coym
: — = < gy < I 27
c(s) 2= "= CS) 7)

Thus, the difference between the upper and lower boundsecges to zero a$ — oo, and the
normalized symmetric capacity converges to the degreeseetibmdy,,,. This limit, however, depends
on how! scales as$ — oo. Since it is customary to measure SNR and INR in decibels)(ds consider
the limit for a constant ratio between the logarithms of tN&land SNR

_logI

O g (28)

or equivalently,/ = S*. Then, asS — oo, the normalized symmetric capacidy,,,, converges to

Csym I—5
daym(@) = Jim —7 55

2 2 1 2
:min{l,max{(;,l— %} ,max{a,l—a},max{3,3a} +max{3,

Since the fourth bound inside the minimum is redundant, we ha

w0l 8
—
|
|
—

(@) :min{l,max{a

sym

5,173},max{a,1fa}}‘ (29)

The symmetric DoF as a function of is plotted in Figure 2. Note the unexpected W (instead of V)
shape of the DoF curve. When interference is negligible<(1/2), the DoF isl — « and corresponds to
the limit of the normalized rates achieved by treating iigi@mce as noise. For strong interfereneex( 1),
the DoOF ismin {1, %} and corresponds to simultaneous decoding. In particulagnwnterference is very
strong (x > 2), it does not impair the DoF. For moderate interferen]c?ﬁ a < 1), the DoF corresponds
to the Han-Kobayashi rate splitting. However, the DoF fingréases untiv = % and then decreases go

asa is increased td. Note that fora = £ anda = 1, time division is also optimal.
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Fig. 2: Degrees of freedom for symmetric Gaussian IC vetsusllggé.

Remark 3 In the above analysis, we scaled the channel gains underdadower constraint. Alternatively,
we can fix the channel gains and scale the poWeto infinity. It is not difficult to see that under this
high power regimelimp_, ., d* = % regardless of the values of the channel gains. Thus timsiaivis

asymptotically optimal.
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