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Multi-User Information Theory December, 2013

Lecture 2

Lecturer: Haim Permuter Scribe: Tal Kopetz

I. STRONG AND VERY STRONG INTERFERENCE

In this lecture we continue to study the interference channel (IC). We address two

cases of interference: the strong interference and the verystrong interference.

A. Strong Interference

The IC with strong interference is defined as follows.

Definition 1 (Strong Interference) A discrete memoryless IC is said to have strong

interference if

I(X1; Y1|X2) ≤ I(X1; Y2|X2) (1)

I(X2; Y2|X1) ≤ I(X2; Y1|X1) (2)

for all p(x1)p(x2).

Theorem 1 (Capacity region of the IC with strong interference) The capacity re-

gion of the IC with strong interference, as defined in Def. 1, is the set of rate pairs

(R1, R2) s.t.

R1 ≤ I(X1; Y1|X2, Q) (3)

R2 ≤ I(X2; Y2|X1, Q) (4)

R1 +R2 ≤ min{I(X1, X2; Y1|Q), I(X1, X2; Y2|Q)} (5)

for some pmfp(q)p(x1|q)p(x2|q)p(y1, y2|x1, x2).

Proof: Achievability: For the achievability proof we present the simultaneous

decoding method.
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Simultaneous decoding:In this decoding method, both messages are decoded at the

two decoders. Fix a joint distributionp(q)p(x1|q)p(x2|q)p(y1, y2|x1, x2).

Code Design: Generateqn i.i.d. usingP (qn) = Πn
i=1P (qi) and inform it to the two en-

coders and decoders. Generate2nR1 codewordsxn
1 i.i.d. usingP (xn

1 |q
n) = Πn

i=1P (x1,i|qi)

and2nR2 codewordsxn
2 i.i.d. usingP (xn

2 |q
n) = Πn

i=1P (x2,i|qi).

Encoding: Encode messagem1 usingxn
1 (m1, q

n) and messagem2 usingxn
2 (m2, q

n).

Sendxn
1 andxn

2 over the channel.

Decoding at Decoder 1: Decoder 1 looks for̂m1 s.t.

(xn
1 (m̂1, q

n), xn
2 (m2, q

n), yn1 , q
n) ∈ T (n)

ǫ (X1, X2, Y1, Q). (6)

If no such message, or more than one such message, was found, an error is declared.

Decoding at Decoder 2: Decoder 2 looks for̂m2 s.t.

(xn
1 (m1, q

n), xn
2 (m̂2, q

n), yn2 , q
n) ∈ T (n)

ǫ (X1, X2, Y2, Q). (7)

If no such message, or more than one such message, was found, an error is declared.

Error Analysis: We derive the following constraints from decoding at Decoder 1.

m1 decoded correctly m2 decoded correctly Constraint

X × No constraint needed

× X R1 ≤ I(X1; Y1|X2, Q)

× × R1 +R2 ≤ I(X1, X2; Y1|Q)

Similarly, from decoding at Decoder 2 we obtain

m1 decoded correctly m2 decoded correctly Constraint

X × R2 ≤ I(X2; Y2|X1, Q)

× X No constraint needed

× × R1 +R2 ≤ I(X1, X2; Y2|Q)

That completes the achievability.

Converse:Given an achievable rate-pair(R1, R2) we need to show that there exists a

joint distribution of the formp(q)p(x1|q)p(x2|q)p(y1, y2|x1, x2) such that the inequalities
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Theorem 1 are satisfied. Since(R1, R2) is an achievable rate-pair, there exists a

(2nR1, 2nR2 , n) code with an arbitrarily small error probabilityP (n)
e . By Fano’s inequality,

H(M1|Y
n
1 ) ≤ nR1P

(n)
e +H(P (n)

e ). (8)

We set

R1P
(n)
e +

1

n
H(P (n)

e ) , ǫn, (9)

whereǫn → 0 asP (n)
e → 0. Hence,

H(M1|Y
n
1 ,M2) ≤ H(M1|Y

n
1 ) ≤ nǫn. (10)

For R1 we have the following:

nR1 = H(M1) (11)

= H(M1|M2) (12)
(a)

≤ I(M1; Y
n
1 |M2) + 2nǫn (13)

(b)

≤ I(Xn
1 ; Y

n
1 |X

n
2 ) + 2nǫn (14)

≤

n∑

i=1

I(X1,i; Y1,i|X2,i) + 2nǫn (15)

= nI(X1; Y1|X2, Q) + nǫn (16)

where (a) follows from Fano’s inequality and (b) follows from encoding relations. By

symmetry, the same can be derived forR2. For the sum-rate we have

n(R1 +R2) = H(M1,M2) (17)

= H(M2) +H(M1|M2) (18)
(a)

≤ I(M2; Y
n
2 ) + I(M1; Y

n
1 |M2) + 2nǫn (19)

(b)

≤ I(Xn
2 ; Y

n
2 ) + I(Xn

1 ; Y
n
1 |X

n
2 ) + 2nǫn (20)

(c)

≤ I(Xn
2 ; Y

n
2 ) + I(Xn

1 ; Y
n
2 |X

n
2 ) + 2nǫn (21)

= I(Xn
1 , X

n
2 ; Y

n
2 ) + 2nǫn (22)

≤

n∑

i=1

I(X1,i, X2,i; Y2,i) + 2nǫn (23)
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= nI(X1, X2; Y2|Q) + nǫn (24)

where (a) follows from Fano’s inequality, (b) follows from encoding relations, and (c)

follows from the following lemma.

Lemma 1 For a DM-IC p(y1, y2|x1, x2) with strong interference, the inequality

I(Xn
1 ; Y

n
1 |X

n
2 ) ≤ I(Xn

1 ; Y
n
2 |X

n
2 ) (25)

holds for all (Xn
1 , X

n
2 ) ∼ p(xn

1 )p(x
n
2 ) and alln ≥ 1.

The proof is given in Appendix A. The second bound for the sum-rate can be obtained

similarly to the first bound. This completes the proof.

B. Very Strong Interference

The interference channel with very strong interference is defined as follows.

Definition 2 (Very Strong Interference) A discrete memoryless interference channel is

said to have very strong interference if

I(X1; Y1|X2) ≤ I(X1; Y2) (26)

I(X2; Y2|X1) ≤ I(X2; Y1) (27)

for all p(x1)p(x2).

From definitions 1 and 2 we can see that

very strong interference⇒ strong interference

very strong interference: strong interference

Theorem 2 (Capacity region of the IC with very strong interference) The capacity

region of the IC with very strong interference, as defined in Def. 1, is the set of rate

pairs (R1, R2) s.t.

R1 ≤ I(X1; Y1|X2, Q) (28)

R2 ≤ I(X2; Y2|X1, Q) (29)

for some pmfp(q)p(x1|q)p(x2|q)p(y1, y2|x1, x2).
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Sketch of Proof: Achievability: We use simultaneous decoding as in the strong

interference case. Under the constraints in Def. 2, the region in Theorem 1 reduces

to the one in Theorem 2.

Converse:The two inequalities in (2) are identical to the ones in the strong interference

case. �

II. GAUSSIAN INTERFERENCECHANNEL

We now address the Gaussian IC depicted in Fig. 1.

+

+
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Fig. 1. The Gaussian IC. The input to Decoder 1 is the sum of theoutput of Encoder 1 with fading factorg11, the

output of Encoder 2 with fading factorg21, and a Gaussian noiseZ1. The input to Decoder 2 is the sum of the output

of Encoder 2 with fading factorg22, the output of Encoder 1 with fading factorg12, and a Gaussian noiseZ2.

The Gaussian channel is quite popular since it provides a simple model for several

real-world communication channels, such as wireless and digital subscriber line (DSL)

channels, or in this case, a simple wireless interference channel or a DSL cable bundle.

The channel outputs corresponding to the inputsX1 andX2 are

Y1 = g11X1 + g21X2 + Z1 (30)
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Y2 = g12X1 + g22X2 + Z2 (31)

wheregjk, j, k = 1, 2, is the channel gain from senderj to receiverk, andZ1 ∼ N(0, σ2
0)

andZ2 ∼ N(0, σ2
0) are noise components. Assume average power constraintP on each

of X1 andX2. We assume without loss of generality thatσ2
0 = 1 and define the received

SNRs asS1 = g211P andS2 = g222P and the received interference-to-noise ratios (INRs)

as I1 = g221P andI2 = g212P .

We present several inner bounds for the gaussian IC:

1) Time division with power control.

If the senders are allowed to use higher powers during their transmission periods

(without violating the power constraint over the entire transmission block), strictly

higher rates can be achieved. We divide the transmission block into two subblocks,

one of lengthαn and the other of lengthαn (assumingαn is an integer). During the

first subblock, sender 1 transmits using Gaussian random codes at average power

P/α (rather than P) and sender 2 does not transmit. During the second subblock,

sender 2 transmits at average powerP/α and sender 1 does not transmit. Note that

the average power constraints are satis4ed. This scheme achieves the set of rate

pairs (R1, R2) such that

R1 ≤ αC(S1/α) (32)

R2 ≤ αC(S2/α) (33)

for someα ∈ [0, 1] whereC(x) = 1
2
log(1 + x)

2) Treating interference as noise.

If each encoder treats the other encoder’s transmission as noise, we obtain the inner

bound consisting of all rate pairs(R1, R2) such that

R1 ≤ I(X1; Y1|Q) (34)

R2 ≤ I(X2; Y2|Q) (35)

for some pmfp(q)p(x1|q)p(x2|q)p(y1, y2|x1, x2). By using our notations for the

gaussian interference channel and settingQ = ∅, we obtain

R1 ≤ C(S1/(1 + I1)) (36)
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R2 ≤ C(S2/(1 + I2)) (37)

3) Simultaneous decoding.

If we use our notations for the gaussian interference channel and setQ = ∅ in

Theorem 1, we obtain

R1 ≤ C(S1) (38)

R2 ≤ C(S2) (39)

R1 +R2 ≤ min{C(S1 + I1), C(S2 + I2)} (40)

Let us compare the performances of the inner bounds for different interferences using

Fig. 2. Without loss of generality, we setS = S1 = S2 = 1 and I = I1 = I2.

R1

R1

R1

R1

R2 R2

R2 R2

RTD

RTD

RTD

RTD

RIAN

RIAN

RIAN

RIAN

RSD

RSD

RSD
RSD

(a) I = 0.1 (b) I = 0.5

(c) I = 1.1 (d) I = 5.5

Fig. 2. Comparing the performance of the inner bounds. TD - Time Division, IAN - Interference as Noise, SD -

Simultaneous Decoding.
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When interference is weak (Fig. 2a), treating interferenceas noise can outperform

time division and simultaneous decoding. As interference becomes stronger (Fig. 2b),

simultaneous decoding and time division begin to outperform treating interference as

noise. As interference becomes even stronger, simultaneous decoding outperforms the

other two coding schemes (Fig. 2c,d), ultimately achievingthe interference-free rate

region consisting of all rate pairs(R1, R2) such thatR1 < C1 andR2 < C2 (Fig. 2d).

APPENDIX A

PROOF OFLEMMA 1

To prove the lemma we first note that the hypothesis implies that I(X1; Y1|X2, U) ≤

I(X1; Y2|X2, U), whereU − (X1, X2)− (Y1, Y2) andX1 −U −X2 form Markov chains.

Using this inequality we derive the following

I(Xn
1 ; Y

n
2 |X

n
2 )− I(Xn

1 ; Y
n
1 |X

n
2 )

(a)
=I(Xn

1 ; Y
n−1
2 |Xn

2 ) + I(Xn
1 ; Y2,n|X

n
2 , Y

n−1
2 )− I(Xn

1 ; Y1,n|X
n
2 )− I(Xn

1 ; Y
n−1
1 |Xn

2 , Y1,n)

(b)
=I(Xn

1 , Y1,n; Y
n−1
2 |Xn

2 ) + I(Xn
1 ; Y2,n|X

n
2 , Y

n−1
2 )− I(Xn

1 , Y
n−1
2 ; Y1,n|X

n
2 )

− I(Xn
1 ; Y

n−1
1 |Xn

2 , Y1,n)

(c)
=I(Y1,n; Y

n−1
2 |Xn

2 ) + I(Xn−1
1 ; Y n−1

2 |Xn
2 , Y1,n) + I(X1,n; Y

n−1
2 |Xn

2 , Y
n
1 , X

n−1
1 )

+ I(X1,n; Y2,n|X
n
2 , Y

n−1
2 ) + I(Xn−1

1 ; Y2,n|X
n
2 , Y

n−1
2 , X1,n)− I(Y n−1

2 ; Y1,n|X
n
2 )

− I(X1,n; Y1,n|X
n
2 , Y

n−1
2 )− I(Xn−1

1 ; Y1,n|X
n
2 , Y

n−1
2 , X1,n)

− I(Xn−1
1 ; Y n−1

1 |Xn
2 , Y1,n)− I(X1,n; Y

n−1
1 |Xn

2 , Y1,n, X
n−1
1 ) (41)

(d)
=I(X1,n; Y2,n|X

n
2 , Y

n−1
2 )− I(X1,n; Y1,n|X

n
2 , Y

n−1
2 )

+ I(Xn−1
1 ; Y n−1

2 |Xn
2 , Y1,n)− I(Xn−1

1 ; Y n−1
1 |Xn

2 , Y1,n) (42)

where (a), (b), and (c) follow from the chain rule, and step (d) follows from the

memorylessness of the channel (the 3rd, 5th, 8th, and 10th terms in (41) are null). If we

setUn = (Xn−1
2 , Y n−1

2 ), we see that the following Markov chains hold

(Xn−1
2 , Y n−1

2 ) − (X1,n, X2,n) − (Y1,n, Y2,n),

X1,n − (Xn−1
2 , Y n−1

2 ) − X2,n

(43)
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The sum of the first two terms in (42) is greater or equal to zero. By induction, the 3rd

and 4th terms in (42) are also greater or equal to zero since the following Markov chains

hold
(X2,n, Y1,n) − (Xn−1

1 , Xn−1
2 ) − (Y n−1

1 , Y n−1
2 ),

Xn−1
1 − (X2,n, Y1,n) − Xn−1

2

(44)

and thus

I(Xn
1 ; Y

n
2 |X

n
2 )− I(Xn

1 ; Y
n
1 |X

n
2 ) ≥ 0 (45)

which concludes the proof. �
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