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Multi-User Information Theory December, 2013

Lecture 2

Lecturer: Haim Permuter Scribe: Tal Kopetz

I. STRONG AND VERY STRONG INTERFERENCE

In this lecture we continue to study the interference chhfi@®. We address two

cases of interference: the strong interference and the steong interference.

A. Strong Interference
The IC with strong interference is defined as follows.
Definition 1 (Strong Interference) A discrete memoryless IC is said to have strong
interference if
I(X1; Y] Xp) < I(Xy; Y X)) 1)

[(X2:Ya|X)) < I(Xy:Yh)XY) (2)

for all p(z1)p(xs).

Theorem 1 (Capacity region of the IC with strong interference) The capacity re-
gion of the IC with strong interference, as defined in Def. slthe set of rate pairs
(Rl,RQ) S.t.

Ry < I(Xy;Y1|X5,Q) (3
Ry < I(Xy;Y3|X1,Q) 4)
Ry + Ry, < min{l(Xy, X5 Y1|Q), [(Xq, X2;Y2|Q)} 5)

for some pmfp(q)p(z1q)p(22|a)p(y1, yo|z1, 22).

Proof: Achievability: For the achievability proof we present the simultaneous

decoding method.
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Simultaneous decoding:In this decoding method, both messages are decoded at the
two decoders. Fix a joint distributiop(q)p(x1|q)p(x2|q)p(y1, yo|z1, T2).

Code Design: Generatey™ i.i.d. using P(¢") = 11, P(¢;) and inform it to the two en-
coders and decoders. Gener2tté' codewordse? i.i.d. usingP(z7|q") = I, P(z1.4]q:)
and2"f2 codewordsey i.i.d. using P(x%|q") = 17, P(z2.4]¢:)-

Encoding: Encode message:; using x}(m;,q") and message:, usingxh(ms,q").
Sendz} andz} over the channel.

Decoding at Decoder 1. Decoder 1 looks forn; s.t.

(x?<m17 qn)’ x;(m% qn)’ y?7 qn) € Ts(n) <X17 X27 th Q) (6)

If no such message, or more than one such message, was fouadpais declared.

Decoding at Decoder 2: Decoder 2 looks forn, s.t.

(x?<m17 qn)’ x;(m% qn)’ yg7 qn) € Ts(n) <X17 X27 1/27 Q) (7)

If no such message, or more than one such message, was fouadpais declared.

Error Analysis. We derive the following constraints from decoding at Decotle

m, decoded correctly m, decoded correctly Constraint
v X No constraint needed
X v Ry < I(X1; 71| X5,Q)
X X Ry + Ry < I(X1, Xo; Y1{Q)

Similarly, from decoding at Decoder 2 we obtain

m, decoded correctly m, decoded correctly Constraint
v X Ry < I(X9; Y2 | X1, Q)
X v No constraint needed
X X Ry + Ry < I(X1, X5 Y5|Q)

That completes the achievability.
Converse: Given an achievable rate-pdiR;, R;) we need to show that there exists a

joint distribution of the formp(q)p(x1|q)p(z2|q)p(y1, y2|x1, 22) such that the inequalities
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Theorem 1 are satisfied. Sindg?;, R») is an achievable rate-pair, there exists a

(2nf 2nf2 p) code with an arbitrarily small error probabilifyé”). By Fano’s inequality,
H(Mi|Y{") < nRy P + H(P™), (8)

We set

1
R P™ 4 = H(P( N2 e, (9)

wheree, — 0 as P\ — 0. Hence,
H(M,|Y", M) < H(M;|Y") < ney. (10)

For R; we have the following:

nlky = H(Ml) (11)
—  H(M|M,) (12)
%) I(My; Y| My) + 2ne, (13)
< IXPYIXS) + 2ne, (14)
< iI(Xl,i;Yi,i|X2,i)+2n€n (15)
i=1
= nl(X1;Y1|X, Q) + ne, (16)

where (a) follows from Fano’s inequality and (b) follows finoencoding relations. By

symmetry, the same can be derived 5. For the sum-rate we have

n(Ry + Ry) = H(M,, M) (17)
— H(M,) + H(M,| M) (18)
< I(My V) + T(My Y7 M) + 2ne, (19)
2B V) 4 (X YEXT) + 2ne, (20)
QI YR + (X VEXT) + 2ne, (21)
= I(XT, XDV + 2ne, (22)
< i[(Xu,Xz,i;Yg,i)jLQnen (23)

i=1
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= nl(Xy, Xy; Y2|Q) + ne, (24)
where (a) follows from Fano’s inequality, (b) follows froorm@ding relations, and (c)

follows from the following lemma.

Lemma 1 For a DM-IC p(y1, yo|z1, x2) With strong interference, the inequality
IXT; YY) < T(XT; Y3 X3) (25)
holds for all (X7, XJ) ~ p(a])p(z}y) and alln > 1.

The proof is given in Appendix A. The second bound for the sate-can be obtained

similarly to the first bound. This completes the proof. [ |

B. Very Strong Interference
The interference channel with very strong interferenceeifineéd as follows.

Definition 2 (Very Strong Interference) A discrete memoryless interference channel is

said to have very strong interference if

IN

I(X1; V1] Xo) I(X1;Ys) (26)

I(X5; Yo Xy) < I(Xy3 V1) (27)

for all p(z1)p(x2).
From definitions 1 and 2 we can see that

very strong interference=- strong interference

very strong interference<= strong interference

Theorem 2 (Capacity region of the IC with very strong interference) The capacity
region of the IC with very strong interference, as defined &f.[1, is the set of rate
pairs (R, Rs) S.t.

Ry

IN

](X1§Yl|X2>Q) (28)

Ry < I(Xy;Y2|X1,Q) (29)

for some pmfp(q)p(z1q)p(22|a)p(y1, yo|z1, 22).
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Setch of Proof: Achievability: We use simultaneous decoding as in the strong

interference case. Under the constraints in Def. 2, theorega Theorem 1 reduces
to the one in Theorem 2.
Converse:The two inequalities in (2) are identical to the ones in tmergj interference

case. |

II. GAUSSIAN INTERFERENCECHANNEL

We now address the Gaussian IC depicted in Fig. 1.

Zy

Zs

Fig. 1. The Gaussian IC. The input to Decoder 1 is the sum obthput of Encoder 1 with fading factar 1, the
output of Encoder 2 with fading factgkr:, and a Gaussian noisé,. The input to Decoder 2 is the sum of the output

of Encoder 2 with fading factogs2, the output of Encoder 1 with fading factgiz, and a Gaussian noisg,.

The Gaussian channel is quite popular since it provides @lsimodel for several
real-world communication channels, such as wireless aguatlisubscriber line (DSL)
channels, or in this case, a simple wireless interferene@radl or a DSL cable bundle.

The channel outputs corresponding to the inpXitsand X, are

Yi = guXi+guXe+ 2 (30)
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Yo = 912X + g2 Xo + 25 (31)

whereg;, j, k = 1,2, is the channel gain from sendgto receiverk, andZ; ~ N(0, o3)

and Z, ~ N(0,02) are noise components. Assume average power consfraam each

of X; and X,. We assume without loss of generality thdt= 1 and define the received

SNRs asS; = ¢?, P and S, = g3, P and the received interference-to-noise ratios (INRs)

asl, = g5, P and I, = ¢}, P.

We present several inner bounds for the gaussian IC:

1)

2)

Time division with power control.

If the senders are allowed to use higher powers during themrsmission periods
(without violating the power constraint over the entirensmission block), strictly
higher rates can be achieved. We divide the transmissiark o two subblocks,
one of lengthnn and the other of lengthn (assumingyn is an integer). During the
first subblock, sender 1 transmits using Gaussian randorascatlaverage power
P/« (rather than P) and sender 2 does not transmit. During thendesubblock,
sender 2 transmits at average powrv and sender 1 does not transmit. Note that
the average power constraints are satis4ed. This schenmveshhe set of rate
pairs (R, Ry) such that

Ry

IN

aC(Sy/a) (32)

Ry, < aC(Sy/a) (33)

for somea € [0, 1] whereC(z) = 1log(1 + )
Treating interference as noise.
If each encoder treats the other encoder’s transmissionias,iwe obtain the inner

bound consisting of all rate paifs?;, R») such that
Ry < I(X;;Y1]Q) (34)

Ry < I(X5:Y2|Q) (35)

for some pmfp(q)p(x1|q)p(x2|q)p(y1, y2|x1, z2). By using our notations for the
gaussian interference channel and setting: @, we obtain

R, < C(Si/(1+ 1)) (36)
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Ry, < C(Sy/(1+ 1)) (37)

3) Simultaneous decoding.
If we use our notations for the gaussian interference cHaame setQ) = @ in

Theorem 1, we obtain

R < C(5) (38)
Ry < C(S) (39)
R1 -+ R2 S mm{C(Sl -+ [1), C(SQ -+ [2)} (40)

Let us compare the performances of the inner bounds forrdiffanterferences using

Fig. 2. Without loss of generality, we sé&t = S; = S, = 1l andl = [} = L.

R1 Rl
A RTD RIAN A
f RsOR1p
RSD 7—\)'IAN
> Rg »>
@7 =01 () I =05
Rl Rl
A RSD A RSD
RTD
7?/TD
Rian
7?'IAN
» R2 » R2
©I=11 d) =55

Fig. 2. Comparing the performance of the inner bounds. TDmeTDivision, IAN - Interference as Noise, SD -

Simultaneous Decoding.
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When interference is weak (Fig. 2a), treating interfereasenoise can outperform
time division and simultaneous decoding. As interfereneeomes stronger (Fig. 2b),
simultaneous decoding and time division begin to outperforeating interference as
noise. As interference becomes even stronger, simultandecoding outperforms the
other two coding schemes (Fig. 2c,d), ultimately achievihg interference-free rate

region consisting of all rate pairg?;, R,) such thatR;, < C; and R, < C; (Fig. 2d).

APPENDIX A

PROOF OFLEMMA 1

To prove the lemma we first note that the hypothesis implias X ;; Y1 | X,, U) <
I(X1; Y5 X5, U), whereU — (X, Xs) — (Y1, Ys) and X; — U — X, form Markov chains.
Using this inequality we derive the following
(X7 Y5 Xg) — TXT5 Y[ XS)

DX Y3 XE) + L(XPs Yau X5, Y3 — L(XP5 Vil X3) — T(XT5 Y7 X5 Vi)

b — n n n n— n n— n
(:)[<X?7Y1,n;y2n 1|X2) + [(Xl ; )/é,n‘X27)/é 1) - [<X1 7Y2 1;Y1,n‘X2>

— I(XT Y XE, Vi)

O L (Vi VP XD) + (X5 VP XD, Vi) + T(X s Y | X2, Y, XY

+ 1 X1 Yol X3, Y5 1) + T(XT ™5 Yool X5, Y5 70 X)) — 1(Y5 ™ Yiul X3)

— I( X1 V10| X5, Y27 = I(XT 75 V0| X5, Y57 X0 )

— I(XP YT Vi) — T(X0 s Y X, Vi, X7 (41)
I 03 Yol X5, Y37 = 1(X0 0 Vil X5, Y37

+IXTTH Y XS Vi) — IS Y X, Vi) (42)
where (a), (b), and (c) follow from the chain rule, and step f@lows from the

memorylessness of the channel (the 3rd, 5th, 8th, and 1ftiste (41) are null). If we
setU, = (X471, Y"1, we see that the following Markov chains hold

(Xg_17Yv2n_1) - (Xl,nuXQJZ) - (Yi7n,Yé,n)a

n—1 n—1 (43)
Xl,n - (XQ 7Y72 ) - X2,n
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The sum of the first two terms in (42) is greater or equal to .zBsoinduction, the 3rd

and 4th terms in (42) are also greater or equal to zero sircéotlowing Markov chains

hold
(XQJL’YL”) - (XlnileQnil) - (Ylnilvyénil)v

(44)
X - (X Yie) - X3
and thus
IXT5 Y9 XY) — T(XT5 Y[ X5) =2 0 (45)
which concludes the proof. [ |
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