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Mathematical methods in communication December 14th, 2009

Lecture 9

Lecturer: Haim Permuter Scribe: Itzhak Tamo

I. NON CAUSAL STATE INFORMATION-GELFAND-PINSKER THEOREM

We consider the channel coding problem depicted in Figure 1:Where the channel is DMC with s state

Fig. 1. Channel with states ∼ p(s), distributed i.i.d and known causally at the encoder

X × S,p(y|x, s)p(s),Y, and the state sequence,Sn, is i.i.d distributed according to∼ p(s) and is known

non causaly at the encoder. The defintions ofAchievability, Capacity andError Probablity are as before.

Definition 1 A code of rateR is function f : {1, 2, ..., 2nR} × Sn → Xn, i.e. every codeword,xn is a

function of the message,m ∈ {1, 2, ..., 2nR} and the state sequence,sn.

Theorem 1[Gelfand-Pinsker Theorem [1]]: The Capacity of the DMC with state that is i.i.d distributed

according to∼ p(s) and is available noncausally only at the encoder is:

C = max
p(u|s),x=f(u,s)

(I(U ;Y )− I(U ;S)),

where|S| ≤ min{|X ||S|, |Y|+ |S| − 1} andf is a deterministic function ofu ands.

Example: First we deal with a binary case. Find the capacity of the channel depicted in Figure 2:

Y = X ⊕ S ⊕ Z,

WhereS ∼ Bernoulli(p), Z ∼ Bernoulli(q) and the state sequence isSn known non causally at the

encoder.

Solution: Answer:C = 1−H(q)

• Achievability: Encode the message independently ofSn, and then do XOR to the codeword with the

state vector,sn. Thus the decoder getsY = X ⊕ S ⊕ S ⊕ Z = X ⊕ Z, therefore

C = max
p(x)

I(X ;Y ) = 1−H(q)
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Fig. 2. Xor channel scheme

• Achievability by Gelfand-Pinsker Theorem: Let U ∼ Be(12 ) independent of the stateS, and let

X = U ⊕ S then,

Y = X ⊕ S ⊕ Z

= U ⊕ S ⊕ S ⊕ Z

= U ⊕ Z,

and

C = max
pu|s,x=f(u,s)

I(U ;Y )− I(U ;S)

≥ I(U ;U ⊕ Z)− I(U ;S)

= I(U ;U ⊕ Z)

= H(U ⊕ Z)−H(Z)

= 1−H(q)

• Converse: AssumeSn is known to the encoder and decoder, thus the channel is reduced to an ordinary

BSC with probability of errorq, andC ≤ 1−H(q)

We now move on to prove Theorem 1:

Proof of Achievability:

• Design of the code: Fix p(u|s) andx = f(u, s) . Generate randomly usingp(u), i.i.d, a 2n(I(U ;Y )−ǫ)

codewords, i.e.(un(1), un(2), ..., un(R
′

)), whereR
′

= (I(U ;Y ) − ǫ). Generate2nR bins, one for

each messagem ∈ {1, 2, ..., 2nR}, whereR = (I(U ;Y )− I(U ;S) − 2ǫ). Distribute uniformly each

of the codewords into one of the bins. Therefore for each messagem we have generated a subcode

C(m) of size 2n(I(U;Y )−ǫ)

2n(I(U;Y )−I(U;S)−2ǫ) = 2n(I(U ;S)+ǫ) which made of the codewords in binm.
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• Encoding: To send massagem, the encoder chooses a codewordun from bin m such that is jointly

typical with the state sequencesn, i.e.

(un, sn) ∈ Aǫ(S,U).

The input to the channel at timei is xi = f(ui, si)

• Decoding: Looks for a codeword̂un that is jointly typical with the received codeword,yn, i.e.

(ûn, yn) ∈ Aǫ(U, Y ),

then declares the messagem̂ that is associated to the bin which containsûn.

• Probability of error analysis: An error occurs in the following cases:

1) There is no codeword in binm that is associated to the given state sequencesn:

E1 = {∀un ∈ C(m), (un, sn) /∈ Aǫ(U, S)}

2) we found a codeword,un, in bin m that is jointly typical with the state sequencesn and sent

xn = f(un, sn), but the received codeword is not jointly typical withun :

E2 = {(un, yn) /∈ Aǫ(U, Y )}

3) There existŝun in bin m̂ such thatm̂ 6= m, that is jointly typical with the received codeword,

yn,i.e.

Em̂
3 = {∃ûn ∈ C(m̂), m̂ 6= m, (ûn, yn) ∈ Aǫ(U, Y )}

W.l.o.g we can assume thatm = 1 therefore:

P (n)
e = P (m̂ 6= m|m = 1)

= P (E1 ∪E2 ∪
2nR

m̂=2 E
m̂
3 )

(a)

≤ P (E1) + P (E2) +

2nR∑

m̂=2

P (Em̂
3 ),

Where

(a) Union Bound.

We will see that each of the terms tends to zero asn tends to infinity.

1) In each bin there are2n(I(U,S))+ǫ codewords, then according to the covering lemma (see lecture

10), with high probability, at least one codeword is jointlytypical with sn. In other words

P (E1) → 0 asn → ∞.

2) un andsn are jointly typical by the choice ofun. x is a function of(u, s) thus

(xn, un, sn) ∈ Aǫ
n(X,U, S). Therefore by the weak law of large number with high probability

(un, yn) ∈ Aǫ
n(U, Y ). i.e. P (E2) → 0 asn → ∞
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3) Let m̂ 6= 1 , thenP ((ûn, y
n) ∈ Aǫ

n(U, Y )) ≤ 2−n(I(U ;Y )−3ǫ) for someûn ∈ C(m̂) (see [2,

Theorem 2.7.4 pp.33]). Thus,

2nR∑

m̂=2

P (Em̂
3 ) =

2nR∑

m̂=2

∑

ûn∈C(m̂)

P ((ûn, y
n) ∈ Aǫ

n(U, Y ))

≤

2nR∑

m̂=1

∑

ûn∈C(m̂)

2−n(I(U ;Y )−3ǫ)

≤ 2n(I(U ;Y )−I(U ;S)−2ǫ)2n(I(U ;S)+ǫ)2−n(I(U ;Y )−3ǫ)

2−nǫ → 0.

Thus we have shown that under this encoding scheme theP
(n)
e → 0 asn → ∞, which means the

rateR is achievable.

Proof of Converse:

Let R be an achievable rate, i.e. there exists a sequence of(2nR, n) codes withP (n)
e → 0 asn → ∞.

The trick is to find the auxilary random variableUi that forms the markov chainUi → (Xi, Si) → Yi.

We can bound the rateR as

nR = H(M)

= H(M)−H(M |Y n) +H(M |Y n)

(a)

≤ I(M ;Y n) + nǫn

=

n∑

i=1

H(Yi|Y
i−1)−H(Yi|Y

i−1,M) + nǫn

(b)

≤

n∑

i=1

H(Yi)−H(Yi|Y
i−1,M) + nǫn

=
n∑

i=1

I(Yi;Y
i−1,M) + nǫn

(c)

≤

n∑

i=1

I(M,Y i−1, Sn
i+1;Yi)− I(Yi;S

n
i+1|M,Y i−1) + nǫn

(d)
=

n∑

i=1

I(M,Y i−1, Sn
i+1;Yi)− I(Y i−1;Si|S

n
i+1,M) + nǫn

(e)
=

n∑

i=1

I(M,Y i−1, Sn
i+1;Yi)− I(Sn

i+1,M, Y i−1;Si) + nǫn,



9-5

where

(a) Fano’s inequality,

(b) coditioning reduces enropy,

(c) chain rule,

(d) Csiszar sum identity:
∑n

i=1 I(X
n
i+1;Yi|Y

i−1) =
∑n

i=1 I(Y
i−1;Xi|X

n
i+1) [3, HW 3, question 7]

(e) (M,Sn
i+1) is independent ofSi.

Now defineUi
def
= (M,Y i−1, Sn

i+1) for 1 ≤ i ≤ n, then we get:

nR ≤

n∑

i=1

I(Ui;Yi)− I(Ui, Si) + nǫn

≤ n max
p(u,x|s)

(I(U ;Y )− I(U ;S)) + nǫn

We are almost done, we only have to show now that it suffices to maximize overp(u|s) and a

deterministic functionx = f(u, s), i.e. p(u, x|s) = p(u|s)p(x|u, s) where p(x|u, s) = 0, 1. Note

that p(x|u, s) = 0, 1. means thatx is a deterministic functin ofu, s. Fix p(u|s) and note that the

maximization in Gelfand-Pinsker formula is done only overI(U ;Y ) becauseI(U ;S) is fixed by

fixing p(u|s). By [2, Theorem 2.7.4 pp.33] we know that mutual informationI(U ;Y ) is a convex

function of p(y|u) for a fixedp(u|s). Noting that the Complete probability formula:

p(y|u) =
∑

x,s

p(s|u)p(x|u, s)p(y|x, s)

is linear in p(x|u, s) we conclude thatI(U ;Y ) is convex also inp(x|u, s) for a fixed p(u|s). This

implies that the maximum ofI(U ;Y ) is achieved at the extreme points of the set ofP (x|u, s), that

is P (x|u, s) = 0, 1. This completes the proof of the converse.
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