December 14th, 2009

Lecture 9

Lecturer: Haim Permuter

Scribe: Itzhak Tamo

I. NON CAUSAL STATE INFORMATION-GELFAND-PINSKER THEOREM

We consider the channel coding problem depicted in Figure 1: Where the channel is DMC with s state

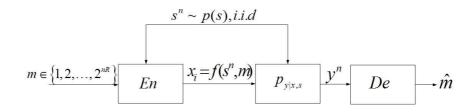


Fig. 1. Channel with state $s \sim p(s)$, distributed i.i.d and known causally at the encoder

 $\mathcal{X} \times S, p(y|x, s)p(s), \mathcal{Y}$, and the state sequence, S^n , is i.i.d distributed according to $\sim p(s)$ and is known non causaly at the encoder. The definitions of *Achievability*, *Capacity* and *Error Probablity* are as before. Definition 1 A code of rate R is function $f : \{1, 2, ..., 2^{nR}\} \times S^n \to \mathcal{X}^n$, i.e. every codeword, x^n is a function of the message, $m \in \{1, 2, ..., 2^{nR}\}$ and the state sequence, s^n .

Theorem 1 [Gelfand-Pinsker Theorem [1]]: The *Capacity* of the DMC with state that is i.i.d distributed according to $\sim p(s)$ and is available noncausally only at the encoder is:

$$C = \max_{p(u|s), x=f(u,s)} (I(U;Y) - I(U;S)),$$

where $|\mathcal{S}| \leq \min\{|\mathcal{X}||\mathcal{S}|, |\mathcal{Y}| + |\mathcal{S}| - 1\}$ and f is a deterministic function of u and s.

Example: First we deal with a binary case. Find the capacity of the channel depicted in Figure 2:

$$Y = X \oplus S \oplus Z,$$

Where $S \sim Bernoulli(p), Z \sim Bernoulli(q)$ and the state sequence is S^n known non causally at the encoder.

Solution: Answer: C = 1 - H(q)

Achievability: Encode the message independently of Sⁿ, and then do XOR to the codeword with the state vector, sⁿ. Thus the decoder gets Y = X ⊕ S ⊕ S ⊕ Z = X ⊕ Z, therefore

$$C = \max_{p(x)} I(X;Y) = 1 - H(q)$$

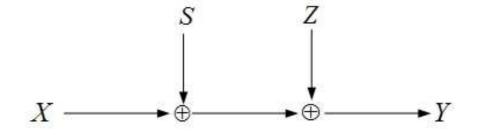


Fig. 2. Xor channel scheme

• Achievability by Gelfand-Pinsker Theorem: Let $U \sim Be(\frac{1}{2})$ independent of the state S, and let $X = U \oplus S$ then,

$$Y = X \oplus S \oplus Z$$
$$= U \oplus S \oplus S \oplus Z$$
$$= U \oplus Z,$$

and

$$C = \max_{p_{u|s}, x=f(u,s)} I(U;Y) - I(U;S)$$

$$\geq I(U;U \oplus Z) - I(U;S)$$

$$= I(U;U \oplus Z)$$

$$= H(U \oplus Z) - H(Z)$$

$$= 1 - H(q)$$

• Converse: Assume S^n is known to the encoder and decoder, thus the channel is reduced to an ordinary BSC with probability of error q, and $C \le 1 - H(q)$

We now move on to prove Theorem 1:

Proof of Achievability:

• Design of the code: Fix p(u|s) and x = f(u, s). Generate randomly using p(u), i.i.d, a $2^{n(I(U;Y)-\epsilon)}$ codewords, i.e. $(u^n(1), u^n(2), ..., u^n(R'))$, where $R' = (I(U;Y) - \epsilon)$. Generate 2^{nR} bins, one for each message $m \in \{1, 2, ..., 2^{nR}\}$, where $R = (I(U;Y) - I(U;S) - 2\epsilon)$. Distribute uniformly each of the codewords into one of the bins. Therefore for each message m we have generated a subcode C(m) of size $\frac{2^{n(I(U;Y)-\epsilon)}}{2^{n(I(U;Y)-I(U;S)-2\epsilon)}} = 2^{n(I(U;S)+\epsilon)}$ which made of the codewords in bin m.

• Encoding: To send massage m, the encoder chooses a codeword u^n from bin m such that is jointly typical with the state sequence s^n , i.e.

$$(u^n, s^n) \in A^{\epsilon}(S, U)$$

The input to the channel at time *i* is $x_i = f(u_i, s_i)$

• **Decoding:** Looks for a codeword \hat{u}^n that is jointly typical with the received codeword, y^n , i.e.

$$(\hat{u}^n, y^n) \in A^{\epsilon}(U, Y),$$

then declares the message \hat{m} that is associated to the bin which contains \hat{u}^n .

- Probability of error analysis: An error occurs in the following cases:
 - 1) There is no codeword in bin m that is associated to the given state sequence s^n :

$$E_1 = \{ \forall u^n \in C(m), (u^n, s^n) \notin A^{\epsilon}(U, S) \}$$

2) we found a codeword, u^n , in bin m that is jointly typical with the state sequence s^n and sent $x^n = f(u^n, s^n)$, but the received codeword is not jointly typical with u^n :

$$E_2 = \{(u^n, y^n) \notin A^{\epsilon}(U, Y)\}$$

3) There exists \hat{u}^n in bin \hat{m} such that $\hat{m} \neq m$, that is jointly typical with the received codeword, y^n , i.e.

$$E_3^{\hat{m}} = \{ \exists \hat{u}^n \in C(\hat{m}), \hat{m} \neq m, (\hat{u}^n, y^n) \in A^{\epsilon}(U, Y) \}$$

W.l.o.g we can assume that m = 1 therefore:

$$P_e^{(n)} = P(\hat{m} \neq m | m = 1)$$

= $P(E_1 \cup E_2 \cup_{\hat{m}=2}^{2^{nR}} E_3^{\hat{m}})$
 $\stackrel{(a)}{\leq} P(E_1) + P(E_2) + \sum_{\hat{m}=2}^{2^{nR}} P(E_3^{\hat{m}}),$

Where

(a) Union Bound.

We will see that each of the terms tends to zero as n tends to infinity.

- In each bin there are 2^{n(I(U,S))+ε} codewords, then according to the covering lemma (see lecture 10), with high probability, at least one codeword is jointly typical with sⁿ. In other words P(E₁) → 0 as n → ∞.
- uⁿ and sⁿ are jointly typical by the choice of uⁿ. x is a function of (u, s) thus
 (xⁿ, uⁿ, sⁿ) ∈ A^ε_n(X, U, S). Therefore by the weak law of large number with high probability
 (uⁿ, yⁿ) ∈ A^ε_n(U, Y). i.e. P(E₂) → 0 as n → ∞

3) Let $\hat{m} \neq 1$, then $P((\hat{u}_n, y^n) \in A_n^{\epsilon}(U, Y)) \leq 2^{-n(I(U;Y)-3\epsilon)}$ for some $\hat{u}_n \in C(\hat{m})$ (see [2, Theorem 2.7.4 pp.33]). Thus,

$$\sum_{\hat{m}=2}^{2^{nR}} P(E_3^{\hat{m}}) = \sum_{\hat{m}=2}^{2^{nR}} \sum_{\hat{u}_n \in C(\hat{m})} P((\hat{u}_n, y^n) \in A_n^{\epsilon}(U, Y))$$

$$\leq \sum_{\hat{m}=1}^{2^{nR}} \sum_{\hat{u}_n \in C(\hat{m})} 2^{-n(I(U;Y)-3\epsilon)}$$

$$\leq 2^{n(I(U;Y)-I(U;S)-2\epsilon)} 2^{n(I(U;S)+\epsilon)} 2^{-n(I(U;Y)-3\epsilon)}$$

$$2^{-n\epsilon} \to 0.$$

Thus we have shown that under this encoding scheme the $P_e^{(n)} \to 0$ as $n \to \infty$, which means the rate R is achievable.

Proof of Converse:

Let R be an achievable rate, i.e. there exists a sequence of $(2^{nR}, n)$ codes with $P_e^{(n)} \to 0$ as $n \to \infty$. The trick is to find the auxiliary random variable U_i that forms the markov chain $U_i \to (X_i, S_i) \to Y_i$. We can bound the rate R as

$$\begin{split} nR &= H(M) \\ &= H(M) - H(M|Y^n) + H(M|Y^n) \\ &\stackrel{(a)}{\leq} I(M;Y^n) + n\epsilon_n \\ &= \sum_{i=1}^n H(Y_i|Y^{i-1}) - H(Y_i|Y^{i-1},M) + n\epsilon_n \\ &= \sum_{i=1}^n H(Y_i) - H(Y_i|Y^{i-1},M) + n\epsilon_n \\ &\stackrel{(b)}{\leq} \sum_{i=1}^n I(Y_i;Y^{i-1},M) + n\epsilon_n \\ &= \sum_{i=1}^n I(M,Y^{i-1},S^n_{i+1};Y_i) - I(Y_i;S^n_{i+1}|M,Y^{i-1}) + n\epsilon_n \\ &\stackrel{(c)}{\leq} \sum_{i=1}^n I(M,Y^{i-1},S^n_{i+1};Y_i) - I(Y^{i-1};S_i|S^n_{i+1},M) + n\epsilon_n \\ &\stackrel{(e)}{=} \sum_{i=1}^n I(M,Y^{i-1},S^n_{i+1};Y_i) - I(S^n_{i+1},M,Y^{i-1};S_i) + n\epsilon_n, \end{split}$$

where

- (a) Fano's inequality,
- (b) coditioning reduces enropy,
- (c) chain rule,

(d) Csiszar sum identity: $\sum_{i=1}^{n} I(X_{i+1}^{n}; Y_i | Y^{i-1}) = \sum_{i=1}^{n} I(Y^{i-1}; X_i | X_{i+1}^{n})$ [3, HW 3, question 7] (e) (M, S_{i+1}^{n}) is independent of S_i .

Now define $U_i \stackrel{def}{=} (M, Y^{i-1}, S^n_{i+1})$ for $1 \le i \le n$, then we get:

$$nR \le \sum_{i=1}^{n} I(U_i; Y_i) - I(U_i, S_i) + n\epsilon_n$$
$$\le n \max_{p(u, x|s)} (I(U; Y) - I(U; S)) + n\epsilon_n$$

We are almost done, we only have to show now that it suffices to maximize over p(u|s) and a deterministic function x = f(u, s), i.e. p(u, x|s) = p(u|s)p(x|u, s) where p(x|u, s) = 0, 1. Note that p(x|u, s) = 0, 1. means that x is a deterministic function of u, s. Fix p(u|s) and note that the maximization in Gelfand-Pinsker formula is done only over I(U;Y) because I(U;S) is fixed by fixing p(u|s). By [2, Theorem 2.7.4 pp.33] we know that mutual information I(U;Y) is a convex function of p(y|u) for a fixed p(u|s). Noting that the Complete probability formula:

$$p(y|u) = \sum_{x,s} p(s|u)p(x|u,s)p(y|x,s)$$

is linear in p(x|u, s) we conclude that I(U; Y) is convex also in p(x|u, s) for a fixed p(u|s). This implies that the maximum of I(U; Y) is achieved at the extreme points of the set of P(x|u, s), that is P(x|u, s) = 0, 1. This completes the proof of the converse.

REFERENCES

- [1] Gel'fand, S. I. and Pinsker, M. S., 'Coding for Channel with Random Parameters'. Problems of Control Theory, vol.9, no. 1, pp.19-31,1980
- [2] T. M. Cover and J. A. Thomas, 'Elements of Information Theory.'. Wiley, New York, 2nd edition 2006
- [3] Multi-User Information Theory, http://www.ee.bgu.ac.il/ multi/HW3/hw3.pdf