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Mathematical methods in communication December 14th, 2009

Lecture 9

Lecturer: Haim Permuter Scribe: 1tzhak Tamo

I. NON CAUSAL STATE INFORMATION-GELFAND-PINSKER THEOREM

We consider the channel coding problem depicted in Figu/liere the channel is DMC with s state

s" ~ p(s),iid

nR 7}:: Sﬂm R ~
meu} En ! f( ’ ) Ps Y De —m

Fig. 1. Channel with state ~ p(s), distributed i.i.d and known causally at the encoder

X x Sp(ylx, s)p(s), Y, and the state sequence?, is i.i.d distributed according te- p(s) and is known

non causaly at the encoder. The defintion@dfievability, Capacity and Error Probablity are as before.

Definition 1 A code of rateR is function f : {1,2,...,2"%} x S — X", i.e. every codewordy” is a

function of the messagen < {1,2,...,2"%} and the state sequencg,

Theorem 1[Gelfand-Pinsker Theorem [1]]: The Capacity of the DMC with state that is i.i.d distributed

according to~ p(s) and is available noncausally only at the encoder is:

(I(U;Y) = I(U;5)),

max
p(uls),z=F(u,s)

where|S| < min{|X||S|,|Y| + |S| — 1} and f is a deterministic function of. and s.
Example: First we deal with a binary case. Find the capacity of thenaeadepicted in Figure 2:
Y=X¢S5¢Z,

Where S ~ Bernoulli(p), Z ~ Bernoulli(q) and the state sequence$8 known non causally at the
encoder.
Solution: Answer:C =1 — H(q)
« Achievability: Encode the message independenths6f and then do XOR to the codeword with the
state vectors™. Thus the decodergeS =X & S@ S® Z = X & Z, therefore

C=maxI(X;Y)=1-H(q)

p()
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Fig. 2. Xor channel scheme

« Achievability by Gelfand-Pinsker Theorem: Let U ~ Be(3) independent of the stat§, and let
X =U & S then,

Y=XoSoZ
=UpSeSe”Z

—UaZ,

and

C= max I{U;Y)-I(U;S)
pu‘s,x:f(u,s)

>IU;Us Z)—-1(U;S)
=IU;Us® 2)
=HU®Z)-H(Z)

=1-H(q)

« Converse: AssumeS™ is known to the encoder and decoder, thus the channel isedda@n ordinary

BSC with probability of errory, andC < 1 — H(q)

We now move on to prove Theorem 1:

Proof of Achievability:

« Design of the code: Fix p(u|s) andz = f(u, s) . Generate randomly usingu), i.i.d, a2"{(UsY)=¢)
codewords, i.e(u™(1),u"(2),...,u”(R)), where R = (I(U;Y) — ¢). Generate2"? bins, one for
each message: € {1,2,...,2"%}, whereR = (I(U;Y) — I(U; S) — 2¢). Distribute uniformly each
of the codewords into one of the bins. Therefore for each aggss we have generated a subcode

. n(I(U;Y)—e) . . . .
C(m) of size srrZr ==y = 2" (V549 which made of the codewords in bin.
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« Encoding: To send massage:, the encoder chooses a codewafdfrom bin m such that is jointly

typical with the state sequencg, i.e.
(u”,s") € A(S,U).

The input to the channel at timeis z; = f(u;, s;)
« Decoding: Looks for a codeword:™ that is jointly typical with the received codeworg?, i.e.

(an7 yn) E A€(U, }/)7

then declares the messagethat is associated to the bin which contailis

« Probability of error analysis: An error occurs in the following cases:

1) There is no codeword in bim that is associated to the given state sequefice
Ey = {Vu" € C(m), (u",s") ¢ A°(U,S)}

2) we found a codewordy™, in bin m that is jointly typical with the state sequeng® and sent

™ = f(u™, s™), but the received codeword is not jointly typical witt? :
Ey ={(u",y") ¢ A(U,Y)}

3) There existgi™ in bin /m such thatn # m, that is jointly typical with the received codeword,
y"i.e.
Ef* = {3a" € C(in), i # m, (0", y") € A°(U,Y)}

W.l.0.g we can assume that = 1 therefore:
P™ = P(i # mim = 1)

= P(EyUE, U2 ", E™)
2nR

(2 P(Ey) + P(Ez) + > P(E),

m=2
Where
(a) Union Bound.
We will see that each of the terms tends to zera:@snds to infinity.

1) In each bin there arg”(/(U:5))+¢ codewords, then according to the covering lemma (see kctur
10), with high probability, at least one codeword is jointlgpical with s™. In other words
P(E;) — 0 asn — oo.

2) u™ ands™ are jointly typical by the choice of™. x is a function of(u, s) thus
(x™,um s™) € AS(X,U,S). Therefore by the weak law of large number with high probabil
(u™,y™) € AS(U,Y). i.e. P(E3) = 0 asn — o
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3) Lets # 1, then P((,,y™) € AS(U,Y)) < 27 UUY)=39) for somed, € C(m) (see [2,
Theorem 2.7.4 pp.33]). Thus,

QW,R QW,R
DPEP) =Y Y Plim,y") € A,(UY))
m=2 Mm=2 @, €C ()

27LR

< Z Z 2771([(U;Y)736)

=1 1, €C (1)

< 2n(I(U;Y)7I(U;S)726)2n(I(U;S)+e)27n(I(U;Y)736)
27" = 0.

Thus we have shown that under this encoding schemePfit — 0 asn — oo, which means the
rate R is achievable.

Proof of Converse:

Let R be an achievable rate, i.e. there exists a sequen(®'6f n) codes withP{™ — 0 asn — oc.
The trick is to find the auxilary random variahlg that forms the markov chaifi; — (X;, S;) — Yi.

We can bound the rat® as

nR = H(M)
=H(M)—-HM|Y")+H(M|Y™)

(a)
< I(M;Y™) + nep,

HY; Y™ — HY;|[Y"Y, M) + ne,
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where

(a) Fano's inequality,

(b) coditioning reduces enropy,

(c) chain rule,

(d) Csiszar sum identity " | I(X/,;Y;[Y*™1) = > I(Y"1 X3 X7 ,) [3, HW 3, question 7]
(e) (M, S}, ;) is independent of;.

Now definel; “</ (M,Yi=1, 87 ) for 1 < i < n, then we get:

n
nR <Y I(U;Yi) — I(Us, Si) + nen

i=1

<n max (I(U;Y)—1(U;S)) + ne,

p(u,z|s)
We are almost done, we only have to show now that it suffices azimmze overp(uls) and a
deterministic functiorx = f(u,s), i.e. p(u, z|s) = p(ul|s)p(zr|u,s) wherep(z|u,s) = 0,1. Note
that p(x|u, s) = 0,1. means that: is a deterministic functin ok, s. Fix p(u|s) and note that the
maximization in Gelfand-Pinsker formula is done only ovét/;Y") becausel (U; S) is fixed by
fixing p(uls). By [2, Theorem 2.7.4 pp.33] we know that mutual informatifi/; Y) is a convex
function of p(y|u) for a fixedp(u|s). Noting that the Complete probability formula:

plylu) = Y p(slu)p(elu, s)p(ylz, s)

is linear inp(z|u, s) we conclude thaf (U;Y") is convex also imp(x|u, s) for a fixed p(ul|s). This
implies that the maximum of (U;Y") is achieved at the extreme points of the sefAgk|u, s), that

is P(z|u,s) =0, 1. This completes the proof of the converse.
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