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I. ACHIEVABILITY OF THE CAPACITY REGION FORMULTIPLE-ACCESSCHANNEL

We consider the following channel coding problem:
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Fig. 1. Multiple-Access Channel

Theorem 1( MAC capacity region )

The capacity of a multiple-access channel(X1 × X2, P (y|x1, x2),Y) is the closure of the convex hull of

all (R1, R2) satisfying:

R1 < I(X1;Y |X2), (1)

R2 < I(X2;Y |X1), (2)

R1 +R2 < I(X1, X2;Y ) (3)

for some product distributionP1(x1)P2(x2) on X1 ×X2.

In the previous lecture we gave the converse proof. We will now prove the achievability of the rate region

in Theorem 1, but first let us give a short review on typical sets.
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A. Typical Sets

Definition 1 ( Typical set )

The typical set, A(n)
ǫ (X), with respect toP (x), is the set of sequences(x1, x2, ..., xn) ∈ Xn with the

property

2−n(H(X)+ǫ) ≤ Pr(xn) ≤ 2−n(H(X)−ǫ) (4)

Theorem 2( Typical set properties )

For everyǫ > 0 andn sufficeintlylarge, we can show that the setA
(n)
ǫ , has the following properties:

1) if xn ∈ A
(n)
ǫ −→ H(X)− ǫ ≤ − 1

n
log p(xn) ≤ H(X) + ǫ.

2) Pr {A
(n)
ǫ } ≥ 1− ǫ for n sufficeintly large.

3) |A
(n)
ǫ | ≤ 2n(H(X)+ǫ), where|A| denotes the number of elements (cardinality) in the setA.

4) |A
(n)
ǫ | ≥ (1− ǫ)2n(H(X)−ǫ).

WhereP (xn) =
∏n

i=1 PX(xi).

Definition 2 ( Jointly typical set )

The setAn
ǫ (X,Y ) of jointly typical sequences{(xn, yn)} with respect to the distributionp(x, y) is the set

of n-sequences with empirical entropiesǫ− close to the true entropies:

A(n)
ǫ (X,Y ) = {(xn, yn) ∈ Xn × Yn :

| −
1

n
log p (xn)−H (X) | ≤ ǫ, (5)

| −
1

n
log p (yn)−H (Y ) | ≤ ǫ, (6)

| −
1

n
log p (xn, yn)−H (X,Y ) | ≤ ǫ}, (7)

where

p (xn, yn) =
n
∏

i=1

p (xi, yi) . (8)

Theorem 3( Jointly Typical set properties )

Let (Xn, Y n) be sequences of lengthn drawn i.i.d. according top(xn, yn) =
∏n

i=1 p (xi, yi). Then:

1) Pr
(

xn, yn ∈ A
(n)
ǫ

)

−→
n → ∞ 1.

2) |A
(n)
ǫ | ≤ 2n(H(X,Y )+ǫ) .

3) If
(

X̃n, Ỹ n

)

∼ PXn (xn)PY n (yn), then

Pr
((

X̃n, Ỹ n

)

∈ An
ǫ

)

≤ 2−n(I(X,Y )−3ǫ). (9)

also, for sufficiently largen,

Pr
((

X̃n, Ỹ n

)

∈ An
ǫ

)

≥ (1− ǫ)2−n(I(X,Y )+3ǫ). (10)
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B. Achievability

Definition 3 (Average probability of error)

The Average probability of error is defined as,

P (n)
e = Pr

{

(M1,M2) 6=
(

M̂1, M̂2

)}

. (11)

To prove the achievability of the capacity region for Multiple-Access Channel, we need to show that

for a fix p (x1) p (x2) where,

R1 < I(X1;Y |X2), (12)

R2 < I(X2;Y |X1), (13)

R1 +R2 < I(X1, X2;Y ) (14)

there exists a sequence of(2nR1 , 2nR2 , n) codes whereP (n)
e → 0 asn → ∞.

Proof: (Achievability in Theorem 1)

codeboook generation :Generate2nR1 independent codewordsXn
1 (i) wherei ∈

{

1, 2, ..., 2nR1

}

of length

n, generating each symboli.i.d , Xn
1 (i) ∼

∏n

i=1 p1(x1i). Similarly generate2nR2 independent codewords

Xn
2 (j) wherej ∈

{

1, 2, ..., 2nR2

}

, Xn
2 (j) ∼

∏n

j=1 p2(x2j).

Encodig: If User 1 want to send messagei he sends the codewordXn
1 (i). Similarly, if user2 want to

send messagej he sends the codewordXn
2 (j).

Decoding:Given Y n
1 The receiver chooses a pair(i, j) s.t.

(Xn
1 (i) , Xn

2 (j) , Y n) ∈ A(n)
ǫ (X1, X2, Y ). (15)

if no such a pair is found an error will be declared.

Analysis of the probability of error:Without loss of generality ,we assume that(i, j) = (1, 1) was sent.

There will be an error if either the correct codewords are notjointly typical with Y n
1 or there is a pair of

incorrect codewords that are typical withY n
1 . Let us define the following events:

E1 =
{

(Xn
1 (1) , Xn

2 (1) , Y n) /∈ A(n)
ǫ (X1, X2, Y )

}

, (16)

E2 =
{

∃j 6= 1 : (Xn
1 (1) , Xn

2 (j) , Y n) ∈ A(n)
ǫ (X1, X2, Y )

}

, (17)

E3 =
{

∃i 6= 1 : (Xn
1 (i) , Xn

2 (1) , Y n) ∈ A(n)
ǫ (X1, X2, Y )

}

, (18)

E4 =
{

∃i 6= 1, j 6= 1 : (Xn
1 (i) , Xn

2 (j) , Y n) ∈ A(n)
ǫ (X1, X2, Y )

}

, (19)

Then by the union of events bound,

P (n)
e = Pr (E1 ∪ E2 ∪ E3 ∪ E4)

≤ P (E1) + P (E2) + P (E3) + P (E4) , (20)
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Now let us find the probability of each event,

• P (E1)- By using Theorem3 part 1) we have,

P (E1) → 0. (21)

• P (E2)- for j 6= 1 the probability of error,

P (E2) = Pr
(

(Xn
1 (1) , Xn

2 (j) , Y n
1 ) ∈ A(n)

ǫ

)

=

j=2nR2

∑

j=2

P
(

E2j

)

= 2nR2 · 2−n(I(X2;X1,Y )−ǫ), (22)

For P (E2) → 0 asn → ∞, we need to choose ,

R2 < I (X2;X1, Y )− ǫ

= I (X2;X1) + I (X2;Y |X1)− ǫ

(a)
= I (X2;Y |X1)− ǫ, (23)

where (a) follows from the independence ofX1 andX2.

• P (E3)- Similarly ,if R1 < I (X1;Y |X2)− ǫ thenP (E3) → 0 asn → ∞.

• P (E4)- For i 6= 1, j 6= 1,

P (E4) = P
(

(Xn
1 (i) , Xn

2 (j) , Y n
1 ) ∈ A(n)

ǫ

)

=

j=2nR2

∑

j=2

j=2nR1

∑

i=2

P
(

E4i,j

)

= 2n(R1+R2) · 2−n(I(X1,X2;Y )−ǫ). (24)

So if R1 +R2 < I (X1, X2;Y )− ǫ , thenP (E4) → 0 asn → ∞.

Thus, the probability of error, conditioned on a particularcodeword being sent, goes to zero if the conditions

of the theorem are met. The above bound shows that the averageprobability of error, which by symmetry

is equal to the probability for an individual codeword, averaged over all choices of codebooks in the

random code construction, is arbitrarily small. Hence there exists at least one codeC with arbitrarily small

probability of error. To complete the proof we use time-sharing to allow any(R1, R2) in the convex hull

to be achieved.


