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Multi-User Information Theory November 16th, 2009

Lecture 5

Lecturer: Haim Permuter Scribe: Offir Duvdevani

I. M ETHOD OF TYPES

The method of types evolved from notions of strong typicality; some of the ideas were used by

Wolfowitz [4] to prove channel capacity theorems. The method was fully developed by Csiszar and

Korner [1], who derived the main theorems of information theory from this viewpoint.

Let X1, X2, ...Xn be a sequence from alphabetX = (a1, a2, a3, ...a|X |).

let N(a|xn) be the number of times thata appears in sequencexn.

Definition 1 (Type)The typePxn (or empirical probability distribution) of a sequencex1, x2, x3, ..., xn is

the relative proportion of occurrences of each symbol ofX (i.e., Pxn(a) = N(a|xn)
n

for all a ∈ X [5].

Definition 2 Pn is the collection of all possible types of sequences of length n [1].

Definition 3 (Type class)Let P ∈ Pn, The set of sequences of lengthn with type P is called type class

of P, denotedT (P ):

T (P ) = {xn : Pxn = P} (1)

Theorem 1

|Pn| ≤ (n + 1)|X | (2)

Theorem 2If X ∼ Q i.i.d., the probability ofxn depends only on the type ofxn, i.e., Pxn

Q(xn) = 2−n(H(Pxn )+D(Pxn ||Q)) (3)

corollary if xn is in the type class of Q, then we getQ(xn) = 2−nH(Pxn ) [5].

Theorem 3(size of a type classT (P )) For any typeP ∈ Pn

|T (p)| .
= 2nH(P ) (4)

Wherean
.
= bn if lim

n→∞

1
n

log(an

bn
) = 0
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There are two possible ways to prove Theorem 3, one is a combinatorical proof and the other is a

probabilistic.

• Proof 1 - combinatorical proof:

replacements

nP (a1) nP (a2) . . . nP (a|X |)

a1 a2 a|X |

Fig. 1. Length of eachai

|T (P )| =

(

n

nP (a1), nP (a2), . . . , nP (aX )

)

=
n!

(nP (a1))!(nP (a2))! . . . (nP (a|X |))!
(5)

Lemma 1 (Stirling’s formula):

√
2πn

(n

e

)n

≤ n! ≤
√

2πn
(n

e

)n

e
1

12n (6)

Using Stirling’s formula with equation (5) we get:

n!
.
=

(n

e

)n

(7)

|T (P )| .
=

nn

(nP (a1))nP (a1)(nP (a2))nP (a2) . . . (nP (a|X |))
nP|X|

(8)

=
nn

(n)nP (a1)(n)nP (a2) . . . (n)nP|X|
∏|X |

i=1 P (ai)nP (ai)
(9)

=
1

∏|X |
i=1 P (ai)nP (ai)

(10)

Hence:

|T (P )| = 2log |T (P )| .
= 2−n

∑ |X|
i=1 P (ai) log(P (ai)) = 2nH(P ) (11)

Example 1 Question: How many binary sequences of lengthn with 50% 0 and 50% 1 exists?

answer:
(

n
n
2

) .
= 2n

• Proof 2 - a probabilistic proof:

1 ≥ Pr(xn ∈ T (P )) (12)

1
(a)

≥
∑

xn∈T (P )

Pr(xn) (13)
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(b)
=

∑

xn∈T (P )

2−nH(P ) (14)

= |T (P )|2−nH(P ) (15)

(a) The sum of probabilities is always less equal to one.

(b) Using theorem 2.

Therefore:

|T (P )| ≤ 2nH(P ) (16)

In order to prove the other part we need the following lemma:

Lemma 2 P (T (P )) ≥ P (T (Q))

Proof:

Let Xn be of a typeP , Pn(T (P )) is the probability of type classT (P ) and letP̂ ∈ Pn.

It is obvious that the probability of type classT (P ) must be greater or equal than the probability of

T (P̂ ), hence:

Pn(T (P )) ≥ Pn(T (P̂ )), ∀P̂ ∈ Pn (17)

Pn(T (P ))

Pn(T (P̂ ))

(a)
=

|T (P )|
∏

a∈X P (a)nP (a)

|T (P̂ )|
∏

a∈X P (a)nP̂ (a)
(18)

(b)
=

(

n

nP (a1),nP (a2),...,nP (a|X|)

)
∏

a∈X P (a)nP (a)

(

n
nP̂ (a1),nP̂ (a2),...,nP̂ (a|X|)

)
∏

a∈X P (a)nP̂ (a)
(19)

(c)
=

∏

a∈X

(nP̂ (a))!

(nP (a))!
P (a)n(P (a)−P̂ (a)) (20)

(a) Using the fact that probability of each typePxn ∈ Pn is given by:

Pxn =
∏n

i=1 P (xi) =
∏

a∈X P (a)
N(a|xn)

=
∏

a∈X P (a)nP (a).

(b) Using combinatorical math it is known that the number of possibilities to arange a vector{xn :

Pxn = P} is:
(

n
nP (a1),nP (a2),...,nP (a|X|)

)

.

(c)
( n

nP(a1),nP (a2),...,nP(a|X|)
)

( n

nP̂(a1),nP̂ (a2),...,nP̂(a|X|)
)

=
∏

a∈X
(nP̂ (a))!
(nP (a))!

Using the simple boundm!
n! ≥ nm−n we obtain:

Pn(T (P )

Pn(T (P̂ ))
≥

∏

a∈X

(nP (a))nP̂ (a)−nP (a)P (a)n(P (a)−P̂ (a)) (21)

=
∏

a∈X

nn(P̂ (a)−P (a)) (22)

= nn(
∑

a∈X P̂ (a)−
∑

a∈X P (a)) (23)

= nn(1−1) = 1 (24)
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Using lemma 2 let us show that|T (P )| ≥ 2nH(P )

(n+1)|X| :

1 =
∑

Q∈Pn

Pn(T (Q)) (25)

≤
∑

Q∈Pn

max
Q

Pn(T (Q)) (26)

(a)
=

∑

Q∈Pn

Pn(T (P )) (27)

(b)

≤ (n + 1)|X |Pn(T (P )) (28)

(c)
= (n + 1)|X |

∑

xn∈T (P )

2−nH(P ) (29)

= (n + 1)|X ||T (P )|2−nH(P ) (30)

(a) Using theorem 2 it is clear that:max
Q

Pn(T (Q)) = Pn(T (P )).

(b) Using theorem 1.

(c) Using theorem 2.

Therefore our final result is:

2nH(P )

(n + 1)|X |
≤ |T (P )| ≤ 2nH(P ) (31)

which imply that:

|T (P )| .
= 2nH(P ) (32)
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Lets summarize our results so far:

• |Pn| ≤ (n + 1)X

• |T (P )| .
= 2nH(P )

• Q(xn) = 2−n(H(Pxn )+D(Pxn ||Q)

Theorem 4

Q(T (P ))
.
= 2−n(D(Pxn ||Q) (33)

Proof:

Q(T (P )) =
∑

xn∈T (P )

Q(xn) (34)

(a)
=

∑

xn∈T (P )

2−n(H(Pxn )+D(Pxn ||Q)) (35)

= |T (P )|2−n(H(Pxn )+D(Pxn ||Q)) (36)
(b)
.
= 2−nD(Pxn ||Q) (37)

(a) Using theorem 2.

(b) using theorem 3.
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Theorem 5(Sanov theorem - Large deviation)

Let X ∼ Q i.i.d. and letE be a closed set of probabilities, then:

lim
n→∞

log Qn(E) = −min
P∈E

D(Pxn ||Q) = −D(P ∗||Q) (38)

WhereQn(E) is the probability thatxn ∈ E i.e. Qn(E) = Pr(Pxn ∈ E) andP ∗ definition is:

P ∗ = arg min
P∈E

D(P ||Q).

To get more intuitive understanding we can think ofD(P ∗||Q) as the minimum distance between E space

and Q as shown in the figure:

E

P ∗Q

D(P ∗||Q)

Fig. 2. LetX ∼ Q thanP ∗ is the typeP ∈ E that gives the minimum toD(P ||Q).

Qn(E)
.
= 2−nD(P∗||Q) (39)

P ∗ = arg min
P∈E

D(P ||Q) (40)

Historical note: Sanovs theorem [3] was generalized by Csiszar [2] using the method of types.

Example 2Let Q(x = 1) = Q(x = −1) = 1
2 , What is the probability of getting an empirial distrebution

that satisfies:P (x = 1) ≥ 0.8, P (x = −1) ≤ 0.2?

Answer:P ∗ is the probabilityP (x = 1) = 0.8, P (x = −1) = 0.2 so by using sanov theorem and theorem

4 we get our result:Q(E)
.
= 2−nD(P∗||Q)
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Proof of theorem 5:

First we will find the upper bound:

Qn(E) =
∑

P∈E
⋂

Pn

Q(T (P )) (41)

(a)

≤
∑

P∈E
⋂

Pn

2−nD(P ||Q) (42)

≤
∑

P∈E
⋂

Pn

max
p∈E

⋂

Pn

2−nD(P ||Q) (43)

=
∑

P∈E
⋂

Pn

2
−n min

P∈E
⋂

Pn

D(P ||Q)
(44)

(b)

≤ (n + 1)|X |2
−n min

P∈E
⋂

Pn

D(P ||Q)
(45)

(a) According to theorem 5.

(b) Using the fact that|E| ≤ |Pn| and theorem 1.

Now we will find the lower bound:

Qn(E) =
∑

P∈E
⋂

Pn

Q(T (P )) (46)

(a)

≥ Q(T (P ∗)) (47)
(b)

≥ 1

(n + 1)|X |
2−nD(P∗||Q) (48)

(a) Taking only one type class is less equal of the sum of all type classes.

(b) According to theorem 5.

Using the lower bound from (51) and the upper bound from (47) we get:

1

(n + 1)|X |
2−nD(P∗||Q) ≤ Qn(E) ≤ (n + 1)|X |2

−n min
P∈E

⋂

Pn

D(P ||Q)
. (49)

(50)

which proves that:

Qn(E)
.
= 2−nD(P∗||Q) (51)

Example 3Let X, Y be i.i.d.X, Y ∼ PXPY .

We look at a specific sequence(Xn, Y n) with typePX,Y , what is the probability that a sequence(xn, yn)

wich was generated from iidPXPY has a joint typePX,Y ?

Answer:Q(T (P ))
.
= 2−nD(P ||Q) = 2−nD(PX,Y ||PXPY ) = 2−nI(X;Y )
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Theorem 6(Conditional type)

Let W (y|x) be a conditional PMF.

and let:

Pxn|yn(a|b) =
N((a, b)|xn, yn)

N(b|yn)
(52)

=
PXn,Y n(a, b)

PY n(b)
(53)

TW (yn) = {xn ∈ Xn : PXn|Y n(a|b) = WX|Y (a|b), ∀a, b ∈ X ,Y} (54)

= {xn ∈ Xn : PXn,Y n(a, b) = WX|Y (a|b)PY n(b), ∀a, b ∈ X ,Y} (55)

H(X |Y ) = −
∑

x∈X

∑

y∈Y

P (x, y) log P (x|y) (56)

PX,Y (a, b) = PY n(b)WX|Y (a|b) (57)

Than:

|TW (yn)| .
= 2nH(X|Y ) (58)

Proof:

nPY n(b1) nPY n(b2) . . . nPY n(b|Y|)

b1 b2 b|Y|

Fig. 3. Length of eachbi.

Now if we haveb1 we get:

nPXn,Y n(a1, b1) nPXn,Y n(a2, b1) . . . nPXn,Y n(a|X |, b1)

a1 a2 a|X |

Fig. 4. Length of eachai given b1.

Therefore we can use combinatorical proof as we did in the nonconditional case:
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(

nPyn(b1)

nPxn,yn(a1, b1)nPxn,yn(a2, b1) . . . nPxn,yn(a|X |, b1)

)

.
= 2nH(X|y=b1)Pyn (b1) (59)

(

nPY n(b1)

nPY n(b1)Pxn|yn(a1|b1)nPY n(b1)Pxn|yn(a2|b1) . . . nPY n(b1)Pxn|yn(a|X ||b1)

)

.
= 2nPY n (b1)H(X|y=b1)

(60)

|TW (yn)| .
=

|Y|
∏

i=1

2nH(X|y=bi)PY n (bi) = 2nH(X|Y ) (61)
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