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I. M ULTIPLE ACCESSCHANNEL1
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Fig. 1. A scheme of a multiple access channel

In the previous lecture we have defined:

Definition 1 A pair rate(R1, R2) is calledachievable if there exists a sequence of(2nR1 , 2nR2 , n) codes

such thatP (n)
e →0.

Definition 2 capacity region R is the closure of all achievable rates.

Theorem 1The capacity regionR of a memoryless MAC is the convex closure of all(R1, R2) satisfying,

R1 ≤ I(X1; Y |X2), (1)

R2 ≤ I(X2; Y |X1), (2)

R1 + R2 ≤ I(X1, X2; Y ). (3)

for some product distributionp(x1)p(x2) on X1 ×X2.

Equivalently,R is the closure of the set:

⋃

p(q)p(x1|q)p(x2|q)



















R1 ≤ I(X1; Y |X2, Q),

R2 ≤ I(X2; Y |X1, Q),

R1 + R2 ≤ I(X1, X2; Y, Q).

(4)

1The multiple-access channel capacity region was found by Ahlswede [2] and Liao [3] and was extended to the case of the multiple-

access channel with common information by Slepian and Wolf [4]. Gaarder and Wolf [5] were the first to show that feedback increases

the capacity of a discrete memoryless multiple-access channel.
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Fig. 2. (a) The region defined by eq (1)-(3) for some fixedp1(x1)p2(x2). (b) The region defined by (1)-(3) for variousp1(x1)p2(x2)

and the binary channelY ∼ (p, 1 − p) wherep = f(X1, X2) defined by:f(0, 0) = 1

4
, f(0, 1) = 1

3
, f(1, 0) = 1

4
, f(1, 1) = 1

3
.

Note that sinceX1 andX2 are independent,

I(X1; Y |X2) = I(X1; Y, X2) ≥ I(X1; Y ). (5)

Example 1 (Binary Additive Noise MAC) Let the inputs beX1 = X2 = {0, 1}, andZ ∼ Bernuli(p) be

an additive noise. The output is given byY = X1 ⊕ X2 ⊕ Z. What is the capacity region of this MAC?

Solution: Consider,

(6)

R1 ≤ I(X1; Y |X2, Q) (7)

= H(Y |X2, Q) − H(Y |X1, X2, Q) (8)

≤ 1 − H(Z), (9)

Similarly,

R2 ≤ 1 − H(Z),

R1 + R2 ≤ I(X1, X2; Y, Q),

≤ 1 − H(Z).

Note that if X1 ∼ Bernuli(1
2 ) we have equality in (6). This is because,X1 ∼ Bernuli(1

2 ) implies

X1 ⊕ Z ∼ Bernuli(1
2 ). The same ifX2 ∼ Bernuli(1

2 ). Hence the capacity region of this MAC is given

by Fig. 4.
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Fig. 3. The capacity region of Example (1).

Gaussian MAC

Two senders,X1 andX2, communicate to the single receiver,Y . The received signal at timei is

Yi = X1,i + X2,i + Zi.

Where{Zi} ∼ Norm(0, σ2) and i.i.d. each. We also assume the power constraintPj on senderj; that is,

for each sender, for all messages, we must have

1

n

n
∑

i=1

xij
2(wj) ≤ Pj ,

wj ∈ {1, 2, ..., 2nRj}, j = 1, 2.

We can extend the proof for the discrete multiple-access channel to the Gaussian multiple-access channel.

The converse can also be extended similarly, so the capacityregion of the Gaussian multiple-access channel

is the convex closure of all(R1, R2) satisfying,

R1 ≤ I(X1; Y |X2), (10)

R2 ≤ I(X2; Y |X1), (11)

R1 + R2 ≤ I(X1, X2; Y ), (12)

for some input distributionf(x1)f(x2) satisfyingEX1
2 ≤ P1 andEX2

2 ≤ P2.

Now, we can expand the mutual information in terms of differential entropy, and thus

R1 ≤ I(X1; Y |X2, Q)
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= h(Y |X2, Q) − h(Y |X1, X2, Q)

(a)
= h(X1 + Z|X2, Q) − h(Z)

≤ h(X1 + Z|X2) − h(Z)

≤ h(X1 + Z) − h(Z)

(b)

≤
1

2
log 2πe(P1 + σ2) −

1

2
log 2πeσ2

=
1

2
log(1 + SNR1).

where

(a) follows from the fact thath(Y |X1, X2, Q) = h(Z).

(b) follows from the fact that the maximum differential entropyfor X1 + Z is 1
2 log 2πe

(

P1 + σ2
)

.

and we denotedSNR1 = P1

σ2 .

Similarly,

R2 ≤
1

2
log(1 + SNR2),

and

R1 + R2 ≤ I(Y ; X1, X2|Q) (13)

= h(Y |Q) − h(Y |X1, X2, Q)

= h(Y |Q) − h(Z)

≤
1

2
log 2πe(P1 + P2 + σ2 −

1

2
log 2πeσ2)

=
1

2
log(1 + SNR1 + SNR2).

Exercise 1Show that ifX1 ∼ Norm(0, σ1) andX2 ∼ Norm(0, σ1) then we have equality in (13).

Now we shall prove the converse of theorem 1:

Given a sequence of(2nR1 , 2nR2 , n) codes s.t.P (n)
e → 0, we will show that there exist a joint distribution

p(q)p(x1|q)p(x2|q) s.t.

R1 ≤ I(X1; Y |X2, Q),

R2 ≤ I(X2; Y |X1, Q),

R1 + R2 ≤ I(X1, X2; Y |Q).

Proof: Given a sequence of codes
(

2nR1 , 2nR2 , n
)

and a probability of error such thatP
(n)
e −→ 0 as

n −→ ∞. Fix a code with rate(R1, R2) and a probability of errorP (n)
e . Fix n. Consider the given code
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of block length n. The joint distribution onM1 ×M2 ×X1
n ×X2

n × Yn is

p (m1, m2, x1
n, x2

n, yn) =
1

2nR1

1

2nR2

p (x1
n|m1) p (x2

n|m2)
n

∏

i=1

p (yi|x1,i, x2,i) , (14)

wherep (x1
n|m1) is either1 or 0, depending on whetherx1

n = x1
n (m1), the codeword corresponding

to m1, or not, and similarly forp (x2
n|m2). The follow are calculated with respect to this distribution.

nR1 = H(M1) = H(M1|X2
n)

= H(M1|X2
n) − H(M1|X2

n, Y n) + H(M1|X2
n, Y n)

= I(Y n; M1|X2
n) + H(M1|X2

n, Y n)

(a)

≤ H(Y n|X2
n) − H(Y n|X2

n, M1) + nǫn

= H(Y n|X2
n) − H(Y n|X2

n, X1
n, M1) + nǫn

(b)
= H(Y n|X2

n) − H(Y n|X2
n, X1

n) + nǫn

(c)
= H(Y n|X2

n) −

n
∑

i=1

H(Yi|X2,i, X1,i) + nǫn

=

n
∑

i=1

H(Yi|Y
i−1, X2

n) −

n
∑

i=1

H(Yi|X2,i, X1,i) + nǫn

≤

n
∑

i=1

H(Yi|X2,i) −

n
∑

i=1

H(Yi|X2,i, X1,i) + nǫn

=
n

∑

i=1

I(Yi; X1,i|X2,i) + nǫn, (15)

where

(a) follows from Fano’s inequality and we denotedǫn = 1
n

+ R1P
(n)
e .

(b) follows from the Markov chainM1 → (X1,i, X2,i) → Yi.

(c) follows from the memoryless and no feedback property of the channel.

Similar calculation leads us to

nR2 =

n
∑

i=1

I(Yi; X2,i|X1,i) + nǫn, (16)

and

nR1 + nR2 =

n
∑

i=1

I(X1,i, X2,i; Yi) + nǫn, (17)

Let us defineQ to be uniform over(1, 2, ..., n). Let X1,q be theqth element of(X1,1, ..., X1,n), then
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X1,Q is uniform over(X1,1, ..., X1,n). RHS of (15) becomes,

nR1 ≤ n

n
∑

i=1

1

n
I(YQ; X1,Q|X2,Q, Q = i) + nǫn (18)

= nI(YQ; X1,Q|X2,Q) + nǫn, (19)

and similarly,

nR2 ≤ nI(YQ; X2,Q|X1,Q) + nǫn, (20)

nR1 + nR2 ≤ nI(X1,Q, X2,Q; YQ) + nǫn, (21)

Therefore, by takingX1 = X1,Q, X2 = X2,Q and Y = YQ we get a new random variables whose

distributions depends onQ in the same way as the distributions ofX1,i, X2,i depend oni. Moreover,

X1,i (M1) andX1,i (M1) are independent sinceM1 andM2 are independent, so givenQ, X1,Q andX2,Q

are independent as well. Hence, by taking the limitǫn = 1
n

+ R1P
(n)
e −→ 0 asn −→ ∞ we get

R1 ≤ I(YQ; X1,Q|X2,Q), (22)

nR2 ≤ nI(YQ; X2,Q|X1,Q), (23)

nR1 + nR2 ≤ nI(X1,Q, X2,Q; YQ). (24)

for some choice of joint distributionp (q) p (x1|q) p (x2|q) p (y|x1, x2).

II. M ETHOD OFTYPES (LARGE DEVIATION )

Assume thatn Bernuli experiments are being done with probabilityp = (1
2 , 1

2 ). What is the probability

that for largen the result will be distributedq = (0.2, 0.8)?

We will see that the answer to that is approximately2−nD(p||q).

For a sequenceXn overX we define:

Definition 3 The type Pxn is the relative proportion of occurrences of each symbol ofX (i.e. Pxn =

N(a|Xn)/n for all a ∈ X , whereN(a|xn) is the number of times the symbola occurs in the sequence

xn ∈ Xn ).

We will also use the notation:Pxn(a) = N(a|xn)
n

. Thus, ifxn = 00110 thenPxn(0) = 3
5 andPxn =

(

3
5 , 2

5

)

.

Definition 4 Let Pn denote theset of types with denominator n.

For example, ifX = {0, 1}, the set of possible types with denominatorn is

P =

{

(P (0), P (1)) :

(

0

n
,
n

n

)

,

(

1

n
,
n − 1

n

)

, ...,

(

n

n
,
0

n

)}

. (25)
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Lemma 1 An upper bound for|Pn|:

|Pn| ≤ (n + 1)|X |. (26)

Proof: There are|X | components in the vector that specifiesPxn . The numerator in each component

can take on onlyn + 1 values. So there are at most(n + 1)|X | choices for the type vector.

Definition 5 let P ∈ Pn. The type class of P , denoted byT (P ), is the set of sequences of length n with

type P . I.e,

T (P ) = (xn ∈ Xn : Pxn = P ). (27)

Lemma 2 Let {Xi}i≥1 be an i.i.d sequence distributed according to a distribution Q(x). Let xn be a

specific sequence of typeP , thenQn(xn) = 2−nH(P )+D(P ||Q).

Proof:

Since{Xi}i≥1 are i.i.d,

Qn(xn) =

n
∏

i=1

Q(xi). (28)

Now consider

log Qn(xn) =

n
∑

i=1

log Q(xi) (29)

(a)
=

∑

a∈X

N(a|xn) log Q(a) (30)

(b)
= n

∑

a∈X

Pxn(a) log Q(a) (31)

= n
∑

a∈X

Pxn(a) log
Q(a)

Pxn(a)
· Pxn(a) (32)

= n(−H(P ) − D(P ||Q)), (33)

where

(a) follows because eacha ∈ X contributes exactlylog Q(a) times it’s number of occurences inxn to

the sum in (29).

(b) follows from the definition ofPxn(a).

Hence we obtained

Qn(xn) = 2−nH(P )+D(P ||Q). (34)
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