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Multi-User Information Theory November 2th, 2009

Lecture 3

Lecturer: Haim Permuter Scribe: Ohad Lehrer

|. CHANNEL CODING
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Fig. 1. Communication system

Reminder.

Definition 1 (Channel coding.)
An (2" n) code for the channel X, p(y|z),)) consist of the following:

« An index set(2"f n) code.
« An encoding functionf : M — X™.

« A decoding functiory : Y — M.

Definition 2 (Probability of error.)

The probability of a discovered message to be incorrect fimelt by:

27LR 2'!LR
1 .
P = Pr(rn # m) Z P(m)Pr(m # m|M =m) = onFE Z Pr( #£ m|M = m). (1)
m=1

Definition 3 (Achievable rate)

A Rate R is said to beachievable, if there exists a sequence (£, n) codes such thaP{™ 2=, @

Definition 4 (Capacity.)
The capacity of a channelC, is the supremum over all achievable rates.

Thus, for rates less than capacity there exists a code whéttisyarbitrarily small probability of error.

Definition 5 (Memoryless channel.)
A channelP(y™||z™) is memoryless if:

P(y™||z™) = [T, P(ys|y:) or equivalentlyP (y;|y*~*, z*) = P(y;|a;)
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Fig. 2. Communication system with feedback

A. Channel Coding With Feedback [1]

A channel with feedback is illustrated in Figure 2.

We assume that all the received symbb]sare sent back with a delay to the transmitter.
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Definition 6 (Channel Coding with feedback.) An (2%, n) feedback code consists of:

« An encoding functionf : M x V=1 — X,.

« A decoding functiory : Y — M.

Example 1

Fig. 3. Erasure Channel
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= H(X)—-6H(X) ®)
= 1-4. (6)

Where: (a) Follows from the fact thaf (X|y = 0) = 0, H(X|y = 1) = 0, H(X|y ='?") = 1, and
Ply ="7") =4

Let assume that we use the channel 500 usages (block len§00yn=how many bits can we transmit
though the channel '?’
Answer: Since) portion of time we will receive '?’, we can transn{it — ¢)500 bit, and this by repeating
the last bit, each time that the output is '?’. In this case, fdedback simplify the coding scheme, though

is not increasing the capacity.
Theorem 1Feedback does not increase capacity at memoryless channel.

Using Fano inequality we will show that feedback does notéase capacity.

Lemma 1 (Fano inequality[2].JFor any estimatoiX, with P, = Pr(i # z) = ¢, we have:
H(P.) + P.log|X| > H(X|X). @
This inequality can be weakened to
H(X|X) <1+ elog|X]|. (8)

Proof: (Theorem 1)

Assumptions:

o M e {1,2,...,2"%} uniformly distributed.
« We have a sequence of cod@s”? n) with feedback.

o The rateR is achievable.
We need to show that:

R < maxI(X;Y) )
Fix a code(2"%,n) with probability of errorP, than:
nR = H(M)
= HM)+HM|Y™) — HM|Y™)
= H(M)+ HM|Y™) — H(M|Y™)

= I(M;Y™)+ H(M|Y™, M)
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< I(M;Y™)+ H(M|M)
I(M;Y"™) + ne,

n
= Y HY"H - HY[Y"', M, X") + ne,
=1
= DY HMY'™') = H(Yi|X,) + nen
=1

n
< D HY) - HYi|X,) +ney
=1

n
< Z Ig}a}xf(Xi; Y;) + ne,

i=1 °

= nCD 4 ne,. (20)

Where:

(a) Follows from Fano inequalityl (X|Y) < 1 + P.nR £ ne,.
(b) Follows from the chain rule of mutual information.

(c) Follows from the fact tha; is a function ofY*~! and M.
(d) Conditioning reduce entropy.

If R is achievable, thed®? — 0 which impliese,, — 0 and from (10) we conclude:

R<cW = max(X;Y). (11)

Theorem 2(Capacity of a feedback channel). For a general channel, possibly with memory
CFeedback S lim inf lI()(n — Yn) (12)

maxPXnHYn,1 n

IM;Y™) +ne, = Y HYY'™) = HYY™H M, XY (M, Y"™)) + ney (13)
=1
= Y HMY'ThH) - HY[YTL XY
=1
= H(Y"™) — H(Y"||X") + ne,
= (X" —=Y")+ ney,

where (a) Follows from the definition and chain rule of mutimibrmation, and by knowM and Y1,
X' is known.
(b) X is function of M andYi~!



(c) Is from the definition of causal conditioning entropyc(le, definition 4)

(d) Is from the definition of directed information (lec.1,fihétion 5)
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1. MAC - M ULTIPLE ACCESSCHANNEL [1]

Until now we assumed one user sends only one message. Inetttisrs we will assume many users
sending messages to one decoder. A system with many semdkrs@eivers contains many new elements
in the communication problem: interference, cooperatind feedback. These are the issues that are the

domain of network information theory.

The multiple-access channel capacity region was found Hgwéde [5] and Liao [6] and was extended

to the case of the multiple-access channel with common riméition by Selpian and Wolf [7].

The first channel that we examine is the multiple access d@larltustrated in Figure 4, in which
two transmitters send information to a common receiver.
We can see that the transmitter must contend not only withrébeiver noise but with interference from

each other as well.

Userl
nR1
M, € (1,2,...2nH]) X7 = (X11, X12,...)
—  »| Encoderl >
Y;L MI’MQ
Py|x, x, —» Decoder
User2
M, € (1,2,...2nF2 X3 = (Xo1,X09,...
2 (—)> FEncoder?2 2 (Ko, Xoo, l
Fig. 4. MAC

Definition 7 (Discrete memoryless multiple-access channel).
A discrete memoryless multiple-access channel consist of three alphabets, X>; and), and a probability

transition matrixP(y|z1, z2).

Definition 8 (Code for a multiple-access channel).

A (2nf 2nRz n) code for the multiple-access channel consists of:
« Two sets of integers; = {1,2,...,2"%1} and My = {1,2,...,2"%2} called the message sets.
e Encodery f1: M; — X7
e Encodery fa: Mg — X3
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o Decoder g:Y™ — (M x Msy).
° Pe(”) = PI‘(Ml 75 M or Ml 7& Ml)

Assuming that the distribution of the messages over theymtoset M; x M, is uniform, we define

the average probability of error for the (271, 2752 1) code as follows:

n 1 n
P = Sn(n ) > Pr{g(Y™) # (m1, ma)|(my, ma)sent} . (14)
mi,maEMiXMa

Definition 9 (Achievable pair rate). A pair rate(R1, R2) is achievable if there exists a sequence of codes
(2nB1 9nR2 p) such thatP™ — 0.

Definition 10 (Capacity region). The capacity region is the closure of all achievable rates.
Ry

Rl S max I(Xl,Y‘XQ = 1’2)

Px1,x2

Capacity

- Ro
Ry < max I(Xo; Y| Xy =x1)

X1,X2

Fig. 5. Capacity of multi user channel

Theorem 3The capacity region of the memoryless multiple-access channel is the closuitheftonvex
hull of:

Ry < I(X1;Y[Xy) (15)
Ry < I(X2;Y|Xy) (16)
Ri+ Ry < I(X1,XyY) (17)

For all P(z1) P(x2)

Equivalently the capacity region is:

Ry < I(X1;Y|X2,Q)
R=cl. U Ry < I(X5:Y|X1,Q)
P@OPERIDPERID | By Ry < I(X1, X3 Y]Q) = I(X1; V) + I(Xa3 YIX1) = I(Xs; V) + I(X1; Y[ Xa)
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Whereq is time sharing argument.

Convex set Convex hull of the set Set

Fig. 6. Set, Convex set and Convex hull

An object is convex if it contains line segment between any pwints in the set as illustrated at figure
(6). Convex hull ofS is the smallest convex set that conta$ign other words convex hull is the set of

all convex combinations of points if.

In Figure (6) we can see that the grey area is the convex hulhetet which is not convex without the

grey fill.
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