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Multi-User Information Theory October 26th, 2009

Lecture 2

Lecturer: Haim Permuter Scribe: Yaniv Nissenboim

I. MARKOV CHAINS
A. Markov Process
Definition 1 A discrete stochastic proce$X; };>1 is said to beMarkov Process if
P(xpi1)|z") = P(xpi1lzn), Vn 1)
In this case, the joint probability mass function of the ramdvariables can be written as
P(x1,xa,...,x,) = P(x1)P(x2]|z1)P(z3|x2) - - - P(xp|Tn-1) (2)

Definition 2 The Markov Process is said to liene invariant if the conditional probabilityP (z,,+1|x,)

does not depend on, that is

P(xpy1 =tla" =j) = Plze =ilz1 =j) =pij, Vn and Vi,j e X. 3)

B. Markov Chain

Definition 3 A Markov Chain is finite Markov Process. If X;} is a Markov Chain X, is called state at

time n. A time invariant(stationary) Markov Chain is charactedzby atransition matrix,
II="F; tje{l,2,..,m} 4)

The initial state probability is? (i) = Pr(zg = 1).
Let P, = [Pr(zy = 1), Pr(a: = 2),...,Pr(x; = m)] be a probability vector, anHl the transition matrix

of the stationary Markov Chain, thus we can write:
P,=P ;-1 ®)
P, =Py -1I". (6)
Equation 5 follows from the following equations:
Pz =j) = iP(mt =j, 21 =1) = ip(xt—l =i)P(xy = jlo— =1) = ipt—l(i)Pi,j (7
=1 i=1 =1

Properties of Markov Chain:
1) Irreducible There exists a positive probability of getting to any statenf any state. That is, all the

states are connected.
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2) Aperiodic The largest common factor (GCD) of all possible loops inesiatl, i.e. returns to state i
can occur at irregular times.

These properties can be demonstrated by the following figure

(a) (b)

(©)

Fig. 1. a. Irreducible Non-Aperiodic, b. Irreducible Apmtic, c. Irreducible Non-Aperiodic

Only when the Markov Chain is irreducible, the aperiodicpendy is defined. Also, when the Markov

Chain is irreducible, then if one of the states is aperiottien all the states are aperiodic.

Definition 4 1 is stationary distribution if exists ¢ such thatuIT = p. That is for each initial state we start

from, we will get after finite number of steps.

Theorem 1 (Sufficient condition for existance of a statigrdistribution) If a finite-state Markov Chain is

aperiodic and irreducible there exists an unique statiodastribution. That isPx, = Px,,, .

Example 1 ([1], Chapter 4.1Consider a two-state Markov chain that is irreducible andriagic with a

probability transition matrix

as shown in the Figure 1, (c).
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Let the stationary distribution be represented by the veete: [1; 2], such that each component of
the vector is the stationary probability of states 1 and 2.c&fe find the stationary probability by solving
wP = p. From the fact thafi; + pe = 1 we get:

B
= 8
H1 o +67 ( )

«
= 9
M1 o+ ()]

Recall that theentropy rate of a stationary process is,

H'(X) = lim H(X,|X"). (10)

n—oo

Now we computeH (X,,| X"~ 1) for stationary Markov process and by so we will get the entnaie of

stationary Markov process,

H(X,| X" H(X| X01) (11)

= H(X;p|Xo)

= ZP(@')H(X1|XO =)

m m

= =Y > P(i)P;log(Py)

i=1 j=1
where
(a) follows from Markovity.
(b) follows from stationary process.
The entropy rate of example 1 is,

H(X)=——Hy(a) + ﬁﬂbw), (12)

where Hy(p) = —plogp — (1 — p)log(1 — p).

C. HMM - Hidden Markov Model [1], Chapter 4.5
Let us consider a Markov proces§, Xo, ..., X,,, and define a new process, Ys, ..., Y, where each
Y; is drawn according tdP(y;|z;), conditionally independent of all the oth&f;, j # ¢; that is,
P(a",y") = Pz P o)1 Py x:). (13)

Such a process, called ldidden Markov model (HMM), is used extensively in speech recognition,
handwriting recognition, and so on. The same argument asuged above for functions of a Markov

chain carry over to hidden Markov models, and we can lowenbddhe entropy rate of a hidden Markov
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model by conditioning it on the underlying Markov state.
In a regular Markov model, the state is directly visible te wbserver, and therefore the state transition
probabilities are the only parameters. In a hidden Markodahdhe state is not directly visible, but output
dependent on the state is visible. Each state has a prdpabdtribution over the possible output tokens.
Therefore the sequence of tokens generated by a HMM giveg $oformation about the sequence of
states.

Another way to represent the HMM is By = ¢(X;), whereasy; is deterministic function of the state,
X;.
This two HMM representations, i.eR(y;|z;) andY; = ¢(X;), are equivalent. If we considex; as the

state of the Markov chain, we can defiféy;|z;) by

d(zi), wp. 1
P(yilzi) = )
others, w.p. 0

by doing so we represent = ¢(x;) by P(y;|x;). Now, in order to represer®(y;|z;) by y; = ¢(z;) we
can construct new state§ = (z;,y;), which is Markovian and clearly; = ¢(z;). We need to check the
Markov property ofz;, i.e. &; — &;_1 — 3° 2,
P(@i]ai=t) = Plai,yla’™"y)
= Plaia™ Ly ) Pyila’,y' )
= P(xilxi—1)P(yilx:)

Note that the underlying states of the Markov chain cannodliserved. They are said to be hidden.

II. GAMBLING

In this section we will show that there is strong duality be¢émn the growth rate of investment in a horse

race and the entropy rate of the horse race.

A. The horse race
In order to describe the horse race let us define the following

« m - Number of horses.

« X, - Random variable that tells us which horse wins at timé&’;, = {1, 2,...,m}.
e Px - The pmf of the winning horse.

« o(X) - The amount of money we get, for each dollar we put, if hoksevins.

o b(X) - Betting strategy on hors&. b(X) >0 VX and) _ b(X)=1.
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« S, - Money, aftern rounds of gambling.

The following are elaborations ofi, for differentn:
xSy = 1 - Money the gambler has in time 0.
xS1 = b(X1) - o(X7) - So - Money the gambler has in time 1.
%S = b(X3) - 0o(X2) - S1 - Money the gambler has in time 2.
%Sy = b(X,) - o(Xy) - Sp—1 =1 b(X;) - o(X;) - Money the gambler has in time n.

In the horse race we assume that:
« The gambler distributes all of his wealth across the horses.
« The winning probability is time invariant.
« The wealth at the end of the race is a random variable.

o The gambler wishes to maximize the value of this random b&ia

The objective goal will be to find

b= arg ril(a;( E[log S,,] (15)
max Ellog Sn] = max Eflog IT_; b(wi) + log I, O(a)] (16)
x x

- rﬁgﬁ(Z(Eﬂog b(x;)] + E[log O(x;)])
@ %1(3§<i:1(E[1ogb(xi)])

= n-argmaxE[log b(x;)]
b(x)

= n-max y P(z)logb(x)
b(z) &

= n-max » (P(x)log blw) + P(x)log P(x))

br) & P(z)
2 nmax~D(P() () ~ H(X)]
< L HX)
Thus,
blz) = P(a) @)
where

(a) follows from the fact thaO(x;) does not depend ob(z;).
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(b) follows from the fact that we are maximizing over the saangument.
(c) follows from definition of divergence and entropy.

(d) follows from the fact thatD is non-negative.

Equation 17 follows from the fact that (d) in Eg. 16 reach ditwavhen b(z) = P(z) due to the

properties of divergence.

B. Gambling with causal side information [2]

Assume there aren racing horses wher&; denotes the horse that wins at timei.e., X; € X =
[1,2,...,m]. At time i, the gambler knows some side information which we denot¥; as/e assume that
the gambler invests all his capital in the horse race as d@itmof the information that he knows at time
i, i.e., the previous horse race outcomés ! and side informatiory’® up to timei. Let b(z;|z'~1,y*)
be the portion of wealth that the gambler bets on harsgiven Xi~! = z~! and Y = y*. Obviously,
the betting scheme should satisfi;[+*~,y*) > 0 and ", b(z;|z*~ ', y*) = 1 for any historyz*~*, 4",
Let o(z;|z*~!) denote the odds of a horse given the previous outcomes—1, which is the amount of
capital that the gambler gets for each unit capital that thealger invested in the horse. We denote by
S(z™||y™) the gambler’'s wealth aftet races where the race outcomes wefeand the side information
that was causally available wa%. We assume that the gambler wishes to maximize his wealtbhniki
a random variable.

Here is a summary of the notation:

o X, is the outcome of the horse race at time

¢ Y] is the the side information at time

« o(X;|X""1) is the payoffs at time for horse X; given that in the previous race the horsgs!
won.

o b(X;|Y? X71) betting strategy - the fractions of the gambler’s wealthested in horseX; at time
i given that the outcome of the previous races Ffe! and the side information available tinids
Ye.

o S(X™|Y™) the gambler's wealth aftet races when the outcomes of the races ¥feand the side

informationY ™ is causally available.

Without loss of generality, we assume that, initially, theartbler’'s capital is 1; therefor8, = 1. We

assume that at any time the gambler invests all his capital and therefore we have

S(XTLHYTL) _ b(Xn|X"_1, Yn)O(Xn|X"_1)S(X"_1||Yn_1). (18)



This also implies that

Sy =[] o(X:] X Yo(Xi | XP71).
=1

The objective goal will be to find

b= argb(X%‘r)r(llaixl,Yi)E[log S(X"Y™)]

max  Ellog S(X"|Y™)] @ max Ellogb(a”ly") + logo(Xil X" )]

b(X,;|X*—1,Y?)

Thus,

where

b(a™[|y™)

= max [Eflogb(z"
. Ellogba”y")

= max Z P(z",y")logb(z"||y")

b ly) 5=,

P(z"|ly")
= P(z", y™) loglb(z"||y") =—"—
b(wnny") Z y")loglb(="ly") (fv"lly")]
= max P(z", y")log P(z" P(x
ban|ly) 4=, 8 ™) Z
(©

= max —H(X™|Y™)+ P(z™,y")log
e THETINT lz; )

< —HX"||lY"™)

ba"[ly") = P(«"[ly")

(a) follows from the fact thab(z;|z*~1, %) uniquely determines(x™||y™).
(b) follows from the face thab(X;|X*~!) does not depend ob{x;|z* 1, y%).
(c) follows from the fact thad_ .. . P(z",y")log P(2"||y") == —H(X"[[Y™).

(d) follows from:

Z P(a"

xmyn

y")log

bl e P ly)
Pl = B2 T Py

T yn

b(z"[[y™)
P(zm||y™)

Py

= log[ > P(y"||z"")b(a"(ly")]

T yn

= logl=0

gl PPl et )
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(19)

(20)

(21)

bz"[ly")

1
108 By

(22)

(23)



2-8

Note that since{P(xz;|z*~!,y")}* ; uniquely determinesP(z"||y™), and since {b(x;|z*~!, y*)}"

uniquely determines(z™||y™), then ¢(z"||y™) = P(z™||y™)) is equivalent to
b(ala' ™l y") = Plagla’™ ! y'™h). (24)
and so in order to maximize the gambler wealth the bettingtesly will be,
b(ai|z ™y = P(aila™ Yy ™), Viell,..,n]z' € X'y €Y' (25)

Theorem 2If we wish the evaluate the value of side information in gamdplwe need to compute the

following,
Eflog S(X"[[Y")] = Ellog S(X™)] = —H(X"[[Y")+ H(X") (26)

= I(Y" > X"
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