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Multi-User Information Theory October 26th, 2009

Lecture 2

Lecturer: Haim Permuter Scribe: Yaniv Nissenboim

I. M ARKOV CHAINS

A. Markov Process

Definition 1 A discrete stochastic process{Xi}i≥1 is said to beMarkov Process if

P (xn+1|x
n) = P (xn+1|xn), ∀n (1)

In this case, the joint probability mass function of the random variables can be written as

P (x1, x2, ..., xn) = P (x1)P (x2|x1)P (x3|x2) · · ·P (xn|xn−1) (2)

Definition 2 The Markov Process is said to betime invariant if the conditional probabilityP (xn+1|xn)

does not depend onn, that is

P (xn+1 = i|xn = j) = P (x2 = i|x1 = j) = pij , ∀n and ∀i, j ∈ X . (3)

B. Markov Chain

Definition 3 A Markov Chain is finite Markov Process. If{Xi} is a Markov Chain,Xn is called state at

time n. A time invariant(stationary) Markov Chain is characterized by atransition matrix,

Π = Pi,j , i, j ∈ {1, 2, ..., m}. (4)

The initial state probability isP0(i) = Pr(x0 = 1).

Let Pt = [Pr(xt = 1), Pr(xt = 2), ..., Pr(xt = m)] be a probability vector, andΠ the transition matrix

of the stationary Markov Chain, thus we can write:

Pt = Pt−1 · Π (5)

Pt = P0 · Π
t. (6)

Equation 5 follows from the following equations:

P (xt = j) =
m

∑

i=1

P (xt = j, xt−1 = i) =
m

∑

i=1

P (xt−1 = i)P (xt = j|xt−1 = i) =
m

∑

i=1

Pt−1(i)Pi,j (7)

Properties of Markov Chain:

1) Irreducible There exists a positive probability of getting to any state from any state. That is, all the

states are connected.
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2) Aperiodic The largest common factor (GCD) of all possible loops in state is 1, i.e. returns to state i

can occur at irregular times.

These properties can be demonstrated by the following figure:

α

1 − α

β

1 − β

(c)

Fig. 1. a. Irreducible Non-Aperiodic, b. Irreducible Aperiodic, c. Irreducible Non-Aperiodic

Only when the Markov Chain is irreducible, the aperiodic property is defined. Also, when the Markov

Chain is irreducible, then if of the states is aperiodic, then all the states are aperiodic.

Definition 4 µ is stationary distribution if existsµ such thatµΠ = µ. That is for each initial state we start

from, we will getµ after finite number of steps.

Theorem 1 (Sufficient condition for existance of a stationary distribution) If a finite-state Markov Chain is

aperiodic and irreducible there exists an unique stationary distribution. That isPXn
= PXn+1

.

Example 1 ([1], Chapter 4.1)Consider a two-state Markov chain that is irreducible and aperiodic with a

probability transition matrix

P =





1 − α α

β 1 − β



 ,

as shown in the Figure 1, (c).
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Let the stationary distribution be represented by the vector µ = [µ1 µ2], such that each component of

the vector is the stationary probability of states 1 and 2. Wecan find the stationary probability by solving

µP = µ. From the fact thatµ1 + µ2 = 1 we get:

µ1 =
β

α + β
, (8)

µ1 =
α

α + β
. (9)

Recall that theentropy rate of a stationary process is,

H ′(X ) = lim
n→∞

H(Xn|X
n−1). (10)

Now we computeH(Xn|X
n−1) for stationary Markov process and by so we will get the entropy rate of

stationary Markov process,

H(Xn|X
n−1)

(a)
= H(Xn|Xn−1) (11)

(b)
= H(X1|X0)

=
m

∑

i=1

P (i)H(X1|X0 = i)

= −

m
∑

i=1

m
∑

j=1

P (i)Pij log(Pij)

where

(a) follows from Markovity.

(b) follows from stationary process.

The entropy rate of example 1 is,

H(X) =
β

α + β
Hb(α) +

α

α + β
Hb(β), (12)

whereHb(p) = −p log p − (1 − p) log(1 − p).

C. HMM - Hidden Markov Model [1], Chapter 4.5

Let us consider a Markov processX1, X2, ..., Xn, and define a new processY1, Y2, ..., Yn, where each

Yi is drawn according toP (yi|xi), conditionally independent of all the otherXj , j 6= i; that is,

P (xn, yn) = P (x1)Π
n−1
i=1 P (xi+1|xi)Π

n
i=1P (yi|xi). (13)

Such a process, called aHidden Markov model (HMM), is used extensively in speech recognition,

handwriting recognition, and so on. The same argument as that used above for functions of a Markov

chain carry over to hidden Markov models, and we can lower bound the entropy rate of a hidden Markov
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model by conditioning it on the underlying Markov state.

In a regular Markov model, the state is directly visible to the observer, and therefore the state transition

probabilities are the only parameters. In a hidden Markov model, the state is not directly visible, but output

dependent on the state is visible. Each state has a probability distribution over the possible output tokens.

Therefore the sequence of tokens generated by a HMM gives some information about the sequence of

states.

Another way to represent the HMM is byYi = φ(Xi), whereasYi is deterministic function of the state,

Xi.

This two HMM representations, i.e.,P (yi|xi) andYi = φ(Xi), are equivalent. If we considerXi as the

state of the Markov chain, we can defineP (yi|xi) by

P (yi|xi) =







φ(xi), w.p. 1

others, w.p. 0







,

by doing so we representyi = φ(xi) by P (yi|xi). Now, in order to representP (yi|xi) by yi = φ(xi) we

can construct new states̃xi = (xi, yi), which is Markovian and clearlyyi = φ(x̃i). We need to check the

Markov property ofx̃i, i.e. x̃i − x̃i−1 − x̃i−1,

P (x̃i| ˜xi−1) = P (xi, yi|x
i−1, yi−1)

= P (xi|x
i−1, yi−1)P (yi|x

i, yi−1)

= P (xi|xi−1)P (yi|xi)

= P (x̃i| ˜xi−1). (14)

Note that the underlying states of the Markov chain cannot beobserved. They are said to be hidden.

II. GAMBLING

In this section we will show that there is strong duality between the growth rate of investment in a horse

race and the entropy rate of the horse race.

A. The horse race

In order to describe the horse race let us define the following:

• m - Number of horses.

• Xi - Random variable that tells us which horse wins at timei. Xi = {1, 2, ..., m}.

• PX - The pmf of the winning horse.

• o(X) - The amount of money we get, for each dollar we put, if horseX wins.

• b(X) - Betting strategy on horseX . b(X) ≥ 0 ∀X and
∑

x b(X) = 1.
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• Sn - Money, aftern rounds of gambling.

The following are elaborations onSn for different n:

∗S0 = 1 - Money the gambler has in time 0.

∗S1 = b(X1) · o(X1) · S0 - Money the gambler has in time 1.

∗S2 = b(X2) · o(X2) · S1 - Money the gambler has in time 2.

∗Sn = b(Xn) · o(Xn) · Sn−1 = Πn
i=1b(Xi) · o(Xi) - Money the gambler has in time n.

In the horse race we assume that:

• The gambler distributes all of his wealth across the horses.

• The winning probability is time invariant.

• The wealth at the end of the race is a random variable.

• The gambler wishes to maximize the value of this random variable.

The objective goal will be to find

b = arg max
b(·)

E[log Sn] (15)

max
b(x)

E[log Sn] = max
b(x)

E[log Πn
i=1b(xi) + log Πn

i=1O(xi)] (16)

= max
b(x)

n
∑

i=1

(E[log b(xi)] + E[log O(xi)])

(a)
= max

b(x)

n
∑

i=1

(E[log b(xi)])

(b)
= n · argmax

b(x)
E[log b(xi)]

= n · max
b(x)

∑

x

P (x) log b(x)

= n · max
b(x)

∑

x

(P (x) log
b(x)

P (x)
+ P (x) log P (x))

(c)
= n · max

b(x)
[−D(P (x)||b(x)) − H(X)]

(d)

≤ −n · H(X)

Thus,

b(x) = P (x) (17)

where

(a) follows from the fact thatO(xi) does not depend onb(xi).
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(b) follows from the fact that we are maximizing over the sameargument.

(c) follows from definition of divergence and entropy.

(d) follows from the fact thatD is non-negative.

Equation 17 follows from the fact that (d) in Eq. 16 reach equality when b(x) = P (x) due to the

properties of divergence.

B. Gambling with causal side information [2]

Assume there arem racing horses whereXi denotes the horse that wins at timei, i.e., Xi ∈ X :=

[1, 2, ..., m]. At time i, the gambler knows some side information which we denote asYi. We assume that

the gambler invests all his capital in the horse race as a function of the information that he knows at time

i, i.e., the previous horse race outcomesX i−1 and side informationY i up to time i. Let b(xi|x
i−1, yi)

be the portion of wealth that the gambler bets on horsexi given X i−1 = xi−1 andY i = yi. Obviously,

the betting scheme should satisfyb(xi|x
i−1, yi) ≥ 0 and

∑

xi
b(xi|x

i−1, yi) = 1 for any historyxi−1, yi.

Let o(xi|x
i−1) denote the odds of a horsexi given the previous outcomesxi−1, which is the amount of

capital that the gambler gets for each unit capital that the gambler invested in the horse. We denote by

S(xn||yn) the gambler’s wealth aftern races where the race outcomes werexn and the side information

that was causally available wasyn. We assume that the gambler wishes to maximize his wealth which is

a random variable.

Here is a summary of the notation:

• Xi is the outcome of the horse race at timei.

• Yi is the the side information at timei.

• o(Xi|X
i−1) is the payoffs at timei for horseXi given that in the previous race the horsesX i−1

won.

• b(Xi|Y
i, X i−1) betting strategy - the fractions of the gambler’s wealth invested in horseXi at time

i given that the outcome of the previous races areX i−1 and the side information available timei is

Y i.

• S(Xn||Y n) the gambler’s wealth aftern races when the outcomes of the races areXn and the side

informationY n is causally available.

Without loss of generality, we assume that, initially, the gambler’s capital is 1; thereforeS0 = 1. We

assume that at any timen the gambler invests all his capital and therefore we have

S(Xn||Y n) = b(Xn|X
n−1, Y n)o(Xn|X

n−1)S(Xn−1||Y n−1). (18)
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This also implies that

S(Xn||Y n) =

n
∏

i=1

b(Xi|X
i−1, Y i)o(Xi|X

i−1). (19)

The objective goal will be to find

b = arg max
b(Xi|Xi−1,Y i)

E[log S(Xn||Y n)] (20)

max
b(Xi|Xi−1,Y i)

E[log S(Xn||Y n)]
(a)
= max

b(xn||yn)
E[log b(xn||yn) + log o(Xi|X

i−1)] (21)

(b)
= max

b(xn||yn)
E[log b(xn||yn))

= max
b(xn||yn)

∑

xn,yn

P (xn, yn) log b(xn||yn)

= max
b(xn||yn)

∑

xn,yn

P (xn, yn) log[b(xn||yn)
P (xn||yn)

P (xn||yn)
]

= max
b(xn||yn)

∑

xn,yn

P (xn, yn) log P (xn||yn) +
∑

xn,yn

P (xn, yn) log
b(xn||yn)

P (xn||yn)

(c)
= max

b(xn||yn)
−H(Xn||Y n) +

∑

xn,yn

P (xn, yn) log
b(xn||yn)

P (xn||yn)

(d)

≤ −H(Xn||Y n) (22)

Thus,

b(xn||yn) = P (xn||yn) (23)

where

(a) follows from the fact thatb(xi|x
i−1, yi) uniquely determinesb(xn||yn).

(b) follows from the face thato(Xi|X
i−1) does not depend onb(xi|x

i−1, yi).

(c) follows from the fact that
∑

xn,yn P (xn, yn) log P (xn||yn) == −H(Xn||Y n).

(d) follows from:

∑

xn,yn

P (xn, yn) log
b(xn||yn)

P (xn||yn)
≤ log[

∑

xn,yn

P (xn, yn)b(xn||yn)

P (xn||yn)
]

= log[
∑

xn,yn

P (xn||yn)P (yn||xn−1)b(xn||yn)

P (xn||yn)
]

= log[
∑

xn,yn

P (yn||xn−1)b(xn||yn)]

= log 1 = 0
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Note that since{P (xi|x
i−1, yi)}n

i=1 uniquely determinesP (xn||yn), and since{b(xi|x
i−1, yi)}n

i=1

uniquely determinesb(xn||yn), then (b(xn||yn) = P (xn||yn)) is equivalent to

b(xi|x
i−1, yi) = P (xi|x

i−1, yi−1). (24)

and so in order to maximize the gambler wealth the betting strategy will be,

b(xi|x
i−1, yi) = P (xi|x

i−1, yi−1), ∀i ∈ [1, ..., n], xi ∈ X i, yi ∈ Yi (25)

Theorem 2If we wish the evaluate the value of side information in gambling we need to compute the

following,

E[log S(Xn||Y n)] − E[log S(Xn)] = −H(Xn||Y n) + H(Xn) (26)

= I(Y n → Xn)
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