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Multi-User Information Theory October 26th, 2009

Lecture 2

Lecturer: Haim Permuter Scribe: Yaniv Nissenboim

I. NOTATION
« Hy(p) = —plogp — (1 — p)log(1 — p)
II. MARKOV CHAINS
A. Markov Process
Definition 1 A discrete stochastic proce$X; };>1 is said to beMarkov Process if
P(X7L+1|Xn) = P(XTL+1|X7L)) vn (1)

In this case, the joint probability mass function of the ramdvariables can be written as

p(x1, 22, ..., zn) = p(z1)p(z2|21)p(23]|22) - - - P(TN|T0—1) (2)

Definition 2 The Markov Process is said to liene invariant if the conditional probabilityp(z,,+1|x,)

does not depend on n, that is

P(Xn-i-l :Z|Xn:j):P(XQZ’Lle:j):pU, Vn and VZ,jEX (3)

B. Markov Chain

Definition 3 A Markov Chain is finiteMarkov Process. If {X;} is a Markov Chain,X,, is called state at

time n. A time invariant(stationary) Markov Chain is charactedzy atransition matrix,
H:]Di,jv i7j€{1a27"'7m}' (4)

The initial state probability is? (i) = P.(Xo = 1).
Let P, = [P(X: = 1), P-(X: = 2),..., P-(X: = m)] be a probability vector, andll the transition

matrix of the stationary Markov Chain, thus we can write:
P=P_,-1I (5)
P, =Py -1I". (6)
Also note that the probability ok, to be equal tgj is defined by:

P(X;=j)= ZP(Xt =, Xt—1=1) = ZP(Xt—l = 1) P(Xy = j[Xo1 =1) = ZPt—l(i)Pi,j )
i=1 i=1

i=1
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Properties of Markov Chain:
1) Irreducible There exists a positive probability of getting to any statenf any state. That is, all the
states are connected. This can be demonstrated by the ifudidigure:
TBD - ADD FIGURE FROM CLASS LECTURE @@@.
2) Aperiodic The largest common factor (GCD) of all possible loops inesiatl, i.e. returns to state i
can occur at irregular times. This can be demonstrated byotteving figure:
TBD - ADD FIGURE FROM CLASS LECTURE @@ @.

Only when the Markov Chain is irreducible, the aperiodicgady is defined. Also, when the Markov

Chain is irreducible, then if of the states is aperiodicntladl the states are aperiodic.

Theorem 1If a finite-state Markov Chain is aperiodic and irreducibeere exists an unique stationary
distribution. That isPx, = Px

n+1"

Definition 4 p is stationary distribution if exists 1 such thatuIl = u. That is for each initial state we start

from, we will get . after finite number of steps.

Example 1 ([1]) Consider a two-state Markov chain that is irreducible andriaglic with a probability

transition matrix

as shown in the following figure:
TBD - ADD a figure here

Let the stationary distribution be represented by the veete: [1; 2], such that each component of
the vector is the stationary probability of states 1 and 2.caf find the stationary probability by solving
wP = p. From the fact thaf; + pe = 1 we get:

_ B
M1 = o+ 67 (8)
«
H1 = o+ 6- (9)
Recall that theentropy rate of a stationary process is,
H'(X) = lim H(X,|X"). (10)

n—oo

Now we computeH (X,,| X"~ 1) for stationary Markov process and by so we will get the entraie of

stationary Markov process,

(i)

H(X,| X" H(X,| X0 1) (11)
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= H(X1]|Xo)
= Zp(i)H(X1|X():i)

m m

= _ Z Zp(i)PijZOQ(Pij)

i=1 j=1
where
(a) follows from Markovity.
(b) follows from stationary process.
The entropy rate of example 1 is,
H(X) = =2y (0) + —2— H,(9) 12)
a+p a+p
TBD-consider adding material on HMM
1. GAMBLING

In this section we will show that there is strong duality be¢w the growth rate of investment in a horse

race and the entropy rate of the horse race.

A. The horse race

In order to describe the horse race let us define the following

« m - Number of horses.

« X; - Random variable that tells us which horse wins at timé&’;, = {1, 2,...,m}.
e Px - The pmf of the winning horse.

e o(X) - The amount of money we get, for each dollar we put, if hoksevins.

« b(X) - Betting strategy on hors&. b(X) >0 VX and)_, b(X) = 1.

e S - Money.

e Syp =1 - Money the gambler has in time 0.

e 51 =0(X1) 0o(X1) - So - Money the gambler has in time 1.

e S5 =0(X3) 0o(X>) - S1 - Money the gambler has in time 2.

o Sp =b(Xy) 0o(Xy) - Spo1 =1 16(X;) - o(X;) - Money the gambler has in time n.
In the horse race we assume that:

« The gambler distributes all of his wealth across the horses.
« The winning probability is time invariant.

« The wealth at the end of the race is a random variable.



2-4

« The gambler wishes to maximize the value of this random bégia

The objective goal will be to find
b= arg ril(a;(E[logSn] (13)

r&ach[logSn] = r&aicE[logH” 10(x;) + log IT}_, O(z;)] (14)

_ maxz [log b(z;)] + Ellog O(x;)])
@ max (Eflog b(x;)])
x i=1

= n-argmax Eflog b(z;)]

= n- mapr )log b(x

= nemax ] (p(x) log% + p(z) log p(z))
< nmax = D(p(@)]b(a)) — H(X)
< )
Thus,
b(w) = p(x) (15)
where

(a) follows from the face tha®(z;) does not depend ob(x;).
(b) maximizing over the same argument.
(c) follows from definition of divergence and entropy.

(d) follows from the fact thaiD is non-negative.

B. Gambling with causal side information [2]

Assume there aren racing horses wher&; denotes the horse that wins at timei.e., X; € X :=
[1,2,...,m]. At time i, the gambler knows some side information which we denot¥; as/e assume that
the gambler invests all his capital in the horse race as d@itmof the information that he knows at time
i, i.e., the previous horse race outcom€s ! and side informatior’® up to timei. Let b(z;|z'~ 1, y*)
be the portion of wealth that the gambler bets on harsgiven Xi~! = z~! and Y = y*. Obviously,

the betting scheme should satigfi;|[+*~,y*) > 0 and}__ b(z;|z*~ ', y*) = 1 for any historyz*~*, y*.
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Let o(z;|2*~!) denote the odds of a horse given the previous outcomes—1, which is the amount of
capital that the gambler gets for each unit capital that thealger invested in the horse. We denote by
S(z™||y™) the gambler’'s wealth aftet races where the race outcomes wefeand the side information
that was causally available wa8. We assume that the gambler wishes to maximize his wealtbhaiki

a random variable.

Here is a summary of the notation:

o X, is the outcome of the horse race at time

¢ Y] is the the side information at time

« o(X;|X""1) is the payoffs at time for horse X; given that in the previous race the horsgs!
won.

o b(X;|Y? X1 betting strategy - the fractions of the gambler's wealthested in horseX; at time
i given that the outcome of the previous races Ffe! and the side information available tinids
Y?.

o S(X™|Y™) the gambler's wealth aftet races when the outcomes of the races dfeand the side

informationY ™ is causally available.

Without loss of generality, we assume that, initially, therbler’'s capital is 1; therefor8, = 1. We

assume that at any time the gambler invests all his capital and therefore we have
S(Xn| |Yn) — b(Xn|X”_1, Y7L)0(X,,L|X"_1)S(X”_1||Y"_1). (16)

This also implies that

Sy =[] o(X:] X Y o(Xi | X1, (17)

i=1

The objective goal will be to find

b = ]E l S X‘rL Yn 18
argb(Xq,\r)I(l?fxl,Y%) [logS(X™[[Y™)] (18)

max  E[logS(X"||Y™" max Eflogb(z"||y") + log o(X;| X! 19
oo ElogSOCY™) 2 max Ellogb(a” [") + og o X X' (19)

= max Ellogb(z"||y"
. Eflogba”57)

T @iy Z p(z", y") logb(z"||y")
:];Wr7y71,

7 n n n p(mln/”yln/)

=  max p(z™, y™) log[b(x™||y") —— 1%

L > play™) loglb(a”|ly") S ]

T yn

= e > pla™ g logp(a"(ly™) + > pla",y") log

b(zm™
‘rLAWr7yWr xn7y71r

b(z"ly")
p(z™|ly™)
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© , : b(z"||y")
= max —HX"|Y")+ p(z", y") log ———=

bz [ym) (E7Ir) ;y: ( ) p(z"(ly™)
(d)
< —HX"[Y") (20)

Thus,
b(z"|ly") = p(z"|ly") (21)
where

(a) follows from the fact thab(z;|z*~1, %) uniquely determines(x™||y™).
(b) follows from the face thab(X;|X*~!) does not depend ob{x;|z* 1, y%).

(c) follows from the fact tha,. . p(z™,y") log p(a™|ly") == —H(X"|[Y™).
(d) follows from:
) b(z"|ly") p(a", y")b(z"(|y")
> p(a",y")log < log
2 P8 Ly 2 FEro

ol Z,p el ))(x”ny”)]

log[ Y p(y"[lz"~")b(="[ly"™)]

T yn

= logl=0

Note that sincp(z;|z*~1, y*)}™_; uniquely determines(z™||y™), and since{b(z;|z*~*, y*)}™_; uniquely

determined(z™||y™), then b(z™||y™) = p(z™||y™)) is equivalent to
b(aila'™t, ') = plagla’™h y' ™). (22)
and so in order to maximize the gambler wealth the bettingtesly will be,
bl yt) = pla|2™ 1y, Vie[l,..,n],z' € Xy ) (23)
If we wish the evaluate the value of side information in gamdple need to compute the following,
EllogS(X™[[Y")] = E[logS(X™)] = —H(X"[|[Y")+ H(X") (24)
= I(Y" = X"
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