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Multi-User Information Theory October 26th, 2009

Lecture 2

Lecturer: Haim Permuter Scribe: Yaniv Nissenboim

I. NOTATION

• Hb(p) = −plogp− (1 − p)log(1 − p)

II. M ARKOV CHAINS

A. Markov Process

Definition 1 A discrete stochastic process{Xi}i≥1 is said to beMarkov Process if

P (Xn+1|X
n) = P (Xn+1|Xn), ∀n (1)

In this case, the joint probability mass function of the random variables can be written as

p(x1, x2, ..., xn) = p(x1)p(x2|x1)p(x3|x2) · · · p(xn|xn−1) (2)

Definition 2 The Markov Process is said to betime invariant if the conditional probabilityp(xn+1|xn)

does not depend on n, that is

P (Xn+1 = i|Xn = j) = P (X2 = i|X1 = j) = pij , ∀n and ∀i, j ∈ X . (3)

B. Markov Chain

Definition 3 A Markov Chain is finiteMarkov Process. If {Xi} is a Markov Chain,Xn is called state at

time n. A time invariant(stationary) Markov Chain is characterized by atransition matrix,

Π = Pi,j , i, j ∈ {1, 2, ..., m}. (4)

The initial state probability isP0(i) = Pr(X0 = 1).

Let Pt = [Pr(Xt = 1), Pr(Xt = 2), ..., Pr(Xt = m)] be a probability vector, andΠ the transition

matrix of the stationary Markov Chain, thus we can write:

Pt = Pt−1 · Π (5)

Pt = P0 · Π
t. (6)

Also note that the probability ofXt to be equal toj is defined by:

P (Xt = j) =
m

∑

i=1

P (Xt = j, Xt−1 = i) =
m

∑

i=1

P (Xt−1 = i)P (Xt = j|Xt−1 = i) =
m

∑

i=1

Pt−1(i)Pi,j (7)
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Properties of Markov Chain:

1) Irreducible There exists a positive probability of getting to any state from any state. That is, all the

states are connected. This can be demonstrated by the following figure:

TBD - ADD FIGURE FROM CLASS LECTURE @@@.

2) Aperiodic The largest common factor (GCD) of all possible loops in state is 1, i.e. returns to state i

can occur at irregular times. This can be demonstrated by thefollowing figure:

TBD - ADD FIGURE FROM CLASS LECTURE @@@.

Only when the Markov Chain is irreducible, the aperiodic property is defined. Also, when the Markov

Chain is irreducible, then if of the states is aperiodic, then all the states are aperiodic.

Theorem 1If a finite-state Markov Chain is aperiodic and irreducible there exists an unique stationary

distribution. That isPXn
= PXn+1

.

Definition 4 µ is stationary distribution if existsµ such thatµΠ = µ. That is for each initial state we start

from, we will getµ after finite number of steps.

Example 1 ([1]) Consider a two-state Markov chain that is irreducible and aperiodic with a probability

transition matrix

P =





1 − α α

β 1 − β



 ,

as shown in the following figure:

TBD - ADD a figure here

Let the stationary distribution be represented by the vector µ = [µ1 µ2], such that each component of

the vector is the stationary probability of states 1 and 2. Wecan find the stationary probability by solving

µP = µ. From the fact thatµ1 + µ2 = 1 we get:

µ1 =
β

α + β
, (8)

µ1 =
α

α + β
. (9)

Recall that theentropy rate of a stationary process is,

H ′(X ) = lim
n→∞

H(Xn|X
n−1). (10)

Now we computeH(Xn|X
n−1) for stationary Markov process and by so we will get the entropy rate of

stationary Markov process,

H(Xn|X
n−1)

(a)
= H(Xn|Xn−1) (11)
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(b)
= H(X1|X0)

=
m

∑

i=1

p(i)H(X1|X0 = i)

= −

m
∑

i=1

m
∑

j=1

p(i)Pij log(Pij)

where

(a) follows from Markovity.

(b) follows from stationary process.

The entropy rate of example 1 is,

H(X) =
β

α + β
Hb(α) +

α

α + β
Hb(β). (12)

TBD-consider adding material on HMM

III. G AMBLING

In this section we will show that there is strong duality between the growth rate of investment in a horse

race and the entropy rate of the horse race.

A. The horse race

In order to describe the horse race let us define the following:

• m - Number of horses.

• Xi - Random variable that tells us which horse wins at timei. Xi = {1, 2, ..., m}.

• PX - The pmf of the winning horse.

• o(X) - The amount of money we get, for each dollar we put, if horseX wins.

• b(X) - Betting strategy on horseX . b(X) ≥ 0 ∀X and
∑

x b(X) = 1.

• S - Money.

• S0 = 1 - Money the gambler has in time 0.

• S1 = b(X1) · o(X1) · S0 - Money the gambler has in time 1.

• S2 = b(X2) · o(X2) · S1 - Money the gambler has in time 2.

• Sn = b(Xn) · o(Xn) · Sn−1 = Πn
i=1b(Xi) · o(Xi) - Money the gambler has in time n.

In the horse race we assume that:

• The gambler distributes all of his wealth across the horses.

• The winning probability is time invariant.

• The wealth at the end of the race is a random variable.
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• The gambler wishes to maximize the value of this random variable.

The objective goal will be to find

b = arg max
b(·)

E[logSn] (13)

max
b(x)

E[logSn] = max
b(x)

E[log Πn
i=1b(xi) + log Πn

i=1O(xi)] (14)

= max
b(x)

n
∑

i=1

(E[log b(xi)] + E[log O(xi)])

(a)
= max

b(x)

n
∑

i=1

(E[log b(xi)])

(b)
= n · argmax

b(x)
E[log b(xi)]

= n · max
b(x)

∑

x

p(x) log b(x)

= n · max
b(x)

∑

x

(p(x) log
b(x)

p(x)
+ p(x) log p(x))

(c)
= n · max

b(x)
[−D(p(x)||b(x)) − H(X)]

(d)

≤ −n · H(X)

Thus,

b(x) = p(x) (15)

where

(a) follows from the face thatO(xi) does not depend onb(xi).

(b) maximizing over the same argument.

(c) follows from definition of divergence and entropy.

(d) follows from the fact thatD is non-negative.

B. Gambling with causal side information [2]

Assume there arem racing horses whereXi denotes the horse that wins at timei, i.e., Xi ∈ X :=

[1, 2, ..., m]. At time i, the gambler knows some side information which we denote asYi. We assume that

the gambler invests all his capital in the horse race as a function of the information that he knows at time

i, i.e., the previous horse race outcomesX i−1 and side informationY i up to time i. Let b(xi|x
i−1, yi)

be the portion of wealth that the gambler bets on horsexi given X i−1 = xi−1 andY i = yi. Obviously,

the betting scheme should satisfyb(xi|x
i−1, yi) ≥ 0 and

∑

xi
b(xi|x

i−1, yi) = 1 for any historyxi−1, yi.
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Let o(xi|x
i−1) denote the odds of a horsexi given the previous outcomesxi−1, which is the amount of

capital that the gambler gets for each unit capital that the gambler invested in the horse. We denote by

S(xn||yn) the gambler’s wealth aftern races where the race outcomes werexn and the side information

that was causally available wasyn. We assume that the gambler wishes to maximize his wealth which is

a random variable.

Here is a summary of the notation:

• Xi is the outcome of the horse race at timei.

• Yi is the the side information at timei.

• o(Xi|X
i−1) is the payoffs at timei for horseXi given that in the previous race the horsesX i−1

won.

• b(Xi|Y
i, X i−1) betting strategy - the fractions of the gambler’s wealth invested in horseXi at time

i given that the outcome of the previous races areX i−1 and the side information available timei is

Y i.

• S(Xn||Y n) the gambler’s wealth aftern races when the outcomes of the races areXn and the side

informationY n is causally available.

Without loss of generality, we assume that, initially, the gambler’s capital is 1; thereforeS0 = 1. We

assume that at any timen the gambler invests all his capital and therefore we have

S(Xn||Y n) = b(Xn|X
n−1, Y n)o(Xn|X

n−1)S(Xn−1||Y n−1). (16)

This also implies that

S(Xn||Y n) =

n
∏

i=1

b(Xi|X
i−1, Y i)o(Xi|X

i−1). (17)

The objective goal will be to find

b = arg max
b(Xi|Xi−1,Y i)

E[logS(Xn||Y n)] (18)

max
b(Xi|Xi−1,Y i)

E[logS(Xn||Y n)]
(a)
= max

b(xn||yn)
E[log b(xn||yn) + log o(Xi|X

i−1)] (19)

(b)
= max

b(xn||yn)
E[log b(xn||yn))

= max
b(xn||yn)

∑

xn,yn

p(xn, yn) log b(xn||yn)

= max
b(xn||yn)

∑

xn,yn

p(xn, yn) log[b(xn||yn)
p(xn||yn)

p(xn||yn)
]

= max
b(xn||yn)

∑

xn,yn

p(xn, yn) log p(xn||yn) +
∑

xn,yn

p(xn, yn) log
b(xn||yn)

p(xn||yn)
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(c)
= max

b(xn||yn)
−H(Xn||Y n) +

∑

xn,yn

p(xn, yn) log
b(xn||yn)

p(xn||yn)

(d)

≤ −H(Xn||Y n) (20)

Thus,

b(xn||yn) = p(xn||yn) (21)

where

(a) follows from the fact thatb(xi|x
i−1, yi) uniquely determinesb(xn||yn).

(b) follows from the face thato(Xi|X
i−1) does not depend onb(xi|x

i−1, yi).

(c) follows from the fact that
∑

xn,yn p(xn, yn) log p(xn||yn) == −H(Xn||Y n).

(d) follows from:

∑

xn,yn

p(xn, yn) log
b(xn||yn)

p(xn||yn)
≤ log[

∑

xn,yn

p(xn, yn)b(xn||yn)

p(xn||yn)
]

= log[
∑

xn,yn

p(xn||yn)p(yn||xn−1)b(xn||yn)

p(xn||yn)
]

= log[
∑

xn,yn

p(yn||xn−1)b(xn||yn)]

= log 1 = 0

Note that since{p(xi|x
i−1, yi)}n

i=1 uniquely determinesp(xn||yn), and since{b(xi|x
i−1, yi)}n

i=1 uniquely

determinesb(xn||yn), then (b(xn||yn) = p(xn||yn)) is equivalent to

b(xi|x
i−1, yi) = p(xi|x

i−1, yi−1). (22)

and so in order to maximize the gambler wealth the betting strategy will be,

b(xi|x
i−1, yi) = p(xi|x

i−1, yi−1), ∀i ∈ [1, ..., n], xi ∈ X i, yi ∈ Yi (23)

If we wish the evaluate the value of side information in gambling we need to compute the following,

E[logS(Xn||Y n)] − E[logS(Xn)] = −H(Xn||Y n) + H(Xn) (24)

= I(Y n → Xn)
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