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I. FOR A GAUSSIAN CODE BOOK THE WORSE NOISE I$5AUSSIAN

In this section we will show that for a channel with a code bgekerated by a Gaussian distribution

the worse noise is a Gaussian noise. For simplicity we widklat the channel with just one user and

a power constraint}—l >, X; < P. At time i the output of the channél; is given byY; = X; + Z;,

where Z; is the noise of the channel, with variandg and X; is the input of the channel.
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Fig. 1. Additive noise channel
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Notation- when a random variabl€ has a Gaussian distribution we will denote it Ky;.

As we know for a channeY = X + Zs where Zg is a Gaussian noise with a varian®é and the

input X has a power constraint @ we havel(X;Y) = I(X;X + Zg) < I(Xg; X¢ + Z¢) , where

Xe ~ N(0,P). So if we want to maximize the mutual information betwe&nandY we will use a

Gaussian encoder, we will now show thatXf is Gaussian than the worst noise is a Gaussian noise.

Lemma 1For a Gaussian input the worst noise is Gaussian Yor Xs + Z we havel(Xqg;Y) >
Llog(1+ L) = I(X¢; X + Zg)(where Zg N(0, N)).

Proof:

I(Xg;Y) =

h(Xa) — hM(XclY)

% log(2meP) — h(Xg — YY)

1
3 log(2meP) — h(Xg — aY)
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® 1 1
> 3 log(2meP) — 3 log(2meE((Xg — aY)?)).

Where

(a) follows from the fact that conditioning reduces entropy

(b) follows from the fact that entropy is the largest with auSsian distribution.

Note that the above is true for amgR (any reala) we want to finda such thatE(Xg — aY)?) is

minimal- we’'ll choosea based on the best linear approximation)of by Y so we wantx such that:

E(Xg—aY)Y) = 0
E(XgY) = aBE(Y?)
E(X¢(Xa+2)) = aBE(Xe+2)?) (1)

Follows from (1) and the fact thakc and Z have no correlation an&(X2%) = P,E(Xg) = 0 and
E(Z?) = N we obtain:

P = oP+N) )

and from (2) we obtaim = 5.

Now to placea in our earlier equation and we get:

I(Xg;Y)> 11og(27r eP) — l1og(27r el [(XG __r Y)Q}) = 11og( P ). (3)
2 2 P+N 2 "' p [(Xc PfNy)g}
Now if we look at the denominator of thieg we can see:
Bl Xe - MLNY)Q} =B {(XG( PJ]:N N }
sl o] slip ]
= P(PfN)Q +N(P+N)
N PP+NN' )

Now placing (4) into (3) we obtain:

1, P(P+N) 1 P
I(Xg;Y) > - log(——=——-) = = log(1 + —=).
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I[I. NEARESTNEIGHBOR DECODING FOR ADDITIVE NONGAUSSIAN NOISE CHANNELY1].

In this section we will consider a channel with noise that @ necessarily a Gaussian noise, for this

channel we will use nearest neighbor decoding- the decaeivesy™ and finds message: such that

[Y™ = X"(m)| = />, (Y — Xi(m))? is minimal. The importance of mutual information comes from
the claim that the capacity of a channel is the maximum munfakmation, but this is only true when
we know the model of the noise. We will show that we we can aehthe ratel log(1 + £) even when

the noise is unknown:

Theorem 1[1, Thorem1] For a single user additive noise channel withrest neighbor decoding we have
that, irrespective of the noise distribution, the averaggbability of error, averaged over the ensemble of
Gaussian codebooks of power P, approaches zero as thedigtikh tends to infinity when the rate is
below 3 log(1 + £).
Proof:

lets assume we are using Gaussian encoding meaniagX s, we will build the system assuming the
noise is Gaussian and the decoder will find the message aegdmnearest neighbor. We will show that
using this system we can achieve the raeg(1 + £).
Lets assume that the messagenis= 1 soY™ = X (1) + Z™, note that with high probability;(1) and
Z™ will have no correlation so:

o limy oo 230 X2(1)Z(i) =0

o Ly"IPrP+N=1|y"-X2(1)|*~N

And the probability of an error will be:
PEm £1: V"~ Xgn)|P < N} = PEm'#£1: | XA(1) + 2"~ Xg(m')|” < N}
®)
From [1, Thorem1,proof] we obtailimy, o, P{3m’ # 1 : 2| XZ(1) + Z" - XZ(m/)|? <N} =0 =

We can also prove that for a channel with two usérs: X; + X, + Z whereZ is any noise with variance

N and the power constraints on the inputs &eand P, than we can achieve:

1 P

R < §1Og(1+ﬁl)

1 P

< = 22

Ry, < 210g(1+N)
1 P+ P
R R, < Zlog(l .
1+ Ry < 2og( + N )

By using a Gaussian encoder and a nearest neighbor decodlar 4o case of the single user we saw in

this lecture, see [1, part v].
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