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Multi-use Information Theory December 21st, 2009

Lecture 10

Lecturer: Haim Permuter Scribe: Iddo Naiss

I. COVERING LEMMA

Lemma 1 (Covering lemma)Let Xn be i.i.d random vector∼ PX , and let{yn(i)}2nR

i=1 be a set of r.vyn.

For a joint distributionPX,Y , if R > I(X ; Y ) then there exists sets of{yn(i)}2nR

i=1 s.t.-

Pr{∀i(xn, yn(i) /∈ T n
ǫ (X, Y ))} → 0.

For the proof of the lemma, we use the following lemma:

Lemma 2 [1, CH 10] If 0 < y < 1 then (1 − y)n ≤ e−yn

Proof: Let f(y) = e−y − 1 + y. Thenf(0) = 0 and f ′(y) = −e−y + 1 > 0 for y > 0, and hence

f(y) > 0 for y > 0. Thus for0 ≤ y ≤ 1, we have1 − y ≤ e−y, and raising this to thenth power, we

obtain

(1 − y)n ≤ e−yn.

Now we can give the proof for the covering lemma:

Proof: Let us generateyn by drawing i.i.d∼ PY .

Let us fix i, and so, from the strongǫ typicality, we have:

Pr{(xn, yn(i) ∈ T n
ǫ (X, Y ))}

.
= 2−n(I(X;Y )±ǫ),

i.e.,

2−n(I(X;Y )+ǫ) ≤ Pr{(xn, yn(i) ∈ T n
ǫ (X, Y ))} ≤ 2−n(I(X;Y )±ǫ).

Now, we can conclude:

Pr{∀i : (xn, yn(i) /∈ T n
ǫ (X, Y ))}

(a)
=

∏

i

Pr{(xn, yn(i) /∈ T n
ǫ (X, Y ))}

(b)

≤
∏

i

(1 − 2−n(I(X;Y )±ǫ))

= (1 − 2−n(I(X;Y )±ǫ))2
nR

(c)

≤ e−2n(R−I(X;Y )−ǫ)

,

where
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(a) follows from the fact that the probabilities are independent,

(b) follows from the strongly typical set properties,

(c) follows from lemma 2.

And finally, if R > I(X ; Y ) + ǫ we have

Pr{∀i : (xn, yn(i) /∈ T n
ǫ (X, Y ))} → 0.

II. W RITING ON DIRTY PAPER

We consider the Gaussian Gelfand-Pinsker channel, when thestate is known at the Encoder:

The name of the setting is due to its qualities-when the stateis known at the encoder, and acts like noise
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Fig. 1. Writing on dirty paper channel

in the channel itself, thus it can be referred as writing on a dirty paper, a name which was given by T.

Cover.

Let Y = X + S + Z, where the stateS is known to the encoder non-causally, andSi ∼ N(0, σ2
s) i.i.d,

Zi ∼ N(0, σ2
z), 1

n

∑n

1 E(X2
i ) ≤ P .

What is the capacity of this setting?

Lemma 3 (Capacity of-writing on dirty paper channel)For the setting above, the capacity is

C =
1

2
log (1 +

P

σ2
z

).

Proof: Notice, that when the state is known at the decoder and encoder, then

C∗ =
1

2
log (1 +

P

σ2
z

).

We will attempt to show achievability forC∗, and thus show that this is the capacity for this channel as

well.

Let us useU = αS + X , and letX ∼ N(0, P ), then:

I(U ; Y ) − I(U ; S) = h(U) − h(U |Y ) − h(U) + h(U |S)
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= h(U |S) − h(U |Y ). (1)

Now, let us consider each expression:

Observe thath(U |S) = h(X) = 1
2 log (2πeP ).

Also, h(U |Y ) = h(U, Y ) − h(Y ), whenh(Y ) = 1
2 log (2πeσ2

y), whenσ2
y = P + σ2

2 + σ2
z .

Further,h(U, Y ) = 1
2 log (2πe)2|KU,Y |, and to compute|KU,Y | we need:

σ2
u = α2σ2

s + P , andcov(U, Y ) = 2σ2
s + P

Now, we can have:

|Ku,y| = σ2
yσ2

u − cov(u, y)2

= (P + σ2
s + σ2

z)(α2σ2
s + P ) − (2σ2

s + P )2

= Pα2σ2
s + P 2 + α2σ4

s + σ2
sP + α2σ2

sσ2
z + σ2

zP − P 2 − 4σ2
sP − 4σ4

s

= Pσ2
s(α − 1)2 + σ2

z(P + α2σ2
s) (2)

Therefore we obtain:R = 1
2 log

P (P+σ2
z
+σ2

s
)

Pσ2
s
(α−1)2+σ2

z
(P+α2σ2

s
) . To find the maximum for the expression, we

can differentiate overα. We know thatlog is a monotone function, and so we look for minimum in the

denominator. By differentiating the denominator overα we obtain-

2Pσ2
s(α − 1) − 2σ2

sσ2
zα = 0,

and therefore

α =
P

P + σ2
z

.

Now, we obtain:

R =
1

2
log

P (P + σ2
z + σ2

s)

Pσ2
s

σ4
s

(P+σ2
z
)2 + σ2

z(P +
P 2σ2

s

(P+σ2
z
)2 )

=
1

2
log

(P + σ2
z + σ2

s)(P + σ2
z)2

σ2
z(σ2

zσ2
s + Pσ2

s + P 2 + 2Pσ2
z + σ4

z)

=
1

2
log

(P + σ2
z + σ2

s)(P + σ2
z)2

σ2
z(P + σ2

z)(P + σ2
s + σ2

z)

=
1

2
log (1 +

P

σ2
z

) = C∗.

Thus, we get that the capacity of the writing on dirty paper channel, isC∗, the same as if there was no

state information at all.

III. B OUNDING CARDINALITY OF AUXILIARY RANDOM VARIABLE

We say, that the support of a random variable, is the set of values it gets, with probability strictly larger

then zero.

The following lemma is used for bounding the support of an auxiliary r.v. in capacity expressions:
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Lemma 4 [4, CH 3] Let {fi}
k
1 be continues functions, such that∀j = 1..k : E[fj(X)] = Aj .

Then there exists a random variableX ′ with finite alphabet{x1..xk} ∈ |X |, with probabilities{α1..αk},
∑k

i=1 αi = 1, s.t.

∀j = 1..k :
∑

αifj(xi) = E[fj(X
′)] = Aj . (3)

Example 1 (MAC) We know that a rate in the capacity region is given by:

R1 = I(X1; Y |X2, Q) =
∑

q

p(q)I(X1; Y |X2, Q = q), (4)

R1 = I(X2; Y |X1, Q) =
∑

q

p(q)I(X2; Y |X1, Q = q), (5)

R1 + R2 = I(X1, X2; Y |Q) =
∑

q

p(q)I(X1, X2; Y |Q = q). (6)

Thus we get 3 conditions, and by the lemma, we can useQ with alphabet of cardinality 3.

Example 2 (Causal state information)We know that the capacity is given by:

C = max
p(u),x=f(u,s)

I(U ; Y ) = max
p(u),x=f(u,s)

H(Y ) − H(Y |U).

If so, the first condition will come from:

(1) : H(Y |U) =
∑

u p(u)H(Y |U = u).

Also, we have:

(2) − (|Y|) : p(y) =
∑

u p(u)p(y|u),

Thus the support ofU is with cardinality as|Y|.

REFERENCES

[1] T. M. Cover and J. A. Thomas,Elements of Information Theory, 2nd ed. New-York: Wiley, 2006.

[2] S. I. Gelfand and M. S. Pinsker, ”Coding for channel with random parameters”,Probl. Control Inf. Theory, vol.9, no.1, pp.19-31,

1980.

[3] M.H.M. Costa, ”Writing on dirty paper”,IEEE Trans. Inf. Theory, vol.IT-29, no.3,pp.439-441, May 1983.

[4] I. Csiszar and J. Korner, ”Coding theorems for discrete memoryless systems”.


