
Multi Users information theory Semester A 2009/10

Solution to Practice Questions for the Final

Practice

1. Initial conditions. Show, for a Markov chain, that

H(X0|Xn) ≥ H(X0|Xn−1).

Thus initial conditionsX0 become more difficult to recover as the future
Xn unfolds.

Solutions Initial conditions. For a Markov chain, by the data pro-
cessing theorem, we have

I(X0;Xn−1) ≥ I(X0;Xn). (1)

Therefore

H(X0)−H(X0|Xn−1) ≥ H(X0)−H(X0|Xn) (2)

or H(X0|Xn) increases with n.

2. Entropy of a Stationary Source. Let X1, X2, . . . be a discrete-
valued stationary random process, with entropy rate H(X ), show that
for n ≥ 1

H(X ) ≤ H(Xn)

n

Solutions to Entropy of a Stationary Source.
We first show that H(Xn|Xn−1) is decreasing in n. Consider

H(Xn+1|Xn
1 ) ≤ H(Xn+1|Xn

2 ) (3)

= H(Xn|Xn−1
1 ). (4)
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Now we have

H(Xn)

n
=

1

n

n
∑

i=1

H(Xi|X i−1) (5)

=
1

n

n
∑

i=1

H(Xn|Xn−1
n−i ) (6)

≥ 1

n

n
∑

i=1

H(Xn|Xn−1) (7)

= H(Xn|Xn−1) (8)

≥ lim
n→∞

H(Xn|Xn−1) (9)

= H(X ). (10)

3. Jointly Typical Sequences. Let A
(n)
ǫ (X, Y ) be the set of ǫ-strongly

typical sequences (xn, yn) with respect to p(x, y).

(a) Let xn ∈ A
(n)
ǫ and define

A(n)
ǫ (Y |xn) =

{

yn : (xn, yn) ∈ A(n)
ǫ

}

.

Show that |A(n)
ǫ (Y |xn)| .

= 2n
(

H(Y |X)).

(b) Consider two randomly generated codebooks, C1 = {xn
1 , x

n
2 , . . . , x

n
2nR1

},
where the codewords are independent and each generated ac-
cording to ∼ Πn

i=1p(xi), and C2 = {yn1 , yn2 , . . . , yn2nR1
}, where the

codewords are independent and each generated according to ∼
Πn

i=1p(xi). The pmfs p(x) and p(y) are the marginals of p(x, y).
Define the set

C =
{

(xn, yn) ∈ C1 × C2 such that (xn, yn) ∈ A(n)
ǫ (X, Y )

}

Show that

E|C| .
= 2n

(

R1+R2−I(X;Y )±3ǫ
)

,

where the expectation is over the C1 × C2 sets.

Solutions to Jointly Typical Sequences.
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(a) For n suffitiently large,

∑

xn∈A
(n)
ǫ (X)

∑

yn∈A
(n)
ǫ (Y |xn)

p(xn, yn) ≥
∑

(xn,yn)∈A
(n)
ǫ (X,Y )

p(xn, yn) ≥ 1− ǫ.

Therefore,

∑

xn∈A
(n)
ǫ (X)

p(xn)
∑

yn∈A
(n)
ǫ (Y |xn)

p(yn|xn) ≥ 1− ǫ. (11)

Since p(yn|xn) ≤ 2−n(H(Y |X)−2ǫ), we have

∑

xn∈A
(n)
ǫ (X)

p(xn)
∑

yn∈A
(n)
ǫ (Y |xn)

2−n(H(Y |X)−2ǫ) ≥ 1− ǫ, (12)

or
∑

xn∈A
(n)
ǫ (X)

p(xn)|A(n)
ǫ (Y |xn)| ≥ (1− ǫ)2n(H(Y |X)−2ǫ). (13)

Hence,
EXn |A(n)

ǫ (Y |xn)| ≥ (1− ǫ)2n(H(Y |X)−2ǫ). (14)

(b) Let

i(xn, yn) =

{

1 if (xn, yn) ∈ A
(n)
ǫ (X, Y ),

0 if (xn, yn) /∈ A
(n)
ǫ (X, Y ).

(15)

Then,

|C| =
∑

(Xn,Y n)∈C1×C2

i(Xn, Y n). (16)

End,

E|C| = |C1 × C2|P{i(Xn, Y n)} (17)

= 2n(R1+R2)P{i(Xn, Y n)} (18)
.
= 2n(R1+R2−I(X;Y )±3ǫ), (19)

where the expectation is taken over the choice of codebooks.
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4. Memoryless channel without feedback In the lectures we stated
that for a DMC with no feedback the definition of memory-lessness;
p(yi|xi, yi1) = p(yi|xi), i = 1, 2, . . . , n, implies that p(yn|xn) = Πn

i=1p(yi|xi).
Use the fact that with no feedback W → Xn → Y n to prove this claim.

Solutions to Memoryless channel without feedback We use the
definition of memorylessness given in the lecture. Consider

p(yn|xn) =
n
∏

i=1

p(yi|xn, yi−1) (20)

=

n
∏

i=1

p(yi|xi, xn
i+1, y

i−1) (21)

=
n
∏

i=1

p(xn
i+1|yi, xi)p(xi, yi)

p(xi, xn
i+1, y

i−1)
(22)

=

n
∏

i=1

p(xn
i+1|yi, xi)p(yi|xi, yi−1)p(xi, yi−1)

p(xn
i+1|xi, yi−1)p(xi, yi−1)

(23)

=

n
∏

i=1

p(xn
i+1|xi)p(yi|xi, yi−1)

p(xn
i+1|xi)

(24)

=
n
∏

i=1

p(yi|xi, yi−1) =
n
∏

i=1

p(yi|xi), (25)

where p(xn
i+1|xi, yi) = p(xn

i+1|xi, yi−1) = p(xn
i+1|xi), since there is no

feedback.

5. Maximum entropy process. A discrete memoryless source has al-
phabet {1, 2} where the symbol 1 has duration 1 and the symbol 2 has
duration 2. The probabilities of 1 and 2 are p1 and p2, respectively.
Find the value of p1 that maximizes the source entropy per unit time
H(X)/ElX. What is the maximum value H?

Solutions Maximum entropy process. The entropy per symbol of
the source is

H(p1) = −p1 log p1 − (1− p1) log(1− p1)

and the average symbol duration (or time per symbol) is

T (p1) = 1 · p1 + 2 · p2 = p1 + 2(1− p1) = 2− p1 = 1 + p2 .
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Therefore the source entropy per unit time is

f(p1) =
H(p1)

T (p1)
=

−p1 log p1 − (1− p1) log(1− p1)

2− p1
.

Since f(0) = f(1) = 0, the maximum value of f(p1) must occur for
some point p1 such that 0 < p1 < 1 and ∂f/∂p1 = 0 and

∂

∂p1

H(p1)

T (p1)
=

T (∂H/∂p1)−H(∂T/∂p1)

T 2

After some calculus, we find that the numerator of the above expression
(assuming natural logarithms) is

T (∂H/∂p1)−H(∂T/∂p1) = ln(1− p1)− 2 ln p1 ,

which is zero when 1 − p1 = p21 = p2, that is, p1 = 1
2
(
√
5 − 1) =

0.61803, the reciprocal of the golden ratio, 1
2
(
√
5 + 1) = 1.61803. The

corresponding entropy per unit time is

H(p1)

T (p1)
=

−p1 log p1 − p21 log p
2
1

2− p1
=

−(1 + p21) log p1
1 + p21

= − log p1 = 0.69424 bits.

Note that this result is the same as the maximum entropy rate for the
Markov chain in problem 4.7(d). This is because a source in which
every 1 must be followed by a 0 is equivalent to a source in which the
symbol 1 has duration 2 and the symbol 0 has duration 1.

6. Horse race. Consider a horse race with 4 horses. Assume that each
of the horses pays 4-for-1 if it wins. Let the probabilities of winning of
the horses be {1

2
, 1
4
, 1
8
, 1
8
}. If you started with $100 and bet optimally

to maximize your long term growth rate, what are your optimal bets
on each horse? Approximately how much money would you have after
20 races with this strategy ?

Horse race. The optimal betting strategy is proportional betting, i.e.,
dividing the investment in proportion to the probabilities of each horse
winning. Thus the bets on each horse should be (50%, 25%,12.5%,12.5%),
and the growth rate achieved by this strategy is equal to log 4−H(p) =
log 4 −H(1

2
, 1
4
, 1
8
, 1
8
) = 2 − 1.75 = 0.25. After 20 races with this strat-

egy, the wealth is approximately 2nW = 25 = 32, and hence the wealth
would grow approximately 32 fold over 20 races.
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7. Weak Typicality vs. Strong Typicality

In this problem, we compare the weakly typical set Aǫ(P ) and the
strongly typical set Tδ(P ). To recall, the definition of two sets are
following.

Aǫ(P ) =

{

xn ∈ X n :

∣

∣

∣

∣

−1

n
logP n(xn)−H(P )

∣

∣

∣

∣

≤ ǫ

}

Tδ(P ) =

{

xn ∈ X n : ‖Pxn − P‖∞ ≤ δ

|X |

}

(a) Suppose P is such that P (a) > 0 for all a ∈ X . Then, there
is an inclusion relationship between the weakly typical set Aǫ(P )
and the strongly typical set Tδ(P ) for an appropriate choice of
ǫ. Which of the statement is true: Aǫ(P ) ⊆ Tδ(P ) or Aǫ(P ) ⊇
Tδ(P )? What is the appropriate relation between δ and ǫ?

(b) Give a description of the sequences that belongs to Aǫ(P ), vs. the
sequences that belongs to Tδ(P ), when the source is uniformly
distributed, i.e. P (a) = 1

|X |
, ∀a ∈ X . (Assume |X | < ∞.)

(c) Can you explain why Tδ(P ) is called strongly typical set and
Aǫ(P ) is called weakly typical set?

Solution: Weak Typicality vs. Strong Typicality

(a) From Problem 2, we can see that if xn ∈ Tδ(P ), then
∣

∣

∣

∣

−1

n
logP n(xn)−H(P )

∣

∣

∣

∣

≤ δ
′

=
δ

|X |
∑

a

log
1

P (a)

Therefore, we can see that if ǫ > δ
|X |

∑

a log
1

P (a)
, then Aǫ(P ) ⊇

Tδ(P ). To show that the other way does not hold, see the next
part.

(b) When P is a uniform distribution, we can see that Aǫ(P ) includes
every possible sequences xn. To see this, we can easily see that
P n(xn) = ( 1

|X |
)n, and thus, −1/n logP n(xn) = log |X | = H(P ).

Thus, xn ∈ Aǫ(P ) for all xn, for all ǫ > 0. However, obviously,
among those sequences in Aǫ(P ), only those who have the type

1

|X | −
δ

|X | ≤ Pxn(a) ≤ 1

|X | +
δ

|X |
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for each letter a ∈ X , are in Tδ(P ). Therefore, for sufficiently
small value of δ, there always exist some sequences that are in
Aǫ(P ), but not in Tδ(P ).

(c) From above questions, we can see that the strongly typical set is
contained in the weakly typical set for appropriate choice of δ and
ǫ. Thus, we can see that the definition of strong typical set is
stronger than that of the weakly typical set.

8. Sanov’s theorem: Prove the simple version of Sanov’s theorem for
the binary random variables, i.e., let X1, X2, . . . , Xn be a sequence of
binary random variables, drawn i.i.d. according to the distribution:

Pr(X = 1) = q, Pr(X = 0) = 1− q. (26)

Let the proportion of 1’s in the sequence X1, X2, . . . , Xn be pX, i.e.,

pXn =
1

n

n
∑

i=1

Xi. (27)

By the law of large numbers, we would expect pX to be close to q for
large n. Sanov’s theorem deals with the probability that pXn is far
away from q. In particular, for concreteness, if we take p > q > 1

2
,

Sanov’s theorem states that

−1

n
log Pr {(X1, X2, . . . , Xn) : pXn ≥ p} → p log

p

q
+(1−p) log

1− p

1− q
= D((p, 1−p)||(q, 1−q))

(28)
Justify the following steps:

•

Pr {(X1, X2, . . . , Xn) : pX ≥ p} ≤
n
∑

i=⌊np⌋

(

n

i

)

qi(1− q)n−i (29)

• Argue that the term corresponding to i = ⌊np⌋ is the largest term
in the sum on the right hand side of the last equation.

• Show that this term is approximately 2−nD.

• Prove an upper bound on the probability in Sanov’s theorem using
the above steps. Use similar arguments to prove a lower bound
and complete the proof of Sanov’s theorem.
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Solutions to Sanov’s theorem

• Since nXn has a binomial distribution, we have

Pr(nXn = i) =

(

n

i

)

qi(1− q)n−i (30)

and therefore

Pr {(X1, X2, . . . , Xn) : pX ≥ p} ≤
n
∑

i=⌊np⌋

(

n

i

)

qi(1− q)n−i (31)

•

Pr(nXn = i+ 1)

Pr(nXn = i)
=

(

n

i+1

)

qi+1(1− q)n−i−1

(

n

i

)

qi(1− q)n−i
=

n− i

i+ 1

q

1− q
(32)

This ratio is less than 1 if n−i
i+1

< 1−q

q
,i.e., if i > nq− (1− q). Thus

the maximum of the terms occurs when i = ⌊np⌋.
• From Example 11.1.3,

(

n

⌊np⌋

)

.
= 2nH(p) (33)

and hence the largest term in the sum is
(

n

⌊np⌋

)

q⌊np⌋(1−q)n−⌊np⌋ = 2n(−p log p−(1−p) log(1−p))+np log q+n(1−p) log(1−q) = 2−nD(p||q)

(34)

• From the above results, it follows that

Pr {(X1, X2, . . . , Xn) : pX ≥ p} ≤
n
∑

i=⌊np⌋

(

n

i

)

qi(1− q)n−i (35)

≤ (n− ⌊np⌋)
(

n

⌊np⌋

)

qi(1− q)n−i(36)

≤ (n(1− p) + 1)2−nD(p||q) (37)

where the second inequality follows from the fact that the sum is
less than the largest term times the number of terms. Taking the
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logarithm and dividing by n and taking the limit as n → ∞, we
obtain

lim
n→∞

1

n
log Pr {(X1, X2, . . . , Xn) : pX ≥ p} ≤ −D(p||q) (38)

Similarly, using the fact the sum of the terms is larger than the
largest term, we obtain

Pr {(X1, X2, . . . , Xn) : pX ≥ p} ≥
n
∑

i=⌈np⌉

(

n

i

)

qi(1− q)n−i(39)

≥
(

n

⌈np⌉

)

qi(1− q)n−i (40)

≥ 2−nD(p||q) (41)

and

lim
n→∞

1

n
log Pr {(X1, X2, . . . , Xn) : pX ≥ p} ≥ −D(p||q) (42)

Combining these two results, we obtain the special case of Sanov’s
theorem

lim
n→∞

1

n
log Pr {(X1, X2, . . . , Xn) : pX ≥ p} = −D(p||q) (43)

9. successive cancellation.

Consider a DM-MAC (X1×X2, p(y|x1, x2),Y). To achieve a corner point
of a set R(X1, X2), e.g., R1 = I(X1; Y X2)+ǫ, R2 = I(X2; Y )+ǫ for any
ǫ > 0, use random coding and the following two-step decoding scheme:
the receiver first declares that ŵ2 is sent if it is the unique message such
that ((xn

2 (ŵ2), y
n) ∈ A

(n)
ǫ ), otherwise, an error is declared, if such ŵ2 is

found, the receiver declares that ŵ1 is sent if the unique message such
that ((xn

1 (ŵ1), x
n
2 (ŵ2), y

n) ∈ A
(n)
ǫ ), otherwise an an error is declared.

Provide detailed analysis of error probability to show that this corner
point is achievable.

Solutions of successive cancellation. Without loss of generality,
we can assume that the transmitted indices are W1,W2 = (1, 1).Define,

E2j = {(xn
2 (j), y

n) ∈ An
ǫ (X2, Y )}

E1i = {(xn
1 (i), x

n
2 (1), y

n) ∈ An
ǫ (X1, X2, Y )} . (44)
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Therefore,

P (n)
e = P (Ec

21

⋃

∪j 6=1E2j

⋃

∪i 6=1E1i)

≤ P (Ec
21) +

∑

j 6=1

P (E2j) +
∑

i 6=1

P (E1i)

≤ ǫ+
∑

j 6=1

2−n(I(X2;Y )−ǫ) +
∑

i 6=1

2−n(I(X1;Y |X2)−ǫ)

≤ ǫ+ 2n(R2−I(X2;Y )+ǫ) + 2n(R1−I(X1;Y |X2)+ǫ),

and probability of error approaches zero if

R1 < I(X1; Y |X2)− ǫ

R2 < I(X2; Y )− ǫ

(45)

10. Cooperative Capacity of a MAC.

Consider a DM-MAC (X1×X2, p(y|x1, x2),Y).Assume that both senders
have access to both messagesW1 ∈

{

1, 2, ...2nR
}

andW2 ∈
{

1, 2, ...2nR
}

,
thus the codewords X1(W1,W2) and X2(W1,W2) can depend on both
messages .

(a) Find the capacity region.

(b) Evaluate the region for the AWGN MAC with noise power N and
power constraints P1 and P2

Solutions of Cooperative Capacity of a MAC.

(a) Since both transmitters have access to both messages, we only
need to bound the summation of rates, because the rate of each
individual message can be as high as the maximum rate. The
capacity region is given by

R1 +R2 ≤ max
p(x1,x2)

I(X1, X2; Y ) (46)
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(b) Consider

R1 +R2 ≤ I(X1, X2; Y )

= h(Y )− h(Y |X1, X2)

= h(X1 +X2 + Z)− h(Z)

≤ 1

2
log(2πe(E(X1 +X2)

2 +N))− 1

2
log(2πeN)

=
1

2
log

(

1 +
E(X1 +X2)

2

N

)

=
1

2
log

(

1 +
E(X1)

2 + E(X2)
2 + 2E(X1X2)

N

)

≤ 1

2
log

(

1 +
P1 + P2 + 2

√
P1P2

N

)

= C
(

P1 + P2 + 2
√
P1P2

N

)

11. Time-sharing for MAC In the examples in the class (including the
AWGN case) can all be expressed as union of R(X1, X2) sets and no
time-sharing is necessary. Is time-sharing ever necessary? The answer
is YES. Find the capacity of the push to talk MAC channel with bi-
nary inputs and output and p(0|0, 0) = p(1|0, 1) = p(1|1, 0) = 1 and
p(0|1, 1) = 1/2. Why is this channel called ”push to talk”? Show that
the capacity region cannot be completely expressed as the union of
R(X1, X2) sets and that time-sharing (convexification) is necessary.

Solutions of Time-sharing for MAC

Suppose X1 ∼ Ber(p1) and X2 ∼ Ber(p2) . It can be easily shown that
Y ∼ Ber(p1 + p2 − 3p1p2

2
) and

I(X1, X2; Y ) = H

(

p1 + p2 −
3p1p2
2

)

− p1p2. (47)

IF p1p2 6= 0, we have I(X1, X2; Y ) < 1. However, the points(R1, R1) =
(1, 0) and (R1, R2) = (0, 1) are achievable if one of the transmitters
fixes its output at zero, i.e.,p1 = 0 orp2 = 0.Therefore, by time sharing,
all the points on the line R1 + R2 = 1 are achievable, however, these
points do not belong to any region of the form R(X1, X2)
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12. MAC capacity with costs

The cost of using symbol x is r(x). The cost of a codeword xn is
r(xn) = 1

n

∑n

i=1 r(xi). A (2nR, n) codebook satisfies cost constraint r if
1
n

∑n

i=1 r(xi(w)) ≤ r, for all w ∈ 2nR.

(a) Find an expression for the capacity C(r) of a discrete memoryless
channel with cost constraint r.

(b) Find an expression for the multiple access channel capacity region
for (X1×X2, p(y|x1, x2),Y) if sender X1 has cost constraint r1 and
sender X2 has cost constraint r2.

(c) Prove the converse for (b).

Solutions of MAC capacity with costs

(a) The capacity of a discrete memoryless channel with cost constraint
r is given by

C(r) = max
p(x):

∑
x
p(x)r(x)≤r

I(X ; Y ). (48)

The achievability follows immediately from Shannon’s ‘average
over random codebooks’ method and joint typicality decoding.
(See Section 9.1 for the power constraint example.)

For the converse, we need to establish following simple properties
of the capacity-cost function C(r).

Theorem The capacity cost function C(r) given in (48) is a non-
decreasing concave function of r. %bftheorem

Remark: These properties of the capacity cost function C(r)
exactly parallel those of the rate distortion function R(D). (See
Lemma 10.4.1 of the text.)

Proof: The monotonicity is a direct consequence of the definition
of C(r). To prove the concavity, consider two points (C1, r1) and
(C2, r2) which lie on the capacity cost curve. Let the distributions
that achieve these pairs be p1(x) and p2(x). Consider the distribu-
tion pλ = λp1+(1−λ)p2. Since the cost is a linear function of the
distribution, we have r(pλ) = λr1+(1−λ)r2. Mutual information,

12



on the other hand, is a concave function of the input distribution
(Theorem 2.7.4) and hence

C(λr1 + (1− λ)r2) = C(r(pλ)) (49)

≥ Ipλ(X ; Y ) (50)

≥ λIp1(X ; Y ) + (1− λ)Ip2(X ; Y ) (51)

= λC(r1) + (1− λ)C(r2), (52)

which proves that C(r) is concave in r. 2

Now we are ready to prove the converse. Consider any (2nR, n)
code that satisfies the cost constraint

1

n

n
∑

i=1

r(xi(w)) ≤ r

for w = 1, 2, . . . , 2nR, which in turn implies that

1

n

n
∑

i=1

E(r(Xi)) ≤ r, (53)

where the expectation is with respect to the uniformly drawn mes-
sage indexW . As in the case without the cost constraint, we begin
with Fano’s inequality to obtain the following chain of inequalities:
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nR = H(W ) (54)

≤ I(W ; Y n) + nǫn (55)

≤ I(Xn; Y n) + nǫn (56)

≤ H(Y n)−H(Y n|Xn) + nǫn (57)

≤
n
∑

i=1

H(Yi)−H(Yi|Xn, Y i−1) + nǫn (58)

=
n
∑

i=1

H(Yi)−H(Yi|Xi) + nǫn (59)

=

n
∑

i=1

I(Xi; Yi) + nǫn (60)

(a)

≤
n
∑

i=1

C(E(r(Xi))) + nǫn (61)

= n

n
∑

i=1

1

n
C(E(r(Xi))) + nǫn (62)

(b)

≤ nC

(

1

n

n
∑

i=1

E(r(Xi))

)

+ nǫn (63)

(c)

≤ nC(r) + nǫn, (64)

where
(a) follows from the definition of the capacity cost function,
(b) from the concavity of the capacity cost function and Jensen’s
inequality, and
(c) from Eq. (53) and the fact that C(r) is non-decreasing in r.

Note that we cannot jump from (60) to (64) since E(r(Xi)) may
be greater than r for some i.

(b) The capacity region under cost constraints r1 and r2 is given by
the closure of the set of all (R1, R2) pairs satisfying

R1 < I(X1; Y |X2, Q),

R2 < I(X2; Y |X1, Q),

R1 +R2 < I(X1, X2; Y |Q)
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for some choice of the joint distribution p(q)p(x1|q)p(x2|q)p(y|x1, x2)
with

∑

x1

p(x1)r1(x1) ≤ r1,

∑

x2

p(x2)r2(x2) ≤ r2,

and |Q| ≤ 4.

(c) Again the achievability proof is an easy extension from the case
without cost constraints. For the converse, consider any sequence
of ((2nR1 , 2nR2), n) codes with P

(n)
e → 0 satisfying

1

n

∑

i

r1(x1i(w1i)) ≤ r1

1

n

∑

i

r2(x2i(w2i)) ≤ r2,

for all w1i = 1, 2, . . . , 2nR1, w2i = 1, 2, . . . , 2nR2. By taking expec-
tation with respect to the random message index pair (W1,W2),
we get

1

n

∑

i

E(r1(X1i)) ≤ r1 and
1

n

∑

i

E(r2(X2i)) ≤ r2. (65)

By starting from Fano’s inequality and taking the exact same steps
as in the converse proof for the MAC without constraints (see
Section 14.3.4 of the text), we obtain

nR1 ≤
n
∑

i=1

I(X1i; Yi|X2i) + nǫ1n = nI(X1Q; YQ|X2Q, Q) + nǫ1n,

nR2 ≤
n
∑

i=1

I(X2i; Yi|X1i) + nǫ2n = nI(X2Q; YQ|X1Q, Q) + nǫ2n,

n(R1 +R2) ≤
n
∑

i=1

I(X1i, X2i; Yi) + nǫn = nI(X1Q, X2Q; YQ|Q) + nǫn,

where the random variable Q is uniform over {1, 2, . . . , n} and
independent of (X1i, X2i, Yi) for all i.
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Now define X1
△
=X1Q, X2

△
=XQ, and Y

△
=YQ. It is easy to check that

(Q,X1, X2, Y ) have a joint distribution of the form p(q)p(x1|q)p(x2|q)p(y|x1, x2).
Moreover, from Eq. (65),

∑

x1

Pr(X1 = x1)r1(x1) =
∑

x1

Pr(X1Q = x1)r1(x1)

=
∑

x1

n
∑

i=1

Pr(X1Q = x1|Q = i) Pr(Q = i)r1(x1)

=
∑

x1

n
∑

i=1

1

n
Pr(X1i = x1)r1(x1)

=
1

n

n
∑

i=1

∑

x1

Pr(X1i = x1)r1(x1)

=
1

n

n
∑

i=1

∑

x1

Pr(X1i = x1)r1(x1)

=
1

n

n
∑

i=1

E(r1(X1i))

≤ r1,

and similarly,
∑

x2

Pr(X2 = x2)r2(x2) ≤ r2.

Therefore, we have shown that any sequence of ((2nR1 , 2nR2), n)

codes satisfying cost constraints with P
(n)
e → 0 should have the

rates satisfying

R1 < I(X1; Y |X2, Q),

R2 < I(X2; Y |X1, Q),

R1 +R2 < I(X1, X2; Y |Q)

for some choice of the joint distribution p(q)p(x1|q)p(x2|q)p(y|x1, x2)
with

∑

x1

p(x1)r1(x1) ≤ r1
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and
∑

x2

p(x2)r2(x2) ≤ r2.

Finally, from Theorem 14.3.4, the region is unchanged if we limit
the cardinality of Q to 4, which completes the proof of the con-
verse.

Note that, compared to the single user case in part (a), the con-
verse for the MAC with cost constraints is rather straightforward.
Here the time sharing random variable Q saves the trouble of
dealing with costs at each time index i.
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