
Multi Users information theory Semester A 2009/10

Solution to Practice Questions for the Final

Practice

1. Initial conditions. Show, for a Markov chain, that

H(X0|Xn) ≥ H(X0|Xn−1).

Thus initial conditions X0 become more difficult to recover as the future
Xn unfolds.

2. Entropy of a Stationary Source. Let X1, X2, . . . be a discrete-
valued stationary random process, with entropy rate H(X ), show that
for n ≥ 1

H(X ) ≤
H(Xn)

n

3. Jointly Typical Sequences. Let A
(n)
ǫ (X, Y ) be the set of ǫ-strongly

typical sequences (xn, yn) with respect to p(x, y).

(a) Let xn ∈ A
(n)
ǫ and define

A(n)
ǫ (Y |xn) =

{

yn : (xn, yn) ∈ A(n)
ǫ

}

.

Show that |A
(n)
ǫ (Y |xn)|

.
= 2n

(

H(Y |X)).

(b) Consider two randomly generated codebooks, C1 = {xn
1 , xn

2 , . . . , x
n
2nR1

},
where the codewords are independent and each generated ac-
cording to ∼ Πn

i=1p(xi), and C2 = {yn
1 , yn

2 , . . . , yn
2nR1

}, where the
codewords are independent and each generated according to ∼
Πn

i=1p(xi). The pmfs p(x) and p(y) are the marginals of p(x, y).
Define the set

C =
{

(xn, yn) ∈ C1 × C2 such that (xn, yn) ∈ A(n)
ǫ (X, Y )

}

Show that

E|C|
.
= 2n

(

R1+R2−I(X;Y )±3ǫ

)

,

where the expectation is over the C1 × C2 sets.
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4. Memoryless channel without feedback In the lectures we stated
that for a DMC with no feedback the definition of memory-lessness;
p(yi|x

i, yi1) = p(yi|xi), i = 1, 2, . . . , n, implies that p(yn|xn) = Πn
i=1p(yi|xi).

Use the fact that with no feedback W → Xn → Y n to prove this claim.

5. Maximum entropy process. A discrete memoryless source has al-
phabet {1, 2} where the symbol 1 has duration 1 and the symbol 2 has
duration 2. The probabilities of 1 and 2 are p1 and p2, respectively.
Find the value of p1 that maximizes the source entropy per unit time
H(X)/ElX. What is the maximum value H?

6. Horse race. Consider a horse race with 4 horses. Assume that each
of the horses pays 4-for-1 if it wins. Let the probabilities of winning of
the horses be {1

2
, 1

4
, 1

8
, 1

8
}. If you started with $100 and bet optimally

to maximize your long term growth rate, what are your optimal bets
on each horse? Approximately how much money would you have after
20 races with this strategy ?

Horse race. The optimal betting strategy is proportional betting, i.e.,
dividing the investment in proportion to the probabilities of each horse
winning. Thus the bets on each horse should be (50%, 25%,12.5%,12.5%),
and the growth rate achieved by this strategy is equal to log 4−H(p) =
log 4 − H(1

2
, 1

4
, 1

8
, 1

8
) = 2 − 1.75 = 0.25. After 20 races with this strat-

egy, the wealth is approximately 2nW = 25 = 32, and hence the wealth
would grow approximately 32 fold over 20 races.

7. Weak Typicality vs. Strong Typicality

In this problem, we compare the weakly typical set Aǫ(P ) and the
strongly typical set Tδ(P ). To recall, the definition of two sets are
following.

Aǫ(P ) =

{

xn ∈ X n :

∣

∣

∣

∣

−
1

n
log P n(xn) − H(P )

∣

∣

∣

∣

≤ ǫ

}

Tδ(P ) =

{

xn ∈ X n : ‖Pxn − P‖∞ ≤
δ

|X |

}

(a) Suppose P is such that P (a) > 0 for all a ∈ X . Then, there
is an inclusion relationship between the weakly typical set Aǫ(P )
and the strongly typical set Tδ(P ) for an appropriate choice of

2



ǫ. Which of the statement is true: Aǫ(P ) ⊆ Tδ(P ) or Aǫ(P ) ⊇
Tδ(P )? What is the appropriate relation between δ and ǫ?

(b) Give a description of the sequences that belongs to Aǫ(P ), vs. the
sequences that belongs to Tδ(P ), when the source is uniformly
distributed, i.e. P (a) = 1

|X |
, ∀a ∈ X . (Assume |X | < ∞.)

(c) Can you explain why Tδ(P ) is called strongly typical set and
Aǫ(P ) is called weakly typical set?

8. Sanov’s theorem: Prove the simple version of Sanov’s theorem for
the binary random variables, i.e., let X1, X2, . . . , Xn be a sequence of
binary random variables, drawn i.i.d. according to the distribution:

Pr(X = 1) = q, Pr(X = 0) = 1 − q. (1)

Let the proportion of 1’s in the sequence X1, X2, . . . , Xn be pX, i.e.,

pXn =
1

n

n
∑

i=1

Xi. (2)

By the law of large numbers, we would expect pX to be close to q for
large n. Sanov’s theorem deals with the probability that pXn is far
away from q. In particular, for concreteness, if we take p > q > 1

2
,

Sanov’s theorem states that

−
1

n
log Pr {(X1, X2, . . . , Xn) : pXn ≥ p} → p log

p

q
+(1−p) log

1 − p

1 − q
= D((p, 1−p)||(q, 1−q))

(3)
Justify the following steps:

•

Pr {(X1, X2, . . . , Xn) : pX ≥ p} ≤

n
∑

i=⌊np⌋

(

n

i

)

qi(1 − q)n−i (4)

• Argue that the term corresponding to i = ⌊np⌋ is the largest term
in the sum on the right hand side of the last equation.

• Show that this term is approximately 2−nD.
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• Prove an upper bound on the probability in Sanov’s theorem using
the above steps. Use similar arguments to prove a lower bound
and complete the proof of Sanov’s theorem.

9. successive cancellation.

Consider a DM-MAC (X1×X2, p(y|x1, x2),Y). To achieve a corner point
of a set R(X1, X2), e.g., R1 = I(X1; Y X2)+ǫ, R2 = I(X2; Y )+ǫ for any
ǫ > 0, use random coding and the following two-step decoding scheme:
the receiver first declares that ŵ2 is sent if it is the unique message such
that ((xn

2 (ŵ2), y
n) ∈ A

(n)
ǫ ), otherwise, an error is declared, if such ŵ2 is

found, the receiver declares that ŵ1 is sent if the unique message such
that ((xn

1 (ŵ1), x
n
2 (ŵ2), y

n) ∈ A
(n)
ǫ ), otherwise an an error is declared.

Provide detailed analysis of error probability to show that this corner
point is achievable.

10. Cooperative Capacity of a MAC.

Consider a DM-MAC (X1×X2, p(y|x1, x2),Y). Assume that both senders
have access to both messages W1 ∈

{

1, 2, ...2nR
}

and W2 ∈
{

1, 2, ...2nR
}

,
thus the codewords X1(W1, W2) and X2(W1, W2) can depend on both
messages .

(a) Find the capacity region.

(b) Evaluate the region for the AWGN MAC with noise power N and
power constraints P1 and P2

11. Time-sharing for MAC In the examples in the class (including the
AWGN case) can all be expressed as union of R(X1, X2) sets and no
time-sharing is necessary. Is time-sharing ever necessary? The answer
is YES. Find the capacity of the push to talk MAC channel with bi-
nary inputs and output and p(0|0, 0) = p(1|0, 1) = p(1|1, 0) = 1 and
p(0|1, 1) = 1/2. Why is this channel called ”push to talk”? Show that
the capacity region cannot be completely expressed as the union of
R(X1, X2) sets and that time-sharing (convexification) is necessary.

12. MAC capacity with costs

The cost of using symbol x is r(x). The cost of a codeword xn is
r(xn) = 1

n

∑n

i=1 r(xi). A (2nR, n) codebook satisfies cost constraint r if
1
n

∑n

i=1 r(xi(w)) ≤ r, for all w ∈ 2nR.
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(a) Find an expression for the capacity C(r) of a discrete memoryless
channel with cost constraint r.

(b) Find an expression for the multiple access channel capacity region
for (X1×X2, p(y|x1, x2),Y) if sender X1 has cost constraint r1 and
sender X2 has cost constraint r2.

(c) Prove the converse for (b).
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