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Multi-User Information Theory November 11th, 2009

Lecture 7

Lecturer: Haim Permuter Scribe: Avihay Shiraz
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Fig. 1. The compound channel. Fixed state throughout threstnéssion block.

Definition 1 The compound channel is a channel with a state, where the state is constant overcéewh

transmission block.
Definition 2 A (2" n) code for a compound channel consists of the following:
1) Anindex set M = {1,2,...2"},
2) An encoding functionf : M +— X".
3) A decoding function g : Y" — M.
Definition 3 The average probability of error Pe(”), is the probability Pe(") = Pr{J\Z/ # M}, where M

is chosen according to a uniform distribution over the S, ... 27},
Definition 4 A rate R is said to beachievable if there exists a sequence of cod@s’, n) s.t. Pé”)mo.

Definition 5 The capacity is the supremum of all achievable rates.

A. Compound channel with an unknown state

Theorem 1 (Compound channel capacit¥) The capacity of the compound channel is given by:

Ceoe = maxmin I(X;Y]S = s), 1)

p(z) s
Example 1SupposeS = {0,1}, and consider the compound channel in Fig. 2.
We assume that the encoder does not know the state (we canegggbugh, that the decoder is provided
with the state information. If it is not the case initiallyevean send a finite training sequence and estimate

the state with arbitrarly small probability of error). Les wlenotePr{X = 0} = p and calculate the
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Fig. 2. Z-channel and S-channel.

capacity of the channel in the example:

For 5 =0,
I(X;Y[S=0) = H(Y|S=0)—H(Y|X,S=0)
- (el
o (C t
ForS =1,
I(X;Y|S=1) = H(Y|S=1)—H(Y|X,5=1)
- n(z)-»

We can now calculate the capacity of the channel using thendgiermula:

¢ = e {n(152) 0o a(3) )
_ H(52) ~(-p) fp<),
S a(s) - i p> 1

= 0.3113 bit,

where we get (a) fop = 1. (See Fig. 3).
Note that the capacity of each channel by itselfis= H (1) — 2 = 0.3219 bit, which is strictly higher
than the capacity we found. Moreover, the compound chasrdittating capacity of the worst state for us,

hence, even if we knew that one state is more likely than therpstill it would not change the capacity.
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Fig. 3. The achievable rates scheme Eoample 1

Proof of Theorem 1

Achievability in Theorem 1: Assume that the decoder is provided with full state infaiora(CSIR, which

is Channel State Information at the Receiver). bix), p(s) and generat@™? codewords at random
according to the distributiop(2™) = I, p(x;), X; ~ p(x) i.i.d. . Index the codewordX™(m), m €
2"E and reveal the content of this codebo6} fo the sender and the reciever .

Encoding: Given the wordm, the encoder sends the sequeiif®m) over the channel.

Decoding: GivenY ", S, the decoder declares th&t* (1) was sent, if there is one and only one sequence

X"(M) eC st
(X", y") € T (X, V]S = 5). @)

If there is no such sequence, or there is more than one, anigrdeclared.
Analysis of probability of error: Let us assume that the message= 1 was sent. Define the following

events:

By = {(X"(),y") ¢ T (X, YIS = 5) }, 3)
B, = {aj £1:(X"(j),Y") € T (X,Y|S = s)}. (4)
Then, by union of events bound,
P™ = P(E, U Ey) < P(Ey) + P(Ey). (5)

e

Because of the L.L.NP(E;) — 0.



Define By, = {(X"( ), v") e T (X,Y|S = s

Let j # 1, then

and note that

}m
e (Us)

.
:’Jn

PI‘{(X"(]),Y”) c Te(n) (X,Y|S _ S)} < 27n(I(X;Y|S:S)*5)'

Therefore,

P(EQ) < 2nR7nI(X;Y\S:s)Jrne7

and this tendsto O for R < I(X;Y|S = s), s € S.

Converse

Fix a (2"%,n) code with probability of erro™, then,

nRk

H(M)

H(M|S =s)
H(M|S=s)—HM|Y",S=s)+HM|Y",S =5s)
I(M;Y"|S = s) + HM|Y", S = 5)

I(X™Y"S =)+ nen(s)
H(Y"™S=s)—H{Y",X",S=s)+ne,

H(Y™S =s) — ZH(YZ-|XZ-, S = 5) + ney(s)
ZH(E|W_1,S =3)— ZH(YAX“ S = 5) + ney(s)
3 (H(ms =) — H(Yi|X;,S = s)) + nen(s)

i=1

ST I(XiYilS = 8) + neg(s),

i=1

7-4

(6)

()
(8)

)

(10)

(11)
(12)
(13)
(14)
(15)
(16)

(17)

(18)

(19)

(20)

(21)



7-5

where

(a) follows from Fano’s inequality and the data processitgpuality

(b) follows from the fact that the channel is memoryless

(c) follows from the fact that conditioning decreases eoyro

Let us now introduce the time sharing random varia@jevhere@ ~ Uniform[1,2,...n] and independent
of (M, X" Y™ s). Let X := X, Y :=Yy. ThenQ — X — Y forms a Markov chain (recall that the

channel is defined by x s), and hence,

nR < ni%I(YQ;XmS: $,Q = 1)+ ney(s) (22)
= n}(:)l(c.z; YolS = 5,Q) + nen(s) (23)

< nI(Xq, Qi YalS = 5) + nea(s) (24)

' nI(X;Y]S = 5) + nea(s) (25)

R < I(X;Y|S=s5)+en(s). (26)

This is true for every € S, and in particular,
R < msinI(Y;X|S =5) + €n(5). (27)
Sincee, (s)7==0 for all s € S, we can conclude
R < rzr)l(az%( mSinI(X;Y|S =), (28)

where
(d) follows from the mutual information chain rule
(e) follows from the Markov chai) — X — Y and the mutual information chain rule

This completes the proof of the compound channel capacitydita.

B. Compound channel with a state known to the encoder

Let us consider the same compound channel, but this time fiitlCSIT (Channel State Information at

the Transmitter). For this discussion we will first note toédwing inequality:

Lemma 1

max min f(a,b) < min max f(a,b). (29)

Proof:
min f(a,) < f(a,b),  Va,b. (30)
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Takemax, on both sides,

maxrriiln f(a,b") <max f(a,b), vb. (31)

This is true for allb, and in particular for

b* = arg mbin max f(a,b). (32)

Hence, we obtain
max Hll,i,n fla,t) < max f(a,b%). (33)
|

Let us define a code for the compound channel with CSIT:

Definition 6 A (2"%,n) code for a compound channel with CSIT consists of the folgyi
1) Anindex set M = {1,2,...2"7},
2) An encoding functionf : M xS — &A™,
3) A decoding function g : Y™ —— M.
Theorem 2 (Capacity of compound channel with state infoionadt the encoderYhe capacity of the com-

pound channel with CSIT is given by:

Cco_csit = I?ETX) minI(X;Y]S = s) (34)
p(x|s s

= minmaxI(X;Y]S = s). (35)
s p()

The encoder can be informed in two ways: either by directfgriming the transmitter, or by feedback
(with a short training sequence). Note that the capacitthefdompound channel with CSIT is greater or

equals to the one without state information, as followingnirTheorem 1.

Remark 1In this case, in contradiction to what we learned_gtture. 2. ,the feedbaclkdoes increase the
capacity. The reason for this is that this channel is not mgless. The stat& = s is constant over the
whole block length, thus, at a given time within the blocke fbresent state does depend on the state in

the past. Therefor, the channel has memory.

Example 2Let us modify the channel in Example 1 a little, and add CSHe €apacity of the new channel
is:
1

2
Ccc—csir =Co=C1 = H(g) - gbit-

We can see that the capacity of the new channel equals theigap each of the sub-channels. This

follows from:

min, max, {{(X;Y|S =0),I(X;Y|S=1)}
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= min, {max, [(X;Y|S =0) , max, I(X;Y]S=1)}
= ming{Cs—o, Cs=1}
- H(%) — 2 hit,

which is strictly greater than the capacity of the channdtxample 1.

1. CHANNELS WITH CAUSAL STATE INFORMATION AT THE ENCODER

In this section we consider a channel with a random stateyewvtiee state is known to the encoder in a

causal way. Let the stat®; ~ p(s) i.i.d. .

S
,, )
X; Y 5
m ——»{ Encoder » Pyixs » Decoder——» m

Fig. 4. State dependent channel with causal CSIT (Chanmgt Stformation at the Transmitter).

Definition 7 A (2"%,n) code for a channel with causal CSIT consists of the following
1) Anindex set M = {1,2,...2"F}
2) An encoding functionf; : M x 8 — X;
3) A decoding function ¢g: Y — M

A rate R is achievable if there exists a sequence of cq@&$,n) s.t. Pé”)mo.

Capacity is the supremum of all achievable rates.

Theorem 3 (Capacity of channel with causal state informediadhe encoder)2] The capacity of a channel

with causal CSIT is given by:

C= max I(U;Y), (36)
p(u)
z=f(u,s)
wherep(s,u, z,y) = p(s)p(u)p(z|s, u)p(y|z,s) and p(x|s,u) € {0,1}, the letter which defineX as a

deterministic function of/ and S.

Proof of Theorem 3
Converse

Fix a (2"%,n) code with probability of erro®{™, then,

nR = H(M) (37)



(a)
< I(M;Y") + ne,
= H(Y™) - HY"|M) + ne,
n
= Y (HOA) - HOAMYE ) + e
=1
0 & ;
< 30 (HD) - HODLY) e
=1
n .
= ZI(M7Y'11_1;}/Z')+7’L€”
=1
© & ; ;
> ZI(M7Y7127155171;Y;)+H€”
=1
(i) ZI(nyliilaXiil’Siil;Yvi)+TL€n
=1
() n . X
= D I(M X7 STRY) + ney
=1
&0 ZI(M,S{”;Y'L-)Jrnen
-1
U;
(9)
< n max I(U;Y)+ nep,

p(u)
z=f(u,s)

where

(a) follows from Fano’s inequality
(b) follows from the fact that conditioning reduces entropy
(c) follows from the properties of mutual information
(d) follows from the fact thaiX!~' is a function of M, Si~*
(e) follows from the Markov chairt; ™! «— (X{71 Si7!) «— V;
(f) follows from the same reason presented in (d)
(g) follows from the following two facts:
(@) Xi= fi(Ui, Si)
(#4) U is independent o

Let us show 4):

>
I

= fi(M, 8771, S, Y

= [fi(Ui, Si).

7-8

(38)
(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)



7-9

Let us show 3):

p(m, st,yi ") = p(ss) p(si Dp(m)p(y;m, s77", s:) .
——
9371'71
p(yi Mzl st
O
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