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Multi-User Information Theory November 11th, 2009

Lecture 7

Lecturer: Haim Permuter Scribe: Avihay Shirazi

I. COMPOUND CHANNEL

m Encoder Xn

PY |X,S
Y n

Decoder

S

m̂

Fig. 1. The compound channel. Fixed state throughout the transmission block.

Definition 1 The compound channel is a channel with a state, where the state is constant over a whole

transmission block.

Definition 2 A (2nR, n) code for a compound channel consists of the following:

1) An index setM = {1, 2, . . .2nR}.

2) An encoding functionf : M 7−→ Xn.

3) A decoding function g : Yn 7−→ M.

Definition 3 The average probability of error P
(n)
e , is the probability P

(n)
e , Pr{M̂ 6= M}, whereM

is chosen according to a uniform distribution over the set{1, 2, . . .2nR}.

Definition 4 A rateR is said to beachievable if there exists a sequence of codes(2nR, n) s.t.P (n)
e −−−→n→∞0.

Definition 5 The capacity is the supremum of all achievable rates.

A. Compound channel with an unknown state

Theorem 1 (Compound channel capacity)[1] The capacity of the compound channel is given by:

CCC = max
p(x)

min
s

I(X ;Y |S = s), (1)

Example 1SupposeS = {0, 1}, and consider the compound channel in Fig. 2.

We assume that the encoder does not know the state (we can assume, though, that the decoder is provided

with the state information. If it is not the case initially, we can send a finite training sequence and estimate

the state with arbitrarly small probability of error). Let us denotePr{X = 0} = p and calculate the
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Fig. 2. Z-channel and S-channel.

capacity of the channel in the example:

For S = 0,

I(X ;Y |S = 0) = H(Y |S = 0)−H(Y |X,S = 0)

= H
(1

2
+

p

2

)

− (1 − p)

= H
(1

2
−

p

2

)

− (1 − p).

For S = 1,

I(X ;Y |S = 1) = H(Y |S = 1)−H(Y |X,S = 1)

= H
(p

2

)

− p.

We can now calculate the capacity of the channel using the given formula:

C = max
p

min
s

{

H
(1− p

2

)

− (1 − p) , H
(p

2

)

− p

}

= max
p







H
(

1−p
2

)

− (1 − p) if p ≤ 1
2 ,

H
(

p

2

)

− p if p ≥ 1
2

(a)
= H

(1

4

)

−
1

2

= 0.3113 bit,

where we get (a) forp = 1
2 . (See Fig. 3).

Note that the capacity of each channel by itself isC = H(15 ) −
2
5 = 0.3219 bit, which is strictly higher

than the capacity we found. Moreover, the compound channel is dictating capacity of the worst state for us,

hence, even if we knew that one state is more likely than the other, still it would not change the capacity.
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Fig. 3. The achievable rates scheme forExample 1

Proof of Theorem 1

Achievability in Theorem 1: Assume that the decoder is provided with full state information (CSIR, which

is Channel State Information at the Receiver). Fixp(x), p(s) and generate2nR codewords at random

according to the distributionp(xn) = Πn
i=1p(xi), Xi ∼ p(x) i.i.d. . Index the codewordsXn(m),m ∈

2nR, and reveal the content of this codebook (C) to the sender and the reciever .

Encoding: Given the wordm, the encoder sends the sequenceXn(m) over the channel.

Decoding: GivenY n, S, the decoder declares thatXn(M̂) was sent, if there is one and only one sequence

Xn(M̂) ∈ C s.t.

(

Xn(M̂), Y n
)

∈ T (n)
ǫ

(
X,Y |S = s

)
. (2)

If there is no such sequence, or there is more than one, an error is declared.

Analysis of probability of error: Let us assume that the messageM = 1 was sent. Define the following

events:

E1 =
{

(Xn(1), Y n) /∈ T (n)
ǫ

(
X,Y |S = s

)}

, (3)

E2 =
{

∃j 6= 1 : (Xn(j), Y n) ∈ T (n)
ǫ

(
X,Y |S = s

)}

. (4)

Then, by union of events bound,

P (n)
e = P (E1 ∪ E2) ≤ P (E1) + P (E2). (5)

Because of the L.L.N.P (E1) −→ 0.
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DefineE2j =
{

(Xn(j), Y n) ∈ T
(n)
ǫ

(
X,Y |S = s

)}

, and note that

P (E2) = P





2nR

⋃

j=2

E2j



 (6)

≤

2nR

∑

j=2

P (E2j). (7)

(8)

Let j 6= 1, then

Pr
{(

Xn(j), Y n
)
∈ T (n)

ǫ

(
X,Y |S = s

)}

≤ 2−n

(
I(X;Y |S=s)−ǫ

)

. (9)

Therefore,

P (E2) ≤ 2nR−nI(X;Y |S=s)+nǫ, (10)

and this tends to 0 for R ≤ I(X ;Y |S = s), s ∈ S.

�

Converse

Fix a (2nR, n) code with probability of errorP (n)
e , then,

nR = H(M) (11)

= H(M |S = s) (12)

= H(M |S = s)−H(M |Y n, S = s) +H(M |Y n, S = s) (13)

= I(M ;Y n|S = s) +H(M |Y n, S = s) (14)
(a)

≤ I(Xn;Y n|S = s) + nǫn(s) (15)

= H(Y n|S = s)−H(Y n|, Xn, S = s) + nǫn (16)

(b)
= H(Y n|S = s)−

n∑

i=1

H(Yi|Xi, S = s) + nǫn(s) (17)

=

n∑

i=1

H(Yi|Y
i−1
1 , S = s)−

n∑

i=1

H(Yi|Xi, S = s) + nǫn(s) (18)

(c)

≤

n∑

i=1

(

H(Yi|S = s)−H(Yi|Xi, S = s)
)

+ nǫn(s) (19)

=
n∑

i=1

I(Xi;Yi|S = s) + nǫn(s), (20)

(21)
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where

(a) follows from Fano’s inequality and the data processing inequality

(b) follows from the fact that the channel is memoryless

(c) follows from the fact that conditioning decreases entropy

Let us now introduce the time sharing random variableQ, whereQ ∼ Uniform [1, 2, . . . n] and independent

of (M,Xn, Y n, s). Let X := XQ, Y := YQ. ThenQ − X − Y forms a Markov chain (recall that the

channel is defined byPY |X,S), and hence,

nR ≤ n

n∑

i=1

1

n
I(YQ;XQ|S = s,Q = i) + nǫn(s) (22)

= nI(XQ;YQ|S = s,Q) + nǫn(s) (23)
(d)

≤ nI(XQ, Q;YQ|S = s) + nǫn(s) (24)

(e)
= nI(X ;Y |S = s) + nǫn(s) (25)

R ≤ I(X ;Y |S = s) + ǫn(s). (26)

This is true for everys ∈ S, and in particular,

R ≤ min
s

I(Y ;X |S = s) + ǫn(s). (27)

Sinceǫn(s)−−−→n→∞0 for all s ∈ S, we can conclude

R ≤ max
p(x)

min
s

I(X ;Y |S = s), (28)

where

(d) follows from the mutual information chain rule

(e) follows from the Markov chainQ−X − Y and the mutual information chain rule

This completes the proof of the compound channel capacity formula.

�

B. Compound channel with a state known to the encoder

Let us consider the same compound channel, but this time withfull CSIT (Channel State Information at

the Transmitter). For this discussion we will first note the following inequality:

Lemma 1

max
b

min
a

f(a, b) ≤ min
a

max
b

f(a, b). (29)

Proof:

min
b′

f(a, b′) ≤ f(a, b), ∀a, b. (30)
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Takemaxa on both sides,

max
a

min
b′

f(a, b′) ≤ max
a

f(a, b), ∀b. (31)

This is true for allb, and in particular for

b∗ = argmin
b

max
a

f(a, b). (32)

Hence, we obtain

max
a

min
b′

f(a, b′) ≤ max
a

f(a, b∗). (33)

Let us define a code for the compound channel with CSIT:

Definition 6 A (2nR, n) code for a compound channel with CSIT consists of the following:

1) An index setM = {1, 2, . . .2nR}.

2) An encoding functionf : M×S 7−→ Xn.

3) A decoding function g : Yn 7−→ M.

Theorem 2 (Capacity of compound channel with state information at the encoder)The capacity of the com-

pound channel with CSIT is given by:

CCC−CSIT = max
p(x|s)

min
s

I(X ;Y |S = s) (34)

= min
s

max
p(x)

I(X ;Y |S = s). (35)

The encoder can be informed in two ways: either by directly informing the transmitter, or by feedback

(with a short training sequence). Note that the capacity of the compound channel with CSIT is greater or

equals to the one without state information, as following from Theorem 1.

Remark 1 In this case, in contradiction to what we learned inLecture. 2. ,the feedbackdoes increase the

capacity. The reason for this is that this channel is not memoryless. The stateS = s is constant over the

whole block length, thus, at a given time within the block, the present state does depend on the state in

the past. Therefor, the channel has memory.

Example 2Let us modify the channel in Example 1 a little, and add CSIT. The capacity of the new channel

is:

CCC−CSIT = C0 = C1 = H
(1

5

)

−
2

5
bit.

We can see that the capacity of the new channel equals the capacity of each of the sub-channels. This

follows from:

mins maxp {I(X ;Y |S = 0), I(X ;Y |S = 1)}
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= mins {maxp I(X ;Y |S = 0) , maxp I(X ;Y |S = 1)}

= mins{CS=0, CS=1}

= H
(

1
5

)

− 2
5 bit,

which is strictly greater than the capacity of the channel inExample 1.

II. CHANNELS WITH CAUSAL STATE INFORMATION AT THE ENCODER

In this section we consider a channel with a random state, where the state is known to the encoder in a

causal way. Let the stateSi ∼ p(s) i.i.d. .

m Encoder Xi PY |X,S
Yi Decoder

Si

m̂

Fig. 4. State dependent channel with causal CSIT (Channel State Information at the Transmitter).

Definition 7 A (2nR, n) code for a channel with causal CSIT consists of the following:

1) An index setM = {1, 2, . . .2nR}

2) An encoding functionfi : M×Si1 7−→ Xi

3) A decoding function g : Yn 7−→ M

A rateR is achievable if there exists a sequence of codes(2nR, n) s.t.P (n)
e −−−→n→∞0.

Capacity is the supremum of all achievable rates.

Theorem 3 (Capacity of channel with causal state information at the encoder)[2] The capacity of a channel

with causal CSIT is given by:

C = max
p(u)

x=f(u,s)

I(U ;Y ), (36)

wherep(s, u, x, y) = p(s)p(u)p(x|s, u)p(y|x, s) and p(x|s, u) ∈ {0, 1}, the letter which definesX as a

deterministic function ofU andS.

Proof of Theorem 3

Converse

Fix a (2nR, n) code with probability of errorP (n)
e , then,

nR = H(M) (37)
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(a)

≤ I(M ;Y n) + nǫn (38)

= H(Y n)−H(Y n|M) + nǫn (39)

=

n∑

i=1

(

H(Yi|Y
i−1
1 )−H(Yi|M,Y i−1

1 )
)

+ nǫn (40)

(b)

≤

n∑

i=1

(

H(Yi)−H(Yi|M,Y i−1
1 )

)

+ nǫn (41)

=

n∑

i=1

I(M,Y i−1
1 ;Yi) + nǫn (42)

(c)

≤

n∑

i=1

I(M,Y i−1
1 , Si−1

1 ;Yi) + nǫn (43)

(d)
=

n∑

i=1

I(M,Y i−1
1 , X i−1

1 , Si−1
1 ;Yi) + nǫn (44)

(e)
=

n∑

i=1

I(M,X i−1
1 , Si−1

1 ;Yi) + nǫn (45)

(f)
=

n∑

i=1

I(M,Si−1
1

︸ ︷︷ ︸

Ui

;Yi) + nǫn (46)

(g)

≤ n max
p(u)

x=f(u,s)

I(U ;Y ) + nǫn, (47)

where

(a) follows from Fano’s inequality

(b) follows from the fact that conditioning reduces entropy

(c) follows from the properties of mutual information

(d) follows from the fact thatX i−1
1 is a function ofM,Si−1

1

(e) follows from the Markov chainY i−1
1 ←→ (X i−1

1 , Si−1
1 )←→ Yi

(f) follows from the same reason presented in (d)

(g) follows from the following two facts:

(i) Xi = fi(Ui, Si)

(ii) U is independent ofS

Let us show (i):

Xi = fi(M,Si
1)

= f̃i(M,Si−1
1 , Si, Y

i−1
1 )

= f̂i(Ui, Si).
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Let us show (ii):

p(m, si1, y
i−1
1 ) = p(si) p(s

i−1
1 )p(m)p(yi−1

1 |m, si−1
1

︸ ︷︷ ︸

x
i−1

1

, si)

︸ ︷︷ ︸

p(yi−1

1
|xi−1

1
,s

i−1

1
)

.

�
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