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Multi-User Information Theory October 19th, 2009

Lecture 1

Lecturer: Haim Permuter Scribe: Noa Zuaretz

I. NOTATION

• X - random variable

• X - alphabet

• |X | - cardinality of the alphabet. Unless it is said otherwise, we assume that the alphabet is finite,

i.e., |X | < ∞.

• x - an observation or a specific value. Clearly,x ∈ X .

• PX(x) - the probability that the random variableX gets the valuex, i.e.,PX(x) = Pr{X = x}.

• PX - denotes the whole vector of probabilities. One may also usethe notationPX(·).

• P (x) - this is a short notation forPX(x).

• xn - is the vector(x1, x2, ..., xn) for n ≥ 1. If n = 0 then the vector is empty.

• x
j
i - is the vector(xi, xi+1, ..., xj), for j > i. If j = i, then the vector has only one elementxi and

if j < i, the vector is empty.

II. ENTROPY RATES OF A STOCHASTIC PROCESS

A. Entropy Rate

If we have a sequence ofn random variables, how does the entropy of the sequence grow with n? The

following definition answer this question.

Definition 1 We define theentropy rateas this rate of growth. The entropy of a stochastic process{Xi}

is defined by

H(X ) , lim
n→∞

1

n
H(Xn) = lim

n→∞

1

n

n
∑

i=1

H(Xi|x
i−1) (1)

if the limit exists.

Exercise 1Show that ifX is i.i.d. then 1
n
H(Xn) = H(X).

We can also define a related quantity for entropy rate by

H ′(X ) , lim
n→∞

H(Xn|X
n−1) (2)

if the limit exists.
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H(X ) andH ′(X ) correspond to two different notions of entropy rate. The first (1) is the per symbol

entropy of then random variables, and the second (2) is the conditional entropy of the last random variable

given the past.

Example 1Find the entropy rate of the following process which has memory:

Xn =











000...0 p = 1
2

111...1 p = 1
2 .

(3)

Answer:

1

n
H(Xn) =

1

n
→ 0 whenn → ∞ (4)

Definition 2 A process{Xi}i≥1 is stationary ifP (xi+n
i ) = P (xn

0 ) ∀i, n

Theorem 1 (Entropy rate of stationary processes)For any stationary process{Xi}i≥1 the limits in (1) and

(2) exist and are equal, i.e.,

H(X̄) = H ′(X̄) (5)

Proof:

H(Xn+1|X
n)

(a)

≤ H(Xn+1|X
n
2 ) (6)

(b)
= H(Xn|X

n−1
1 ), (7)

where

(a) follows from the fact that conditioning reduces entropy

(b) follows from the stationarity properties

The sequenceH(Xn|X
n−1) is decreasing and positive, hence the limit exists. Finallywe conclude that

lim 1
n
H(Xn) = limH(Xn|X

n−1), using Cesáro mean lemma which is proved below.

Lemma 1 (Ceśaro mean.)Let {an}n≥1 be a sequence such thatlimn→∞ an = a then the limit of the

sequence{bn}n≥1 wherebn = 1
n

∑n

i=1 an is limn→∞ bn = a.

Proof: Let ε > 0. Sincean → a, there exists a numberN(ε) such that|an−a| ≤ ε for all n ≥ N(ε).

Furthermore,

|bn − a| =

∣

∣

∣

∣

∣

1

n

n
∑

i=1

(ai − a)

∣

∣

∣

∣

∣

(8)

≤
1

n

n
∑

i=1

|(ai − a)| (9)

≤
1

n

N(ε)
∑

i=1

|(ai − a)|+
n−N(ε)

n
ε (10)
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≤
1

n

N(ε)
∑

i=1

|(ai − a)|+ ε (11)

for all n ≥ N(ε). Since the first term goes to 0 asn → ∞, we can make|bn − a| ≤ 2ε by taking n large

enough. Hence,bn → a asn → ∞.

III. D EFINITIONS AND PROPERTIES OF DIRECTED INFORMATION AND CAUSAL CONDITIONING

A. Causal Conditioning

Introduced and employed by Kramer [4], [3] and by Massey [1],Causal Conditioning(notation (·||·))

is defined as the probability mass function of the sequencexn causally conditioned on the sequenceyn.

Definition 3

P (xn||yn) ,

n
∏

i=1

P (xi|x
i−1, yi) (12)

In addition, we introduce the following notation:

P (xn||yn−1) ,

n
∏

i=1

P (xi|x
i−1, yi−1) (13)

The definition given in (13) can be considered to be a particular case of the definition given in (12) where

x0 is set to a dummy zero. This concept was captured by a notationof Massey in [2] via a concatenation

at the beginning of the sequencexi−1 with a dummy zero.

Since, we define the causal conditioningP (xn||yn) as a product ofP (xi|x
i−1, yi), then whenever we

useP (xn||yn), we implicitly assume that there exists a set of that satisfies the equality in (12). We can

call P (xn||yn) andP (xn||yn−1) a causal conditional distribution since they are nonnegative for all xn,

yn and since they sum to one.

Lemma 2

∑

xn

P (xn||yn) = 1 (14)

∑

xn

P (xn||yn−1) = 1 (15)

Proof:

∑

xn

P (xn||yn) =
∑

xn

∑

xn−1

P (xn−1||yn−1)P (xn|x
n−1, yn)

(16)

=
∑

xn

∑

xn−1

P (xn−1||yn−1)P (xn|x
n−1, yn)

(17)

=
∑

xn−1

{

P (xn−1||yn−1)

(

∑

xn

P (xn|x
n−1, yn)

)}
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(18)

=
∑

xn−1

P (xn−1||yn−1). (19)

Now, by iterating equation (16)n times we obtain (14). Similarly, we obtain (15)

Lemma 3 (Chain Rule for Causal Conditioning.)Any joint distribution can be decompose as

P (yn, xn) = P (xn||yn)P (xn||yn−1), (20)

and any productP (xn||yn)P (xn||yn−1) results in a joint distribution.

Proof:

P (xn||yn−1)P (yn||xn) = P (yn, xn) (21)

=
n
∏

i=1

P (xi|x
i−1, yi−1)P (yi|y

i−1, xi−1, xi) (22)

=

n
∏

i=1

P (xi, Yi|x
i−1, yi−1) (23)

= P (xn, yn) (24)

Lemma 4 (Equivalence ofP (xn||yn) and{P (xi|x
i−1, yi−1)}.) The causal conditioning distribution

P (xn||yn) uniquely determines the value ofP (xi|x
i−1, yi−1) for all i ≤ N and all the arguments

(xi−1, yi−1), for whichP (xi−1, yi−1) > 0.

Proof: First we note that ifP (xi−1, y−1) > 0, then according to Lemma 3, it also implies that

P (xi−1||yi−2) > 0. In addition, we always have equality

P (xn−1||yn−2) =
∑

xn

P (xn||yn−1) (25)

hence,P (xn||yn−2) is uniquely determined fromP (xn||yn−1). Furthermore, by induction it can be shown

that the sequenceP (xi||yi−1)
n

i=1 is uniquely derived fromP (xi||yi−1). SinceP (xi||yi−2) > 0, we can

use the equality

P (xi|x
i−1, yi−1) =

P (xi||y
i−1)

P (xi−1||yi−2)
(26)

B. Causal Conditioning Entropy

Definition 4 The entropy of the sequenceXn causally conditioned on the sequenceY n is

H(Xn||Y n) , E[− logP (Xn||Y n)] (27)

= −
∑

xn,yn

P (xn, yn) logP (xn||yn) (28)
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C. Directed Information

Definition 5 The directed information flowing from a sequenceXn to a sequenceY n was introduced by

Massey [1]

I(Xn → Y n) =
n
∑

i=1

I(Yi, X
i|Y i−1), (29)

Note that

I(Xn → Y n) =

n
∑

i=1

I(Yi, X
i|Y i−1) (30)

=

n
∑

i=1

H(Yi|Y
i−1)−H(Yi|Y

i−1, X i) (31)

= H(Y n)−H(Y n||Xn), (32)

which hints, in a rough analogy to mutual information, a possible interpretation of directed information

I(Xn → Y n) as the amount of information causally available side informationY n can provide aboutXn.

Example 2 (Memoryless Channel.)A discrete channel with finite input alphabetX and finite output

alphabetY is the specification of the conditional probabilityP (yn|x
n, yn−1) for all n ≥ 1, all xn ∈ Xn

and allyn ∈ Yn.

Recall the definition of a memoryless channel.

Definition 6 The discrete channel ismemorylessif

P (yn|x
n, yn−1) = P (yn|xn) ∀n, xn ∈ Xn, yn ∈ Yn, (33)

or equivalently

P (yn||xn) =
n
∏

i=1

P (yi|xi) ∀n, xn ∈ Xn, yn ∈ Yn, (34)

Show that for the memoryless channelmaxP
Xn||Y n−1

1
n
I(Xn → Y n) = nmaxPX

I(X ;Y ). (Later in

the course we will see that for channels with memories and feedbackmaxP
Xn||Y n−1

1
n
I(Xn → Y n)

characterize the capacity.

Answer

max
P

Xn||Y n−1

I(Xn → Y n) = max
P

Xn||Y n−1

H(Y n)−H(Y n||Xn) (35)

= max
P

Xn||Y n−1

n
∑

i=1

H(Yi|Y
i−1)−H(Yi|Y

i−1, X i) (36)

(a)

≤ max
P

Xn||Y n−1

n
∑

i=1

H(Yi)−H(Yi|X
i) (37)

= max
PXi

n
∑

i=1

I(Yi, Xi), (38)
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= nmax
PX

I(Y,X), (39)

where,

(a) follows from the memoryless property and because conditioning reduces entropy

Now, note that if we choosePXn|Xn−1,Y n−1 = PX then inequality (a) becomes equality, hence

maxP
Xn||Y n−1

1
n
I(Xn → Y n) = nmaxPX

I(X ;Y )

D. Conservation law

Lemma 5 (Conservation law of directed information[1])The following conservation law holds for any

random vectorsXn, Y n

I(Xn;Y n) = I(Xn → Y n) + I(Y n−1 → Xn) (40)

Proof:

I(Xn → Y n) = H(Y n)−H(Y n||Xn) (41)

= E

(

log
P (Y n||Xn)

P (Y n)

)

(42)

I(Y n−1 → Xn)
(a)
= I(ØY n−1 → Xn) (43)

= H(Xn)−H(Xn||Y n−1) (44)

= E

(

log
P (Xn||Y n−1)

P (Xn)

)

(45)

(a) the signø stands for Null, and is added in order to achieve same length on both sides length, i.e.,

{øY n−1} = length{Xn}, as required from the definition of directed information.

I(Xn → Y n) + I(Y n−1 → Xn) = E

(

log
P (Y n||Xn)

P (Y n)

P (Xn||Y n−1)

P (Xn)

)

(46)

= E

(

log
P (Xn, Y n)

P (Y n)P (Xn)

)

(47)

= I(Xn;Y n) (48)
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