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Multi-User Information Theory October 19th, 2009

Lecture 1

Lecturer; Haim Permuter Scribe: Noa Zuaretz

I. NOTATION

« X - random variable

o X - alphabet

« |X| - cardinality of the alphabet. Unless it is said otherwise, assume that the alphabet is finite,
ie., |X| < occ.

o x - an observation or a specific value. Cleanyc X.

o Px(z) - the probability that the random variabé gets the value;, i.e., Px(x) = Pr{X = z}.

» Px - denotes the whole vector of probabilities. One may alsothsenotationPx (-).

o P(x) - this is a short notation foPx ().

e 2" - is the vector(xy, xa, ...,z,) for n > 1. If n = 0 then the vector is empty.

. :cj - is the vector(z;, zit1, ..., z;), for j > 4. If j =i, then the vector has only one elementand

if 7 <1, the vector is empty.

Il. ENTROPY RATES OF ASTOCHASTIC PROCESS

A. Entropy Rate

If we have a sequence of random variables, how does the entropy of the sequence gitwn® The

following definition answer this question.

Definition 1 We define theentropy rateas this rate of growth. The entropy of a stochastic pro¢ess

is defined by

AN H 1 ny _ 1: 1 S 1—1
H(X) £ lim —H(X") = lim — ;H(Xikc ) 1)
if the limit exists.

Exercise 1Show that if X is i.i.d. theni H(X") = H(X).

We can also define a related quantity for entropy rate by

H'(X) % lim H(X,| X" )

n—oo

if the limit exists.



1-2

H(X) and H'(X) correspond to two different notions of entropy rate. Thet fii§ is the per symbol

entropy of then random variables, and the second (2) is the conditionabpntof the last random variable
given the past.

Example 1Find the entropy rate of the following process which has mgmo

000..0 p=1
Xm = : 3)
1l.1p=1.
Answer:
1 1
—H(X”):E—>0Whenn—>oo 4)
n

Definition 2 A process{ X;};> is stationary ifP(zit") = P(z}) Vi, n
Theorem 1 (Entropy rate of stationary procesdes) any stationary procegsX;};>; the limits in (1) and

(2) exist and are equal, i.e.,

H(X)=H'(X) (5)
Proof:
HXnlX") 2 H(Xm]X) ©
O g, xrY, (7
where

(a) follows from the fact that conditioning reduces entropy
(b) follows from the stationarity properties
The sequencél (X,,| X" 1) is decreasing and positive, hence the limit exists. Finaklyconclude that

lim L H(X™) = lim H(X,|X""!), using Cesaro mean lemma which is proved below. [ |

Lemma 1(Cesaro mean.)Let {a,},>1 be a sequence such thitn,,_, a, = a then the limit of the

sequence by }n>1 Whereb, = =37 | a,, is limy o0 by = a.
Proof: Lete > 0. Sincea,, — a, there exists a numbé¥ (¢) such thafa,, —a| < e for all n > N(e).

Furthermore,
1 n
|bn - a| - E ;(ai - a’) (8)
1 n
< =D lai—a) ©)
=1
N(e)
1 - N
< 15—+ =NE), (10)
n n

1

~.
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2

1 V)
< - |(a; —a)| +¢ (11)
1

for all n > N(e). Since the first term goes to 0 as— oo, we can makeb,, — a| < 2e by taking n large

K2

enough. Hencéj,, — a asn — oo. [ |

I11. DEFINITIONS AND PROPERTIES OF DIRECTED INFORMATION AND CAUSL CONDITIONING

A. Causal Conditioning

Introduced and employed by Kramer [4], [3] and by Massey {1usal Conditioningnotation ¢||-))

is defined as the probability mass function of the sequericeausally conditioned on the sequenge

Definition 3
P("|ly") & [] Plaila'", ) (12)

In addition, we introduce the following notation:
n
P ly» ) £ T Plala™" v ) (13)
=1

The definition given in (13) can be considered to be a pagrotdse of the definition given in (12) where
xo IS set to a dummy zero. This concept was captured by a notafidassey in [2] via a concatenation
at the beginning of the sequeng& ! with a dummy zero.

Since, we define the causal conditionifigz"||y™) as a product of?(z; |z, y%), then whenever we
use P(z"||y™), we implicitly assume that there exists a set of that sasidfie equality in (12). We can
call P(z"||y™) and P(x™||y"~!) a causal conditional distribution since they are nonnegdtr all x,

y"™ and since they sum to one.

Lemma 2

> Patly") =1 (14)

xn

> PE" |yt =1 (15)

xn

Proof:

DoPEMly) = Y Py Pl ")

x™ Ty gn—1
(16)
— Z Z P(m"_l||y”_1)P(Jcn|x”_1,y”)
Ty gn—1
17)

= Z {P(xanynl) (Z P(mnunl,yn))}

gn—1 Tn
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(18)
= > Py (19)
Now, by iterating equation (16) timez we obtain (14). Similarly, we obtain (15) [ |

Lemma 3 (Chain Rule for Causal Conditionindihy joint distribution can be decompose as
P(y",a") = P(z"|ly")P(z"||y" "), (20)

and any producP(z"||y")P(z"||y"~!) results in a joint distribution.
Proof:
P("[ly" )Py [la") = P(y",a") (21)
= ﬁP(fﬂi|$i_17yi_l)P(?Jﬂyi_l,ﬂii_lﬂfi) (22)
i=1

| O AN (23)
= ?x”, y") (24)
[

Lemma 4 (Equivalence d?(z"||y") and{P(x;|z*~%,y*~1)}.) The causal conditioning distribution
P(2™||y™) uniquely determines the value @?(z;|z*~!,y*~!) for all i < N and all the arguments
(zi~1,yi~1), for which P(zi~1,y~1) > 0.

Proof: First we note that ifP(z*~%,5~!) > 0, then according to Lemma 3, it also implies that
P(z*Y]y*=2?) > 0. In addition, we always have equality

P(a" Yy =2) =Y Pla"(ly") (25)

Tn

hence,P(z"||y"~2) is uniquely determined fron®(z"

y"~1). Furthermore, by induction it can be shown

n

that the sequenc®(z‘||y*~1)._, is uniquely derived fromP(z*||y*~'). Since P(z*||y*~%) > 0, we can

use the equality

1 e Plailly™)
P(z;|x* l,yZ h= 2t (26)
( | ) P(x'LleyZ*Q)
]
B. Causal Conditioning Entropy
Definition 4 The entropy of the sequencé” causally conditioned on the sequericeé is
H(X"[Y") £ El-logP(X"|[Y")] (27)

~ > P(a",y")log P(z"||y") (28)
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C. Directed Information

Definition 5 The directed information flowing from a sequen&é@ to a sequenc&™ was introduced by

Massey [1]
I(X"—=Y"™) = Zn:I(Yi, Xyih, (29)
Note that -
I(X" »Y") = iI(Yi,XﬂYH) (30)
1=1
= i:H(EIYi’l)—H(EIYi’I,Xi) (31)
=1
= HY"™)-HY"|X"), (32)

which hints, in a rough analogy to mutual information, a fassinterpretation of directed information

I(X™ — Y™) as the amount of information causally available side infation Y™ can provide abouk™.

Example 2 (Memoryless Channel discrete channel with finite input alphabét and finite output
alphabet) is the specification of the conditional probabiliy(y,, |z™,y" 1) for all n > 1, all 2™ € A"
and ally™ € Y.

Recall the definition of a memoryless channel.

Definition 6 The discrete channel imemorylessf

P(yn|z",y""!) = P(ynlzn) Yn,2" € X",y" € Y7, (33)
or equivalently
n
P(y"|lz") = T[] Pyilzs) ¥n,a™ e X" y" € Ym, (34)
i=1
Show that for the memoryless channebxp ., ., LI(X™ = Y™) = nmaxp, I(X;Y). (Later in

the course we will see that for channels with memories andbf@ek maxp i xm — yn)

xn|lyn—=1 n

characterize the capacity.

Answer
max I(X"—=Y") = max H(Y"™)—-HY™|X") (35)
PX"LHY"L*I PX”HY”*I
n . . .
= max S HYY'™') - HY; Y1, XY (36)
XnHyn—l i=1

(a) n .
< ) B K3
< max Y H(Y;) — H(Yi[X") (37)

n n—1 7
XYy i=1

n

= Iggf;f(%)ﬁ), (38)
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= nrr}lDaXI(Y,X), (39)

where,
(a) follows from the memoryless property and because ciomility reduces entropy
Now, note that if we choosePx, | x»-1y~-1 = Px then inequality (a) becomes equality, hence

maxp LI(X™ — Y™) = nmaxp, I(X;Y)

xn||lyn—1 n

D. Conservation law

Lemma 5 (Conservation law of directed information[IJhe following conservation law holds for any

random vectors\”, Y™

I(X™Y") =I(X" - Y") +IY" " — X" (40)
Proof:
(X" —=Y") = HY")—HY"[X") (41)
— 5 (1o 75 “2)
vt xm @ oreyt - xn) (43)
= H(X") - HX"[[Y"™) (44)
- E (10g 7]3();’;!;:_1)) (45)

(a) the signg stands for Null, and is added in order to achieve same lengtbath sides length, i.e.,

{oY"~1} = length{ X"}, as required from the definition of directed information.

(X" Y™+ (Y"1 5> X") = E (10g F (;(}Ujg) F ();E!(i:_l)) (46)
= (e ymypcen) @
= I(XT Y™ (48)
|
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