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Capacity Results for the Discrete
Memoryless Network

Gerhard KramerMember, IEEE

Abstract—A discrete memoryless network (DMN) is a memory- R; (see Sections V-F and VI-B). The sequence further gives a
less multiterminal channel with discrete inputs and outputs. A se- general approach for improving communication systems. Codes

quence of inner bounds to the DMN capacity region is derived by gagjgned to attain rate pointsRy, will be better than codes de-
using code trees. Capacity expressions are given for three classes . d forR d th ill give hint the struct f th
of DMNSs: 1) a single-letter expression for a class with a common signed 1orky, an ey will give hints on the structure or the

output, 2) a two-letter expression for a binary-symmetric broad- best codes.

cast channel (BC) with partial feedback, and 3) a finite-letter ex- Such reasons motivate following Shannon’s example. Sev-
pression for push-to-talk DMNs. The first result is a consequence eral authors have done just that, e.g., for the relay channel [3],
of a new capacity outer bound for common output DMNs. The multiple-access channels (MACs) without memory [4], [5] and

third result demonstrates that the common practice of using atime- . -
sharing random variable does not include all time-sharing possi- with memory [6]-[8], the interference channel [9], [10], and the

bilities, namely, time sharing of channels. Several techniques for Proadcast channel (BC) [11] (see also [12] and [13]). Rather
improving the bounds are developed: 1) causally conditioned en- than dealing with these cases separately, we will treat the most
tropy and directed information simplify the inner bounds, 2) code  general memoryless channel directly. We call this channel and
trellises serve as simple code trees, 3) superposition coding and bln-its associated system of random variablesDiserete Memory-

ning with code trees improves rates. Numerical computations show -
that the last technique enlarges the best known rate regions for a less NetworKDMN). The DMN seems to have been considered

multiple-access channel (MAC) and a BC, both with feedback. In firstin [14, Sec. 1.6] (see also [12, Sec. X]). Special cases of this
addition to the rate bounds, a sequence of inner bounds to the DMN model are discussed in [2, Ch. 3] and [15, Sec. 14.10]. Some net-

reliability function is derived. A numerical example for a two-way \work models for source coding are described in [64] and [65].

channel illustrates the behavior of the error exponents. However, we do not consider multiterminal source coding.
Index Terms—Capacity, causality, feedback, multiuser chan-  The DMN subsumes a wide variety of network models
nels, random coding. including, e.g., networks of discrete memoryless channels

(DMCs), MACs, BCs, relay channels, and so forth. As in
[1] we derive a sequence of inner bounds to the capacity
region. Much of the derivation is a straightforward extension
HANNON created the area of network information theoryf [1] and [16, Ch. 5] but there are subtle issues involving
y introducing the two-way channel. In a sense, Shann@fedpack, broadcasting, and interference that require changes.
solved the two-way channel problem by giving a sequenggrthermore, along the way we present several new concepts
R1, Rz, Rs, ... of inner bound regions that becomes thgnq results such as causal conditioning, code trellises, a new
capacity region in the limit [1, Secs. 1 and 15]. However, ”‘@apacity outer bound, and new capacity regions.
sequence is often considered to have little value because thepig paper is organized as follows. We begin by introducing
boundary of itsLth term can usually not be computed—segne concept of causal conditioning in Section I1. Section 11l dis-
e.g., the discussion in [2, p. 259]. One is usually satisfied ony;sses the DMN model and code trees, and gives the DMN ca-
with a single-lettercapacity expression, i.e., one that includeﬁacity in terms of a limiting process. Section IV shows how to
only those channel input and output random variables involvgqnp”fy the capacity expression and gives a new capacity outer
in oneuse of the channel, plus perhaps a few auxiliary randogaund for common-output DMNs. Section V discusses exam-
variables. _ _ o ples and presents new single-letter and finite-letter capacity re-
Shannon describes the shortcomings oflimsting expres- gions. Section VI describes how to adapt superposition coding
sionby calling its evaluation “impractical” [1, Sec. 16]. How-[17] and binning [18] techniques to include feedback. This sec-
ever, hissequence of inner boundan be useful. For instance tion contains numerical examples showing that code trees en-
we find examples wher&, has capacity points that are not ingrge some of the best known rate regions. Section VIl gives
proofs and a numerical example showing the behavior of error
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sponding lower case letters. Probability distributions are often
denoted by onlyP when the arguments oP specify the
distribution, e.g.,P(z|y) = Pxy(z|y). We consider only
discrete and finite random variables.

Subscripts on a symbol are used to denote the symbol’s
source and/or to denote the symbol’s position in a sequence.
For example, X5, could mean “the output sequence of the
22nd encoder,” “the22nd random variable in the sequence
X1, X, X3, ...," or the “the2nd output of the2nd encoder.” Y Y Y3
The context will make clear which of these interpretations is
in use. We also sometimes add commas to separate SUbSC@ggbléckThe FDG for the first three uses of a memoryless channel with
e.g., Xp o for the last case above. Superscripts denote fi- '
nite-length sequences of symbols, exd’, = z1, 2o, ..., zx.

A DMN can have many terminals and we will need to ma- Definition 1. Let X', )/, andZ be disjoint subsets of the ver-
nipulate the inputs and outputs of several of them simultariéees of an FDQG. Z is said tod-separatet’ from ) if there is
ously. To do this, we choose a similar notation to [15, Ch. 14| path between a vertex iti and a vertex iny after the fol-
and denote sets of random variables with subscripts in brackd®ing manipulations of the graph have been performed.
For instance, ifS = {1, 3} thenX s, denotesX,, Xs; B 1) Consider the subgraghivy = of G consisting of the ver-

(5) tices inX andZ, as well as the edges and vertices encoun-
denoted/”, U*; and A(s) denotesd’, Ay. Set subscripts Y i g

W|thc_)ut t_Jrackets ofte_n denote sums, elyYs, = Zses R,. The any of the vertices i or ) or Z.
cardinality of a seft' is denoted by.X'|. 2) InGyy z delete all edges comingut of the vertices inZ
The notation of [16, Ch. 2] for entropy and mutual informas ryz 9 e '

tion is used. All logarithms are to the baseo that our units are Call the resulting grapl.vy = .
bits. 3) Remove the arrows on the remaining edge&gf = to

obtain the undirected gragy y, - .

tered when movindpackwardone or more edges starting from

. . The above is a reformulation of a definition in [22, p. 117],
B. Functional Dependence Graphs (FDGs) ah®eparation 44 in Appendix A we prove that the definitions are equiva-

The random variables of most DMNs are related to each ot Igrrwt. The motivation for the reformulation is that it clearly dis-

in a complicated manner. We use graphs to ease the un gwrgmshes between the independence due to causality (step 1)

. . . e ~"and due to conditioning (step 2). A fundamental result of [22,
standing of these relationships and to prove conditional mdééc 3.3] is thati-separation establishes conditional indepen-
pendence results. -

: . . » ) dence in FDGs having no directed cycles. That i< if-sepa-
A graphical technique for establishing conditional 'ndepemétes)( from ) in G and we collect the random variables of the

dence in so-called Bayesian networks was introduced in [19L tices inx Y, andZ in the respective vectoX, Y, andZ
These results were generalized to other types of graphs by \fﬂ@nI(X' Y|’Z)’ -0 Y

ious authors (see, e.g., [20], [21]) and we wish to condiatec-

tioqal dependence grgmeDGg). Suppose we haveé raqdom C. Causal Conditioning and Directed Information

variables that are defined by independentandom variables

by N functions. An FDG is a directed graph (a set of vertices Coding for the DMN is restricted byausality i.e., the trans-
and a set of ordered pairs of these vertices called edges) havitging terminals cannot use theith-channel outputs to code
M+ N vertices representing the random variables, and in whigRtil ime n + 1 and later. We introduce the conceptaafusal
edges are drawn from one vertex to another if the random va#nditioningthat captures the essential aspects of such coding.
able of the former vertex is an argument of the function definiffgur approach is an extension of Marko’s [23] and Massey’s
the random variable of the latter vertex. For example, Fig. 1 de4]. Several properties of the defined quantities are developed
picts the FDG for the first three uses of a channel with feedbadk Appendix B.

In this gragh, the channel input symh), is a function of the  pefinition 2: The probability distribution of the sequence
messagé&/ an_d the pgstchannel qutpM§—1. We h_ave drawn yn~ causally conditionedn the sequencg ™ is

the feedback links using dashed lines to emphasize the role that

feedback plays. The outpht, is a function ofX,, and thenoise

random variableZ,,. The graph hagv = 6 random variables NN N el

defined byM = 4 independent random variables. Thever- P (a [ly™) = H P (zn |z"1y") @)
tices representing the independ&ift, Z,, Z,, andZ; are dis- n=1

tinguished by drawing them with a hollow circle.

We are interested in establishing conditional independenceThis definition differs fromP(z™|y™Y) only in thaty™ re-
results by using FDGs. For example, for the above channel gulacesy” in each term on the right-hand side of (1). It differs
can show thaf (UZ; Y»|X?2) = 0 by using the functionaéqua- from Marko’sp(z|z,y, ) only in thaty, is included in the con-
tions Alternatively, agraphical criterion calledd-separation ditioning [23, Sec. IV]. The name “causal” refers to the condi-
proves the same result. Byseparation we mean the following.tioning onpast and presentalues ofY’ ™V only.
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Definition 3: The entropy of the sequendg" causally con- A A
ditionedon the sequencg” is Ub Uln U
N Terminal 1 Terminal 3
H(XN|YN) =Y H(X,|x"7'Y"). )
n=1

This definition differs fromH (X~ |Y™) only in thatY™ Terminal 2
replacesY ™ in each term on the right-hand side of (2). Yin Terminal 4
H(XN||YYN) is similar to Marko's free information [23, szf“l_E &Uff B
eq. (8)L. 1

Thedirected informatiorflowing from a sequenc&” to a
sequenc® Y was introduced by Massey [24] and can be writteRig. 2. A four-terminal DMN.

as
N . X, X, X5, .... If the source istationary then we have (see
I(XY = YY) =H (YY) - H (YN[ xY) [15, p. 64])
N
n=1

Similar results hold for the other limits of (5) and (6), and are
Directed information is similar to Marko'directed transinfor- developed in Appendix B.

mation[23, egs. (15) and (16)]. Note that whereas

I(XN; YN) _ I(YN; XN) [ll. M ODEL AND CAPACITY
A. Model
in general we have We consider the setup of [14, Sec. 1.6] with a small change to
the DMN channel (defined below). This setup is somewhat more
general than the model treated in [15, Sec. 14.10] because there
are more messages at each terminal. An example of a DMN is
Definition 4: The directed information flowing frolX ¥ to  shown in Fig. 2, and we use this example to clarify our notation.
YN whencausally conditionedn the sequencg” is A T-terminal DMN is defined by four types of random vari-
] ) ] ) ables: messagés®:, channel inputs(,,,, channel output¥’,,,
I(XN —>yN||zV)=HY"||Zz"¥)-H V[ XVZ")  and message estimateés’- . We impose four restrictions on the
N random variables. First, we require that thE: arestatistically
— Z] (X", |yn—1Zn) ) (4) independentWithout loss of essential generality, we assume
thatU P is a string of B, bits whose rate i, = H(UP:)/N
bits per use, wherd/ is the number of times we use the DMN

This definition naturally extends directed information to inchannel.

I(XN - yM)y£1(vN = XN).

n=1

clude causal conditioning. Next, supgose that terminal transmits M, messages
For most of the paper we will be interested in informatio®1"", - - -, U+ In general M, ranges fromD to 27! — 1
rates We use the following notation for per-letter entropies angince terminat might want to send a different message to each
informations: nonempty subset of the oth&r— 1 terminals. We can simplify
notation by writing that terminat transmitsU@S”, where
Hy(X)=H (XV)/N & = {t1, ..., tM,} is terminalt’s encoding index sefFor
IN(X;Y) =1 (XN, YY)/ N example, in Fig. 2 we havé, = {1} and&, = {21, 22}. As

ZN)/N (5) we have done here, we will continue to write rather tharlUy;
' whenM; = 1. We assume that every message is encoded and

Similarly, for causally conditioned entropy and informations wé€coded as a whole, so we often drop the superscripts and write

IN(X;Y|Z) =T (XN, YN

write that terminalt encodesU¢,). Our second restriction on the
DMN random variables is that at timg terminalt encodes by
Hy(X|Y)=H (XN HYN)/N using only its messages and the available feedb#tk', i.e.,
_ N N
IN(X — Y) —[ (X — Y )/N th = a, (U(St)-/ Ytnfl) (8)

INX =Y|Z)=I (XY =YN|Z"Y)/N. (6)
for some functionss;,,, n = 1, 2, ..., N. The random vari-
In some cases of interest the terms in (5) and (6) have limits asablesX;,, andY;,, take on values in the respective finite alpha-
tends to infinity. We denote these limits B8, (X), I.(X; Y), betsx; and);.
and so on. The first of these limit& . (X), is the usual infor-  For the third restriction, we define tHeéMN channeby the
mation rate oentropy rateof the source producing the sequencaput alphabetst;, the output alphabet¥;, t = 1,2,...,T,
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a?(oa )

Fig. 3. A code with two code trees.

and the conditional probability distributioR(y1, y2, ..., yr|
x1, T, ..., xr). We use the DMN channelNV times so
that we must consider properties of the joint distribution
Py, ..., y¥|2, ..., 2]). By a memoryleschannel we
mean that the following is true for atl (see also [24]):
P (y1n7 vy YT |*17711/ .il?%./ y?717 (RS y?fl)

= PYI---YT|X1---XT (y1n7 cees YTn |$1n7 cevy In ) . (9)

This condition is a little different than Fhat given in [14, €0Fig. 4. The FDG for three uses of the DMN of Fig. 2. To simplify the graph,
(1.6.1)]. Observe that a DMN channel is the same as a DM channel input symbols at time go through a common unlabeled vertex.

with vector-valued inputs and outputs.
For the fourth reStriCtion, let théecoding index S@t be the The meaning is thahll = 0 is the Symbo| on the branch
set of subscripts of the messages to be decoded at tertmifwal  |eaving the root of the tree?, thata,, = [1, 0, 1] is the or-

example, in Fig. 2 we havB; = {21}, D3 = {1, 21, 22}, and dered list of symbols leaving the vertex at depthand that
Dy = {1}. We require that ais = [0, 1,0, 1,0, 1,0, 1, 0] is the ordered list of symbols
Ui — d (U YN) (10) leaving the vertices_ at depth The DMN code trees are sele(_:ted
(Do) = Bt A& Tt beforethe channel is used and they are known by all terminals.
for some functionsl;, ¢ = 1, 2, ..., T. In summary, the four  The FDG of the DMN of Fig. 2 is depicted in Fig. 4, and
restrictions on the DMN random variables are: the messagegeémonstrates the complexity of the system of random vari-
are statistically independent, property (8), property (9), arséples under consideration. The code trdfsand code tree lists

property (10).These restrictions define the problem undef«» are random variables that are functions of the random vari-
consideration ablesU¢,). The random variables,,,n = 1, ..., N, represent

noise, i.e.,
B. Code Trees

We borrow terminology from [25, p. 349] and interpret the
functionsa = a1, - .., a;y in (8) as acode treg(also called for some functiong,, t = 1, ..., T (see [26, Sec. 11]).
a strategy[1]). By a code tree we mean a rooted tree of depth
N having one branch leaving the root vertex dp¢l branches C. Merging Functions
leaving the other vertices, and whose branches are labeled witherminal 2 in Fig. 2 broadcasts,; to terminals 1 and 3 and

a symbol fromt;. Each message combinatiaf,) is assigned r7,, to Terminal 3simultaneouslyWe treat such situations by
one code trea;" (u(s,), -) and each path through the tree corgsingmerging functiongor merging channels) as described in
responds to one of the channel output sequepfes . Ifthere  [11, Sec. II-C] (see also [27]). By a merging function we mean
is no feedback we may writ€" (ue,), -) simply ase; (u(e,))-  the functiong,,, obtained by rewriting (8) as

A DMN codeis a list of code trees. For example, a code with
two code trees is shown in Fig. 3. The encoder of Terminal ¥ = gtn (@110 (U, Y"7Y) oo, @easn (Uing,, Y771))
mapsU; = 0 into the code trea}(0, -) andU; = 1 into (13)
a3(1, -). Thus,A? is a random code tree that is a function of ) )
U,. To explain how the code works, suppose tHat= 0 so Where thes,,, are appropriate code trees. Terminal 2 now has
thata?(0, -) is chosen. Terminal 1 then sends = 0, and if the form given in Fig. 5, where the alphabelfs; and A of

y11 = 2 it would next sends1» = 1, and so on. We will some- X1 and Xo5 are chosen to satisfy (13). Note that this type of
times denote code trees in the manner “decomposition” of the encoders is always possible because the

alphabetst,; and Xy, can bechosen freelyFor instance, we
a? = [0, 101, 010101010]. (11) can chooseXsy, = [Us1, Yyt and Xaz, = Uss. The effect

iftn:ft(Xlna ...7XTn7Zn) (12)
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Cpmn is the set of rate points which one can approach while
making the following sum oblockerror probabilities small for
all ¢:

P4 B , B go
Pp ¢+ = Z Pr( t(S)S> 7 U(s()S)’ Ut(%‘(g)C) - U(S(g)C))
SCD,, S#0
(15)

whereS€ is the complement af in D, and( is the empty set.
Note that (15) is a sum of probabilities of mutually exclusive
events.

The equivalence of thkit error andblock error capacity re-
gions can be demonstrated as in [16, p. 119]. If a block error oc-
curs at terminait then at least one bit error has occurred there,
but not more thai3p, bit errors, sothat; < Pg + < Bp, - P;.

This implies that if the block error probability is small so is the
bit error probability, and hence the block error capacity region
is inside the bit error capacity region. It, thus, suffices to find an
outer bound to the bit error capacity region and an inner bound
to the block error capacity region that are the same, and this we
proceed to do.

U Uyp® We prove the following two theorems in Section VII. Both
theorems have!P:| — 1 bounds for eacht, and each bound
corresponds to one of the terms in the sum of (15).

Fig. 6. The FDG for terminal 2's encoder with merging functions.

of merging functions on the FDG is depicted in Fig. 6, where Theorem 1 (Inner Bounds t~): The convex huliR , of

As,, has been split intel,;,, and As.,,, and new vertices have the rate-tuplegR sy, ..., R(s,) satisfying

been introduced to represent the mergmg function inpists,

andXss,. The code treeA21 andAJ, have the same tree struc- 0< Z Ry < I (As); Yi |Ae)Agse)) (16)
ture as the code treA but might have different alphabets for s€S

the branch labels. forallt =1, ..., T and allS C D, is contained withiCpyx,

The point of introducing merging functions is essentiallwhereS¢ is the complement of in D, and theASL are statis-
to simplify notation. We have transformed the DMN into aically independent.
new network where every terminal has at masémessage to

transmit. This network will be memoryless but time varyin% For example, the two-way channel isfa = 2 terminal

hannel withD; = {2} andD, = {1} so thatRy, is the convex

because the;,, can be chosen freely and will normally chan N
5t y y 9%ull of the rate regions

with n. The time-varying nature of theg,, does not play an
important role, however, because they are known ahead of time 0 <Ry < IL(Ap; Ya|As)

to all terminals in the network.
We emphasize that termin&k encoding functions remain 0 <Ry < Tr(Az; Y1l41) (17)

unchanged by choosing appropriate code tre§, and where A” and AL are independent. We emphasize that one
merging functionsy1, g:2, ..., gev. Moreover, the code treescannotin general replace the code tred$ with the channel
will be independent because they are functions of independgifut sequenceX [, as might be expected. The bounds (17)

messages. This observation is important for derivingauer are an explicit characterization of a rate region described by
bound to the DMN capacrty region. For tiiener bound, the Shannon in [1, Sec. 15].

independence of thA motivates random coding with inde-

pendent code trees. This restriction is not necessary, though! €orem 2 (Outer BO‘(J)QdT t@pmy): Comn IS con-
and will be dropped when we consider more sophisticat jned within the closureCgyt of the set of rate points
coding technigues in Section VI-B. (B(e,), - -+ Rep)) satisfying

D. Capacity 0< > R, <Ip(Aw) YilAe)Aise))  (18)

sES
(D¢)

Let U, ‘I’” be terminali’s estimate of”, (o, - The average _ _ _
bit error probablllty of terminat is whereS C D;, S is the complement of in D;, L is any

positive integer, the45L are statistically independent, and=

= BD, Z ZPr (Ut b F Udb) (14) L2 ...,T.

deD, b=1 We denote byim,,_. ., R, the set of limit points of the con-
vergent sequences whokth term is inR .. The following the-

where Bp, = 3 ,cp, Ba. The capacity regionCpary is the  ~° = gives the capacity region.

set of rate-tuple¢R ¢y, R(s,), - - ., R(e,)) which one can ap-
proach with arbitrarily small positivé; for all ¢. Alternatively, Theorem 3:Cpyin = limy, oo RL.
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Proof: The regionC9y %, being theclosure of the set
{Rr: L finite}, is (see [28, p. 743])

Covk = {Ryr: Lfinite} U Jim Rp. (19)

ne1) =1
From Theorem 1, all points ifiR 1.: L finite} are inCpyn, and “ Yin-1)

so are all points iimy_.., Ry by definition. This establishes
thatCDMN = Cgﬁr{]

It remains to show thafR ..: L finite} C lim; ., Ry, i.€.,
that for any poin{ (¢, - .., R(,)) in Rz one can generate a
sequence ifRr: L finite} whose limitis(Rg,y, ..., Be,y)-

A trick used in [1, Sec. 15] is to writé = mL + j for some

integersm > 0 and0 < j < L, and then to randomize the coded hs. F e th q he left in Fig. 3 Idb
by repeatingn times the distributions fofR ¢, ), ..., R,)), epths. For example, the code tree on the eft in Fig. 3 could be

and by sending no information in the Igstises of the channel. extended by using the_code trellis of Fig. 7 Whose_ states corre-
This means thatnL/(mL + j) - (Rg,y, ..., Ree,)) lies spond to the past received symbglg, ). A potential advan-
in R,. Moreover, the limit of these [()oli)rits as (_f) ~ is tage of code trellises is that they will be easier to decode than

eneral code trees.
(Rieyys -+ Riery)- o ¢

Yi(n-1) = 2

Fig. 7. A code trellis for the code tree on the left in Fig. 3.

D. No Feedback

. ] We use the approach of [24] and say that terminalused

A. Time Sharing without feedback, for all m andn
Theorem 1 uses aonvex hulloperation to allow for time el n—1 ne1

sharing. A better approach is to introduce a time-sharing P (2t |oin 9 ™) = P (wemn |27 - (1)
random variableV', replace I1.(A(s); Yi|A(e,)Ascy) with  Without feedback, the code trees collapse to codewords, i.e., one
I1(Asy: YilAnAse)V) in (16), and make thed” con- can replaced;;, by X/,
ditionally independent giveiv’ (see, e.g., [15, p. 397]). The ] ] ] )
choice of technique is not critical here because one may incluge Raté Regions in Terms of Directed Information
the time sharing in the code trees. However, for a fifed  We are interested in expressing (16) with as few random vari-
the latter approach can give larger regions [2, p. 289], [29]. &bles as possible. We have
time-sharing random variable is also useful for improving error N
exponents, as d|scu_ssed at the end of Sgc'uon V!I—B. At th A?S)? vy ’A&)Aﬁqg) _ Z H (Ym
same time, we show in Section V-F that a time-sharing rando —_
variable does not capture all time-sharing possibilities.

IV. DISCUSSION ANDSIMPLIFICATIONS

VA A )

— H (Yin

n—1 4n n
. l/t A(ft) (Dt))
B. Max-Flow, Min-Cut Outer Bound
N
The outer bound of Theorem 2 is usually not computable. A _ Z H (Yt
simpler, but generally loose, outer bound was derived in [15, — "
Sec. 14.10] and also applies to DMNs.

YN Afse) )

— H (Yun

N . . o Y/ XT AL, ))
Proposition 1: Cpyy IS contained within the set of rate ‘

oints(Rg,y, ..., R satisfyin LN
pomelit: - tur) seting R )
0<> > R <I(Xs); ViseylXise))  (20) (22)
S se&;
o te_ e_ ) The first equality follows by the causal nature of the en-
for some joint distribution”(z"), whereS C {1, 2, ..., T} coding. The second equality follows becaug is a function
andS¢ is the complement of in {1, 2, ..., T}. of A,y and Y"1, and becausdX?, V", Alscy] and

This bound can be proved by dividing the network termi-X#: Y¢" ™', Afp,)] d-separateA(,) from Yi,. The third
nals into two setsS and SC, letting the terminals in each setequality follows by definition. .
cooperate with each other to get a two-way channel betweerlNote that some code treed;,) can be replaced by the

the sets, and applying Shannon’s two-way channel outer bouffinnel input sequence§” when using causally conditioned
[1, Sec. 9]. directed information. For example, for the two-way channel,

R becomes the convex hull of the rate regions
C. Codes With Code Trellises 0 <Ry < I1(Ay — Y[ Xo)

The number of branches of a code tree grows exponentially

. ) ; . 0<Ry<Ip(A Yi|| X 23
with L. A natural way to curb this growth is to use a special <Ry < T(4: = Wil Xy) (23)
type of code tree called a cottellis. By a code trellis we mean whereAf andA§ are independent. Moreover, for some chan-
a code tree that collapses into a bounded number of states fonalk, one can further replace the remaining code uﬁg,sby



10 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 1, JANUARY 2003

the channel input sequencég, . In such cases, the randomA. The DMC

coding becomes simpler, as shown next. The DMC is a two-terminal DMN for which terminal 1 trans-

mits the messagé; to terminal 2, possibly with noisy feedback

Y1 [26]. Itis, of course, known thaR, is the capacity region
A simplification in the capacity expression is possible whef31], [32]. Proposition 1 serves as an outer bound.

a transmitting terminal and a receiving terminal have the

same channel outpdf.. This means that terminaknows X}, B. The Two-Way Channel

given A} andY,"~!, and one can replace the code tr

F. Common Outputs

. . The two-way channel was introduced in [1] &Rd, is given
L
by the codeword<X;;,, in the bounds corresponding to the error v (23). Another capacity inner bound was developed in [33]

ter';nm?r:r can m?lffe v;/.hen. est|m§'ct|)Tg .tfhte me_s:?ges otfr;[ermlp ut this region can be improved by using directed information
nother simplification is possible if terminalsees the out- r?tes [34, Ch. 4]

puts ofall terminals to which it is sending messages. Termina

t can then restrict attention to random coding distributions thet
) . . The MAC

are based only on its channel input and output symbols. For ex- _ _ _

ample, for the common output two-way chanr@l, becomes  The MAC is aT'-terminal DMN for which the messagés,

the convex hull of the rate regions t=1,...,T — 1, are transmitted to termindl [1, Sec. 17].
If there is no feedback thefp iy is known to beR, [9], [10],
0 <Ry < I (X; — Y|Xy) [12], [35] (see also the limiting characterization of [4]). Con-

sider next the cas& = 3 with full feedback, i.e.Y = Y; =
<Ry < '
0SBy < [L(Xz = Y[ X3) (24) Y> = Y3. Ry is then the convex hull of the regions

whereP (1, zof|zt™", 571, ¢~ 1) factors as

0< R <Ip(X1 — Y[ X2)
P (w1 |z yh) P (zae 257 ) (25) 0 <Ry < Ip(Xo = Y| Xy)
O0<Ri+ R <I(X;Xo—-Y). (28)
for/ =1, 2, ..., L. The factorization (25) follows froni-sep-
aration and implies that one can label #hte branches of the ¢ giscussion in Section IV-F shows that we may restrict

code treesndependentlyor each vertex at depth by using o, attention to those random coding distributions for which

P(zy)zi™", y*=1) rather than having to label thejointly via P10, woelat™", 2471, y'=1) factors as in (25). A particular
P(atl|ai_l)- 2] 1 s L2 ’

! ) ) . MAC of this type is considered in more detail in Section VI-A.
Finally, we give the following outer bound on the capacity of

a common-output DMN. This bound uses thependence bal- D. The BC
anceideas of [30] and will be shown to give capacity for a class ) ) ) )
of DMNSs in Section V-E. For the following theorem we write The BC [7%71 is dl’-terminal DMN for which terml;lalll trans-
I(X1; Xo; ... Xp|V) for —H(XT|V) + ZtT:1 H(X,|V). mitsupto2” ~ —1 messageéfl,_n,m.: 1,2,...,277 ~1t0
) ) the othefl’ — 1 terminals. We will write that/y,,, is transmitted

Theorem 4:Cpyn of @ common-output DMN is containedtg terminalt if the binary representation af contains d in the

within the set of rate-tuple (s, ), ..., R(s,)) satisfying (t — 1)th position. For instance, sinee = 6 is 110 in binary
digits, the messagl; is transmitted to terminals 3 and 4 (see
0< Z R, <1I (X(S); Y ‘XtX(Sc)X(Dg)V) (26) [27] for a different choice of notation).

s€S Consider the casé = 3 for which terminal 1 transmit&/;;
) to terminal 2,U;» to terminal 3, and/; 3 to both terminals 2 and
forallt =1,..., T'and allS C D;, whereY" is the common 3 R, isthen the convex hull of theR;, R1», Ry3) satisfying

output,S¢ is the complement af in Dy, DE is the complement
of D, in |, &, and theX, satisfy

terminal2:
I(X1; Xo; . Xp|V) < I(Xy; Xos .. s X2|YV)  (27) 0 < Ru < I1(An — Y2 As)
0< Ri3 <Ip(A13 — Ya||Anr)
for some auxiliary random variablé that takes on at mogt+ 0 < Ri1+ iz < Ir(AnAiz — Ya)
3, (2P — 1) values.
This theorem is proved in Appendix C. One can further ex- terminals:
tend many of the other results in [30] to common output DMNS. 0 < Rip < Ip(A1z2 — Y3]|Ar3)
For example, the parallel channel extensions of [30, Secs. 5 0 < Ry3 < I(A13 — Y3||A12)
and 6] will improve on Theorem 4. 0 < Rip+ Riz < I1(A1pArz — Y3) (29)

V. EXAMPLES whereAl;, AL, and AL, are independent. Without feedback,

We give several examples to show how the theory appliesw@ can replace thAth with X% . The resulting characteriza-
specific DMNs. We begin by reviewing known results. tion of Cpyiy IS the same as that in [11].
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One is often interested in the cafgs; = 0 for which our Terminal 1
coding technique makeé.f3 a constant. The region (29) thus
simplifies to c c
3 1

0 <Ry <Ip(Ann —Y3)
0 S R12 S IL(AIZ — Y3) (30)

Terminal 3 Cy Terminal 2
However, as shown in [36], the rggion (29) includes a pgtentiallg(g_ 8. A network of three DMCs.

larger region if. = 1. It is straightforward to generalize the
derivation of [36, Appendix A] to take into account code trees.

The result is that the following region is a capacity inner boun'ﬁ the binary entropy function. The best sum rat@is+ I, +

3 = 3.6890 bits per use and is achieved py= ¢ = 0.2263.

0< Ry < Ip(Andiz = Y2) F. Push-to-Talk DMC Networks

< <
0<Fizs IL(AHA_LQ’ —Ys) A network of D DMCsis aT-terminal DMN channel with
0 <Riy + Ry < minflr (A — V), [1(A13 — V3)] D point-to-point links. For example, Fig. 8 shows a network of
+ I (A1 — Ya||A13) + I (A12 — Y3]|A13)  (31) three DMCs. The DMCs are assumed to be independent in the

L L L sense that (9) factors as
whereA7;, A7, andAj; are independent. Observe that setting

L = 1in (31) gives the capacity of the degraded BC [17]. s
319 pacity 9 (17] Py |o7) = [ P lia) (34)
E. DMNSs With a Special Common Output d=1
Consider the class of common-output DMNs having the spehere the collectio{ X1, ..., Xp} (and{Y1, ..., Yp}) can

cial property that for every € ) there arel’ — 1 termi- be partitioned intdl” subsets such that each (andY;) is a
nals whose channel inpufs, are known (cf. the example in vector whose entries are the elements of one of the subsets.

[30, p. 47]). The right-hand side of (27) is thus zero so that #fs in Fig. 8, a graph of such a network h#svertices rep-

Theorem 4 theX, are independent giveW. resenting the terminals and directed edges representing the
Suppose additionally that each terminal either has no mess&34Cs P’(y4|a), where an edge goes from the verteto the
destined for it or decodes all messages, .= ) or D,UE, =  vertexr if X, andY, are entries of the respectivg;, andY.

U, . The reason for this restriction is so that eitdés, is We modify the problem slightly by making the DMGte-
known to all terminal§D; = §) or Theorem 1 gives MAC-like pendentas follows: to each DMC we add an input symbg|
inner bound{D; U & = |, &). such that the other DMCs can transmit information only if this
For DMN's satisfying these two constraints all points insidgymbol is used. Formally, (9) factors into a product of distribu-
the region of Theorem 4 are iR, if we use a time-sharing tions P(ya|z"”) such thatP(ya|z") = 1/|Va| unlessX. = x
random variable (see Section IV-A). Consider, e.g., the fdierallc # dinwhich case’(ya|z”) = P(ya|za). We call such

lowing common-output three-way channel: a DMN channel gush-to-talk DMC networkecause of its re-
lation to Shannon’s push-to-talk two-way channel [1, Sec. 1].
(X1, Xp, X3),  if X3 #£0, X5 #0 The best coding for these networks obviously involves time
y = J (0.1, X3), if Xy =0, X, #0 (32) sharing. However, it turns out that neither the convex-hull op-
(1,0, X3), if X1 #0, Xo=0 eration nor the addition of a time-sharing random varidble
(0,0, 0), if X9 =X5=0 makesR; the capacity. The reason is that, although the DMN

is memoryless, there adelaysbecause the terminals can be
. separated from each other by more than one DMC. At the same
that everyy € ) determines at least two of;, X,, or X3. P y

Suppose that each terminal sends a common message to u’qg one might expect that theshouldbe a single-letter ca-
PP . . ge %cny expression for push-to-talk networks. In fact, the region
other terminals, i.e P, U&, = |J,.&v for all t. The capacity

o . ~ . i of Proposition 1 is the capacity.
region is thusk; with the addition of a time-sharing random Consider, for example, the network of DMCs with

variableV'. However, it turns out thdt’ is not needed here. We

whereX; =X, ={0, 1, 2} andX3={0, 1}. It is easy to check

choosePx, (1) = Px,(2), Px,(1) = Px,(2),andPx,(0) = r
Px, (1) = 1/2. Let Py, (0) = p and Py, (0) = ¢. We find that P(y"|a") = Py ler) - [[P(wlea)  (35)
Cpumn is the set of Ry, R2, R3) satisfying t=2
and suppose that the capacity of the DMC with inpijt is
0 <R <H(Y[X2X3) =h(p) + (1 —p)(1 —q) C;. Such a network is shown in Fig. 8 faf = 3. We now
0<Ry <HY|X1X3)=h(qg)+(1—p)(1—q) add the symbols;; described previously to get a push-to-talk
0<Rs < HY|X1X2)=1-pq (33) DMC network. These networks are similar to a token ring [37,
p. 320] because only one link can send at a time; however, there
where0 < p < 1,0< ¢ <1, and is no random accessing going on here. We will consider the case

where each terminal is trying to send a common message to all
h(z) = —zlogy(z) — (1 — x) logy(1 — ) other terminals.
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the other hand, is a technique invented for source coding and
involves assigning source sequences to bins. The number of
bins is smaller than the number of sequences, and one achieves
compression by sending the indexes of the bins rather than
those of the sequences.
The motivation for using superposition coding and binning
is that these sophisticated techniques often give larger regions
for the samd. than Theorem 1. Furthermore, the generalization
R of Theorem 1 is often straightforward: one takes an existing
region, replaces the codewords by code trees, adds a subscript
Fig. 9. The capacity regioRGo of the push-to-talk counterpart of the DMN [, to the information symbol, and the resulting region is a
inFig. with ¢, =1, €2 = 2, andC’s = 3. capacity inner bound. We demonstrate the above procedure for
two DMNs: a MAC with full feedback and a BC with feedback
from one terminal. Improvements over existing rate regions are
found for both networks, and for the second network we even
find new capacity points.

2/3

Suppose first that’; = C for all . The regionsk;, can be
computed to be the convex hull of te + 1 extreme points
0,...,0), (R,0,...,0), (0, R, ..., 0),...,(0,0,..., R)
where

L 1 A. The Two-Transmitter MAC With Full Feedback

R=C- LﬁJZ (36)

Cover and Leung [39] derived a capacity inner bodid:
for the two-transmitter MAC with full feedback. A natural gen-
eralization of their region is the following lemma whose proof is
basically the same as the proof in [39] with codewords replaced
Rr=(0,...,0) C Cpmn, for L <T —1. by code trees. An alternative proof using ML decoding is given

For example, the capacity of the push-to-talk version of the net- (34, p. 93]

work in Fig. 8 withC; = O, = C5 is R,. The outer bound of ~ Lemma 1: The setR¢™ of rate pairg Ry, R») satisfying

and |z] is the smallest integer less than or equalt&Ve thus
haveRr_; = Cpun but

Proposition 1 is als®. 1 Loopl L
Consider next different capaciti€ with C; > 0. LetS; be 0<R; < 7 I (A1 ;Y ‘A2 V)
the set{1, ..., T} excludingt — 1 if ¢ # 1 and excludingdl” if 1
t = 1. We define OSRQSZI(Ag;YL‘AILV>
Ne=]J] ¢ and D,=)" ] C. 1
5, & s 0<Ry+ Ry < 1 (AfAS;YT) (38)

For example, the network of Fig. 8 ha§ = C,C, andD; = is contained within the capacity region of the MAC with full
C, + Cy. One can show that the capacity is the convex hdffedback, wheré” is a discrete random variable and

of the T 4+ 1 extreme points(0, ..., 0), (R4, 0,...,0), P(al, af, y"|v) = P (af|v) - P (af|v) - P (y* |al, af).
(0, R2, ..., 0),...,(0,0, ..., Rr) where (39)

-1
> o
SES;
In general, one needs — oo to get this result. However, if
the C; are integers theih, need be at most the least commoms might be expected. Observe tHatT = R$T and that
multiple of the D,. For example, suppose Fig. 8 hds = 1, limz_.., R$" is the capacity region becau®s"™ O R . For
Cy = 2, andC3 = 3. The maximal individual rates are thenl. =1, one can limit the cardinality of to
Ry =2/3, Ry = 6/5, andR3 = 3/4 which are all achieved if .

1 =213, By = 6/5, andfs =3/ wmin (6 + 1, [+ 2)

L = 60. The capacityR¢o of this DMN is depicted in Fig. 9.
[40], [41]. However, for largel, there does not seem to be a
VI. SUPERPOSITIONCODING AND BINNING point in finding cardinality limits because the rate regions are
The tools we used to derive the capacity results wef@mputable only for very symmetric distributions anyway. As

code trees (to exploit feedback), merging functions (fdp(.plained in Section IV-F, one can §imp|ify the informations in
broadcasting), and an appropriate maximume-likelihood (MLt IS Iemma_1 bec_:gusc_a the three termlnals_ havg acomeon output.
decoding rule (56) (to deal with interference). A natural next further simplification results by replacinig with V* and by

step is to addsuperposition coding17] and binning [18], choosing the coding distributions as shown later in (41).

[38]. Superposition coding with two codes can be interpreted Corollary 1: The set of rate pair§R;, R;) satisfying

as follows: the codewords of the first (coarse) code serve

as “cloud centers” while the codewords of the second (fine) 0 <Ry < I (X1 = Y||X2V)

code are the “cloud” that refines the first code. Binning, on 0<Ry <Ip(Xy—=Y|X1V)

Ry = Ny/D; = (37)  We emphasize that or@mnnotwrite

I(A7; YHARV) = I(XT; YHIXPV)
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0<Ri+ R <I(X;X5—-Y) (40) chosen, one channel input sequer€eis generated for every

. . . _ . possible(al, a)’, al¥, 7V —1) by using the distribution
is contained withinR¢Y, whereV~ is a sequence of discrete

random variables such that L

HP («TZ |0€, a’g7 a’g7 gl_l) (44)
P(z1¢, o, ye|vL, :L‘f_l, xg_l./ ye =1
for each of theN subblocks of lengti.. An alternative code
construction could proceed along the lines of [45].
P (xu |r,,@7 33‘;_17 yffl) . P (3;2[ |r,,f’ xg—17 yéfl) Consider, e.g., the binary-symmetric BC (BSBC). This
P (ye |wremae) (A1) channel has a binary (and 1) input X and binary outputs
Y, = X & Z;,t = 1, 2, whereZ; and Z, are independent
fort =1,2,..., L. binary random variables taking on the valugith probability
) ) i ) oL €1 and e, respectively. Suppose thay and U, are destined
The region of this corollary is strictly larger th{:ﬁl for for receivers 1 and 2, respectiveiyx is then given by (31)
several channels [34, Ch. 4]. For example, consider the MAG, 1 — 1, or by RMa [15, p. 457] (see also [46]-[48]). If

withY = X, +_X2 + Z whereX, X,, andZ are binary ( and 1 < eo, the boundary oRM>r can be approached by setting
1) random variables an#;(0) = Pz(1) = 1/2. Theorem 4 X = X;, making X, a constant, makings a coin-flipping

gives an equal-rate upper boundBf = R» = 0.45915 bit onq4om variable, and settifigr(X = X3) = ¢. The resulting
per use. In Appendix D, we show that the point with = rate region is

Ry = 0.43621 bit per use lies on the boundaryRSf™, while
R; = Ry, = 0.43879 bit per use is achievable with Corollary 0<Ry, <I(X3Y2)=1-h(qgx*e2)

1. Although the improvement is small, this is the first example 0 <Ry + Ry < I(X; Y1|X3) + I(X5; Y2)

of a discrete MAC with full feedback for whicR“" could be ~h(g+er) — h(eD)] 4 [1 = hig * )] (45)
shown to be strictly insid€pyx. Improvements oveR " had =[hlgxea “ g*e
previously been shown only for the power-constrained Gaussiaherep; * p» = p1(1 — p2) + p2(1 — p1). The capacity region

factors as

MAC with full feedback [42]. boundary is plotted for; = 0.15 ande, = 0.2 in Fig. 10 as the
curve labeled. = 1. Observe tha€pny is slightly larger than

B. The Two-Receiver BC With Partial Feedback the time-sharing region (See also [15, p. 426])
Consider the BC with two receivers arlgh; = 0 (see Suppose next thdt, is destined foboth receivers. It turns

Section V-D). For simplicity, we drop certain indexes and writeut thatCpyvy remains unchanged because the BSBC is de-
that the transmitter send§ and the receivers ség andY,. 9raded (see also [49]). Furthermore, an outer bound on the sum
The best known single-letter rate region for this DMN is that dRte is clearly the capacity of th& to Y, channel, i.e.R1 +
Marton [43], and this region can be derived by using binning2 < 1 — h(e1).

[44]. A natural generalization of her regi@™=* is giveninthe ~ Suppose now thdlt is destined for both receiveesd that

following lemma. Note that this lemma allows the transmittdpere is full feedback from receiving terminal 1, i.¥.,= Y1.
to see noisy feedback. We consider code trees of depth= 2 and choose? from the

branch labels ofd%. We further maked; a constant andl; a

Lemma 2: The setR}'*" of rate pair{ Ry, R.) satisfying  .odeword. The bounds (42) become

0 SRl < IL(A1A3; Yl) 0 < R2 < IQ(Xg; YQ)
0 SRZ S IL(A2A3; YZ) 0 S R1 =+ R2 S IQ(Al; Y1|X3>
0 <Ri+ Ry < min[lL(A3; Y1), IL(As; Y2)] + min[ly(X3; Y1), Io(Xs; Y2)]. (46)

 1u(Av; Yilds) + 11 (Az; Yol As) = [u(Aus Azl 4s) (0 chooseX? to be a binary codeword that takes on all four
(42) possible values with probability/4, and sePr(X; = X31) =

is contained within the capacity region of the BC with feedbacff,and
WhereP($L7 :‘/%7 y%v gL|a%7 a’%? a3l;) faCtOfS as PI'(XQ = X32|X1 = 07 Y11 = 0) =4qo
L PI‘(XQ = X32|X1 = 07 Y11 = 1) =q1
4 4 0 ~(—1 ~
HP (IE[ |a’17 ay, as,y ) ) P(yl[7 Yae, y[|117£) . (43) PI‘(XQ = X32|X1 = 1./ Y11 = 0) =1- q1
=1

PI‘(X2 = X32|X1 = 1./ Y11 = 1) =1- q0- (47)
Note thatR}!*" = RMar and thatlimz .., RY*" is the ca-
pacity region. Also, if thed”, AL andA% are independent then
(42) collapses to (31).

Optimizing overq, qo, andg; we find that the region labeled

L = 2in Fig. 10 is a capacity inner bound. Observe that feed-

back enlarges the capacity region. Moreover, for some distribu-
Lemma 2 can be proved by observing that nothing preverisns we have,(Xs; Y1) < I2(X3; Y2) andlx(X344; Y1) =

the auxiliary random variabldg, V, andW in [43] from being 1 — h(e;) so that thel. = 2 curve lies on the sum rate bound

the respectivelf, Aé, andA:,f. Once the lengthV code trees for aninterval ofR;. This means that two-letter coding gives ca-

(consisting ofV concatenated code trees of lengfrhave been pacity points that single-letter coding does rféor example, by
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R2 0.12
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0.2 022 024 026 0.28 0.3 032 034 036 038 0.4
R ) [bits/use]

Fig. 10. Rate regions for a binary-symmetric BC with crossover probabitities 0.15 ande; = 0.2. Note thez-axis range.

usingg = 0.647, ¢o = 0.696, andg; = 1 the point(R,, R») = and note tha‘f]t (s) = di,s(Ug,), Y,V) for some function
(0.3668, 0.0234) with sum ratel — ~(0.15) = 0.3902 is in  d;, s. We thus have

R In contrast, the pointR;, R2) = (0.3668, 0.0172) lies 1

on the boundary oR;. Enlargements over the no-feedback ca- h(P;, s) > e [H (Ugsy) = I (Usy; U YN Ugsey)]

pacity region of other BCs had already been discovered in [50], S
51]. 1
54 = Ba [H (Uis) — 1 (A%): AL YN A
VII. PROOFS ANDRANDOM CODING EXPONENTS 1 N | 4N
| = (1 (Uis)) = 1 (405 v | A Al )]
A. A Capacity Outer Bound (51)
Consider terminat and define the average bit error proba-
bility P, s as (cf. (14)) where the first step follows by the data processing theorem [16,
’ p. 80], and the second because the code trees are functions of
1 B, the messages and because-geparation in the FDG. We can
= ) rewrite (51) as
Ps= g % ;Pr (O # V) (48) (51)
. H (U(S)) In (A(S); Yi A(St)A(SC))
whereBs = Zses B, and U, 4 Is terminalt’s estimate of hP.s) 2 Bs 1- Rs
Us,. We can bound?;, s by using a generalization of Fano'’s
inequality to bit sequences [16, p. 79] (52)
1 . whereRs = 3 s R.. We use (52) to prove the following
h(P:s) > Be H (U(i()s) Ufé?)) : (49) proposition.
Proposition 2: Consider a DMN that is usely times, and

We can further bound let & = U, & andk = H(U(s))/Bs > 0. If there is some

1 ¢ > 0 such that
MP,s) 2 - H (UG

vPeu SC>) (50)

BS (S) t, (8) (SC) RS Z IL (14(3)7 va A(gt)A(SC)> + € (53)
whereS® is the complement of in D;. The reason for using for all P, and allL then the average bit error probability
(50) is that we want a bound that includes conditioning on tr}e s satisfios
event thatU (s ) ) is decoded correctly.

S : ~ ke
From here on, we no longer consider individual message bits Ps>h! (54)
so we writelU, in place ofU/2:. We have T € + log(|V:])

whereh () is the “inverse” binary entropy function taking on

H(U(S) Ut-,(S)U(SC)) = H(Us) - (U(S) Uy, (s)U(sf)) values betweefl and1/2.
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Proof: The condition (53) foall L implies that We will decode with ML decoders. There are several possible
_ ) ML rules to choose from and we adopt the following one [48,
Rs = In(A(sy; YilA@)Asey) +0 Sec. 4]: terminat chooses the messagés,) if the ip,, are
for somed > . We now manipulate (52) as any of the messages that maximize

AgpAse)) Po (v ot all,, )

. N\ N
A(gt)A(SC)) o NZ @ (a(gt)) P (yt
%0
where the sum is over thoa%:t) constructed by concatenating
_ 4 N code trees of lengtfi, and where we have abused the nota-
o ’ (55) tion by not including the appropriate subscripts for the distribu-
6+ Iy (A(sﬁYt A(swA(sC)) on oy 19 e appropria’ P o
_ N _ _ tions. Note that this rule isota maximuma posteriori(MAP)
Since f(z) = z/(z + ¢) is increasing withz for z > 0 and decoding rule because thandom codingdistribution is used
¢ > 0, we have for averaging and not the distributidf(«z ). This means that
§/(5+¢) > /(e +¢) terminalt’s decoding regions are independent of ﬂﬁ(egt), a
fact that we make use of.

1
W(Ps) [k 21— 5= In (Acs): Ve

N N N
In (A<s>; Y, ey Y, “(&)) (56)

In (A($)7 Y: A(gt)A(S(:)) +6

=1-—-

for c = In(A(s); YilA(e,)A(sc)). Furthermore, we have Our approach to bounding the decoding error probability fol-
In(As); YilAgeAsey) < Hy (Y1) lows closely that of [16, Ch. 5]. We define the event

and from a basic bound on entropy we haifev(Y;) < Error, s = {ﬁt,<5) # u(sy, Us sy = U(sc)} (57)

tcgi()|yt|) (see [15, p. 27]). Combining these results éeldgnd the block error probability

Proposition 2 allows the number of channel uségo be P15 (ueu)) = Pr (Emon s [Uie,) = ) (58)
any positive integer, which lets us prove Theorem 2. For thighereS C D, and S¢ is the complement of in D,. The
theorem we need to addciosureoperation because the def-average of this error probability over the ensemble of all codes
inition of the capacity regio@pyx includes those rate-tuplesgenerated withQ(aé‘éan)) is
N
a“’(fan) )

which one gets arbitrarily close to. For example, the information
Proof of Theorem 2:Any rate point lying outsid€93 % Pr (Errort s ’u(g el ygv) (59)
3 ’ all)? (e ) ?

rates/n (A(s); YilAe,)A(sc)) may approach, but never reachl’ 5,1, s (W(ew)) = Z Q (aiv(m)) P (ygv

a limit as the block lengtV increases. @y Y

must satisfy (53) for somg someS C D, with S # ), some _ _
e > 0, and allL. For such a rate point, Proposition 2 guarantegéhere the notatioftr(A|b) for the eventd and the random vari-
that no codes can achieve an error probabifitys below that ableB is used as a shorthand fBe(A[B = b).

specified by (54), which is positive fdr > 0 ande > 0. Thus, ~ Continuing as in [16, Sec. 5.6] we have, foK p < 1
this rate point is not i€pyN - O —N[EL, s(p.Qur  )—pRs]

, ) Pp.i.s (u(gn“)) <2 (Fam) (60)
Note thatCO\ % is convex because allowingto be any pos- . _ _
itive integer implicitly allows time sharing [1, Sec. 8]. whereE;, s(p. Qaz, ) is defined as
1
B. Capacity Inner Bounds —7 log, > o (G(Lg,,)y a(LSo)>
The transmission of messafke at rateR; = H(U;)/N re- O(e,)r 50 U
quires[2V7+] code trees. The code tree¥ are generated by 14p
concatenatingV randomly chosen code trees of lendihso 1
Y o L L| L L L T+
thatN = L - N. We denote byQ(al) the probability of se- - > Q(a(s)) i) (yt A(e,yr B(s); ﬂ(sc)) (61)
lectinga’ whenrandom codingo distinguish it from the prob- als,

ability P(al’) that the code trea? is chosen for transmission. d Liak ok gk )is defined as furth
The merging functions can be any functions with appropria?en _PQ(yt |a<€t)’ As) _a(SC)) is defined as in (56). We further
domains and ranges, and they do not play an important roleqf"l]clne therandom-coding exponenby

what follows. EL (R 0 )
. . . ... ;o 13 r,t,S Sy WAL
We simplify notation by wntmgz{)(s) in place ofaé\s)(u(s)). (Ea)
We define&, as the set of indexes of all transmitted messages = max [Ef, s (p, Q Al )) — pRS} . (62)
<p< T all

(see Proposition 2). We further denotedythe set of encoding
indexesnotin & U D;, i.e., those indexes corresponding to thét this point, we prefer not to maximize over,: = because,

messages that are not encoded or decoded at termifrar given R ¢ ), this must be done for all terminals‘and exponents
example, in Fig. 2, we havé, = {22}, & = {1}, & = 0, simultaneously. As in [16, p. 139], we would denote the distri-

and&, = {21, 22}. bution-optimized exponents wL_’t_’S(RS).

T
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Exponent

0.45 0.5 0.55 0.6 0.65
R [bits/use]

Fig. 11. Random coding exponents for the binary multiplying channel.

Next, we have As an example, consider the binary multiplying two-way
channel [1, Sec. 13]. This channel has binarya(d1) inputs
anL S (/), QA(fall)) [ ] )a(' ) P

and outputs where
Y = X1 - Xo, t=1,2. (65)

h 0 h f b 1(_?]3) .kt has long been known tha®; is strictly interior to
wherep | 0 meansp approaches zero from above. Thus, The capacity region of this channel [1, Secs. 9 and 13]

Rs is less than (63) then the exponefif;, s(Rs, QA(LSW) (see also [50], [56]-[58]). Consider the symmetric rates

=1 (A(s); Y:

plO

will increase withp from El, (0, Qar. ) = 0.1, R=R,=R,andchoos€x,(0)=Qx,(0)=g. The exponents
B}, s(Rs, Qar, ) is positive for thesefts. Combining E; (R, Qx,x,) for L=1 are then (see (61) and (62))
these results wé have the following generalization of part of —log, [¢+ (1 —¢q)- (q1+p +(1 - q)1+P)] (66)
[16, Theorem 5.6.4, p. 143] (see also [52] for random—codi%;h <, < 1 Forl — h d
exponents for the MAC). here0 < p < 1. ForL = 2, we generate the code trees
_ ~with Qx,,(0) = ¢ and Qx,,x,, v, (0l7e1, ¥y1) = Gayyys-
Theorem 5: The exponenEf,t,s(Rs, QA(Lg )) is a positive Equivalently
function of Rs if . 7900 - Go1s a? = [0, 00]
0<Rs<IL (A(s); Y: A(si)A(sC)) (64) ) q-qoo0 - (1 —qo1), a; = [0, 01]
whereS C D, andS¢ is the complement af in D;. @ (at) - : :
This theorem gives a sequence of inner bounds to the re- (1= @)1= qo)(1 — qu1), a? = [1, 11].
liability function [16, p. 160] of a DMN. One can addition- (67)

ally prove other generalizations of results known for the DMGee (11) for the interpretation of the code tree notation.
(see [16, Secs. 5.6 and 5.7]). Theorem 5 implies Theorem 1 byWe consider the exponents as a function of the common rate
fixing L and lettingV become large. Theorem 5 also implies thék. Optimizing overp, ¢, goo, go1, @andgi; We obtain the curves
achievability of certain steady-state directed information ratekown in Fig. 11 These curves are, howevagtthe best ones
(see Section II-C) by settiny = 1 and letting, become large. for I = 1 or L. = 2. For example, one can achieve zero error

One can, in fact, improve the error exponents in several waysbability for R < 0.5 by time sharing. One would notice this
[53, p. 129]. First, one can include a time-sharing random vaii-one used a time-sharing random variabland the expurgated
able as discussed in Section IV-A (see [53, eq. (2.25)]). Secoretisemble of codes described in [16, Sec. 5.7]. In any case, the
one can use the method of types with an appropriate decoderves in Fig. 11 give a flavor of what happens for lafgasLL
to get universal error bounds [54]. Third, for low rates, one cancreases.
use expurgated random coding ensembles [16, Sec. 5.7]. Fourtlkinally, consider the rat®& at which the error exponents go
one can derive random coding bounds for tree and convolutiomakzero. The besk for L. = 1is0.61695. The bestR for L = 2
codes [55]. It would also be useful to haesverbounds on the | . _ _ _

These curves are traditionally plotted with a linearly scajealis rather

error probability which are similar to the bounds for the DMG,,, 4 ogarithmic one. However, a logarithmic scale more clearly shows what
[16, Sec. 5.8], [54, eq. (7)]. happens near capacity.



KRAMER: CAPACITY RESULTS FOR THE DISCRETE MEMORYLESS NETWORK 17

is again0.61695 for the distributions in (67), so that no rate Thus,d-separation according to Definition 5 implidssep-
increase is achieved. Thus, code trees can improveeilee aration according to Definition 1. Conversely, suppose that
bility of communication even if they do not increase th&e. d-separatest’ from ) according to Definition 1. Then along
For L = 3, we obtain a rate increase wifh = 0.61964. The any pathP betweenX and)’ one edge must have been cut in
best equal-rate inner bound we are aware aRis= 0.63072 Step 1 or Step 2.
[59]. The best equal-rateuter bound to date iR < 0.64628 1. Suppose thaP is cut in Step 1. Then there is a vertex
[30], [60]. along this path which is not iZ and has no descendantsih
Y, or Z. If v has no outgoing edges, then we hdvseparation

VIIl. CONCLUDING REMARKS according to Definition 5. Ifv has an outgoing edge, then the

vertexw to which this edge goes is a descendant,@nd hence

The main ingredient to getting the capacity results for DMN% is not in Z and cannot have descendantstiny, or 2. We

namely, random coding with strategies/code trees, can alread .
. now perform the same steps for verieas for vertex until
be found in [1, Sec. 15]. The strength of the code tree approac

o ; . . U~ We arrive at a vertex, that has an edge going to a vertexn
is its generality—two obvious shortcomings are the complicat ge going

codes it describes and the difficulty in computing rate region ory in V. However, this contradicts the result thatannot
y puting 9 ave descendants iti or ). Henceu must have two incoming

Fis, extongions 1o corain continuous. alphabet networks &S 214 We haubseparation according to Defiion 5
' P . Suppose thaP was not cut in Step 1 but was cut in Step

networks with memory can be found in [61]. Second, an op’% Then the vertex out of which the cut edge came must be in

issue is how to bu!Id COd?S having practlca_l enc_oders and . Furthermore, this edge is outgoing so thatas at most one
coders. Code trellises might prove useful in this respect. illfcoming edge
nally, we point out that an interesting achievable rate region forThus,d-separation according to Definition 1 implidssepa-

DMNs was put forward |n'[§2]. Th|.s region .comblnes.and 9en-ion according to Definition 5, O
eralizes several superposition coding and binning regions. Some

improvements on [62] can be found in [63]. APPENDIX B

PROPERTIES OFCAUSALLY CONDITIONED ENTROPY
APPENDIX A

EQUIVALENCE OF d-SEPARATION RULES We begin with two bounds whose proofs are omitted because

they are rather easy (see [34, Ch. 3]).
We begin with thed-separation rule of [19, p. 117] which y y( [ )

considers an undirected path (a sequence of edgéstween  Property 1 (Bounds on Causally Conditioned Entropy):
certain vert|c_es. The path is assumed to be cycle free so that if H (XN |YN) <H (XN ||YN) <H (XN) (68)
the vertexv lies alongP, thenv has exactly two edges d?f

touching it. with equality on the left if and only if
Definition 5: Let X', ), andZ be disjoint subsets of the ver- H(X | X"7'Y"™) = H(X,|X"'YY)
tices of an FDG. The® d-separatest from ) if along every forallm = 1,2, .... N, and with equality on the right if and

cycle-free pathP between a vertex iR’ and a vertex ir)) there only if I(X,; Y"|X"1) = oforalln =1, 2, ..., N.
is a vertexv such that either "’ Ty
1. v has two incoming edges alorg and neitherv nor its ~ Property 2 (Bounds on Directed Information [24]):
descendants are ifi, or 0<T(XN =YV <1(xV;vV) (69)

2. v has at most one incoming edge alafgndv is in Z. ) ) . )
with equality on the left if and only if (X"; V,,|[Y"=1) = 0

The requirement thaf be cycle free is needed to avoid pathgor all , = 1, 2, ..., N, and with equality on the right if
such as the following one in Fig. 1: and only if H(Y, [Y"=1X") = H(Y,|[Y"1XN) forall n =
1,2, ..., N.

UB = X3 = Vs X3 Yy — X3 — V3.
One might be tempted to guess that equality holds on the right
Lemma 3: The d-separation rules of Definitions 1 and 5 ardn both cases only iff ™ andY" are independent. However,
equivalent. this is not true, as the following example demonstrates Xet
Proof: Suppose thaE does notl-separatet from) ac- andY; beindependentwitBr(X; = 0) = Pr(X; =1) =1/2
cording to Definition 1. Then after Step 2 there must be a pa@#dPr(Y1 = 0) = Pr(Y: = 1) = 1/2 and letX, = X; and
betweenY and). Suppose that this path has no intermediate = X1 & Y1, where® denotes addition modula Then we
vertices. Then clearlyZ does notd-separatet from Y ac- havel(X? — Y?) = 0 but7(X? Y?) = 1 bit.
cording to Definition 5. Next, consider the two cases for which Property 3 (Chain Rules):
there is at least one vertexalong the path betweeti and) .
1. Ifneitherv nor its descendants aredh then the two edges T(XNYN = ZN) =1 (XN — Z7)
touchingv must have been retained in Step 1 by moving back- +I(YN —2zZN ”XN) (70)
ward fromX or ). But then one of these edges must go out.of R NN ~ ~ ~
2. Ifvisin Z, then it cannot have an outgoing edge because I (X —Y"Z ) =1 (X —Y ||DZ )
these edges were cut in Step 2. +I(XN = ZV YY) (1)
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whereDZYN := 0, Zy, Zy, ..., Zn_1 is thedelayof ZV by APPENDIX C
one time instant (with discard of the last digit). AN OUTER BOUND FORCOMMON-OUTPUT DMNS
Recall that/ (X~ — YY) # I(YN — X7%) is possible.

. L o We prove Theorem 4. First, we bound the right-hand side of
However, it would be intuitively pleasing if

(16) by using the independence of tAe

IXN -y V) 4 1(yN — XV) = (XN v In (Asy: Y |Age, Ase))
as suggested by a result of Marko [23, eq. (14)]. However, this
relation does not hold in general. < Hy (A(S) A(&)A(S(')A(’Df’)>
Property 4 (Oppositely Directed Informations): _ Hx (A(S) ‘A(g )A(gC)A(DC)Y)
(XY Sy 41 (v - xV) o
=1 (XN vN)+ 1 (XN - vV || DXY). (72) =1y (A(s); Y ‘A(mA(sc)A(pg)) : (75)

_ i . . Expanding (75) and simplifying we obtain
We next consider stationarity properties. discrete sta-

tionary source (DSS) is a device that emits a sequencéM (A(Sﬁ Y‘A(&)A(SC)A(D?))

Uy, Us, Us, ... of discrete random variables such that, for N
everyn > 1 andL > 1, the random vectorfl/; --- Uyp] _ 1 (X v |xnxn,  xn  yn-1
and [U,41 --- U,,z] have the same probability distribu- N; ( D R CRPR )

tion. This means that for every window lengih along the
DSS output sequences one sees the same statistical behavio& 1 Z 7 (X Ly
regardless of where the window is placed along the output = N ‘ (S)n> Tn

sequences [16, p. 56]. We will consider the case WheRy: consider the chain of (in)equalities in [30, eq. (14)]. We
Un = (Xn, Yu, Zy), i.€., the sequences, Y, andZ are the can follow virtually the same steps to find that

outputs of a DSS. N
0<I (U(Sl); S U(g,,,) IY\ )

1 Y

XmX(Sc)nX(Dic)nY”’l) . (76)

Property 5 (Entropy Rates of a DSSIf the sequenceX(y,
X5, X3, ... andYy, Ys, Y3, ... are the output sequences of a
DSS, then

1. H(X | XEYE) < Hy(X||Y) forall L > 1,

]\T
< T (X - X [V V)
n=1

2. H(Xp|X"'Y")is nonincreasing with L (X5 X Y77, (77

' L _ _ _ _ g ’ Now letV = [W, YW1 and X, = X, where Py (n) =
3. Hp(X|]Y) is nonincreasing with., 1/N forn =1, ..., N. We then have (26) and (27) from (76)
4. lim H(X |XP7'YE) = lim Hp(X[|Y),i.e., bothof and (77), respectively. The cardinality boundiériollows from

these limits exist and have the same valig(X|Y).  [2, p. 310].

Thes_e four pro_perties are known_ if’_[he DSS has a single output APPENDIX D
or, equivalently, if theY” sequence is independent of tRese-
guence. The proof of the more general Property 5 follows the
same steps as the proofin [16, p. 57] and is omitted. Property 5 ) )
can be applied to prove the following. A. Equal-Rate Point on the Cover-Leung Region Boundary

Consider the" = X; + X, + Z channel of Section VI-A
and the rate regioR$™. We use a binary’ with Py (0) =
Py (1) =1/2,andPr(X; # V) =Pr(Xs # V) = ¢q. The rate
R = R; = R is then bounded by

APPROACHABLE RATES FOR A NOISY BINARY
ADDER CHANNEL WITH FULL FEEDBACK

Property 6 (Directed Information Rates of a DSSj: X and
Y are output sequences of a DSS, thien;, .. I (X — Y)
exists and is given by

, R <h(q)/2
If 7 is also an output sequence of the DSS, then ) )
limy, o I1.(X — Y| Z) exists and is given by 2R<h([¢"+(1-9)7]/2). (78)

I.(X - Y||Z)=H(Y||Z) — Ho (Y| X Z). (74) The bounds meet if = [¢> + (1 — ¢)?]/2,0rqg = 1 — 1/V/2.
Proof: Consider (73). By Property 5H..(Y) and The best rate is thuB = h(1/v/2)/2 ~ 0.436 21 bits per use.

H..(Y||X) exist. But the limit of a real sequence whose FOF 9eneral’(v, a1, x>, y) defineq,, = Pr(X; = 0|V =wv).
elements are the term-by-term differences of the elements%fa'ghtforward manipulations of the infarmations yield

two real convergent sequences exists. Furthermore, this limit x,. y|x,V) = ZP(v)h(qm)/Z
is the difference of the two limits of the original sequences >
[28, p. 223]. Thus, we have

Jim (X —Y) = lim [H(Y) = Ho(Y]X)] I(X2; Y[X1V) = ;P(v)h(qzv)ﬂ

= fim He(Y) = lim Hp(Y]X). (X1 Xp; Y) = h® (Py(0), Py(1), Pr(2), Pr(3))-1
This proves (73); (74) is proved in the same manner. [ (79)
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where B. Equal-Rate Point With Directed Informations
4 Consider the rate region of Corollary 1. We use a memory 1
W (p1, pa, ps, pa) = —pilog(pi) random coding technique withy: (0) = Py (1) = 1/2 for all
i=1 n, and
and Pr (X # Vi [Xene1) =2, Yoo1 =¥) = ray-  (85)
Py(0) = P(v)q10q20/2 The random coding can thus be described by a Markov chain

having six states. We call the statg§ = (z¢(n—1), ¥n—1) and
Py (1) = Z P0)[q10g20 + qro(1 — g20) + (1 = q1o)g20]/2 the random variable corresponding to these stafgsThe state
" diagram of the entire system can be shown to have eight states
Yn = (Xl(n—1)7 X2(n—1)7 Ynfl)-

Py(2) =Y PO)(L = q1)(1 = q20) + q10(L — q20) The besty ., we found were
= 0.2584 = 0.7148, =1
1 — q10)q20]/2 1,00 » dq1,01 ’ q1,02
= m)elf q1,11 =0, q1,12 =1—-0.7148, ¢1,13 = 0.2584

Py(3) =) P(v)(1 —qu)(1 — g2,)/2.

72,00 = 0.2584, q2,01 =1—0.7148, @202 =0

q2,11 = 1./ 42,12 = 07148/ 42,13 = 0.2584.
We would like to show that a binary/ is best for equal-rate

points. We first use the convexity of the entropies and Jenser € resulting steady-state distribution of the system is
inequality [15, pp. 25-30] to write pooo = 0.1486, poo1 = 0.1486, po11 = 0.1014

=0.1014 = 0.1014, =0.1014
Py (0) + Py (3) Py (1) + Py (2 Po12 > DP1o1 » P102
v )2 v(3) P )2 v(2) pi1s = 0.1486, p1ys = 0.1486

Po(1) 4+ Pv(2) Po(0) + Po(3 wherep; ;1. = Pr(X,, = (4, j, k)). We bound the steady-state
v() + Pr(2) Br(0)+ Py )> — 1 entropies as follows (see Appendix B and [15, p. 71]):

I(X1X,;Y) <h® (

2 ’ 2
= h(Py(0) + Py (3)) H (Y |Se—2 VXY™ = 1.43879
< Hoo (Y[ X2V)
—h (Z P()(1 _m/z) B0 (Vi [P VI X2t =20 — 1 4550
wheret,, := q1,(1 — g2) + (1 = q10)q20- (86)
The informations (79) are virtually identical with the infor-ynerey/ % denoteds,, Vis1, ..., Vi, and similarly forx 4

mations in [41, egs. (3) and (5)]. We may thus use the salgqy*¢. Furthermore. we have
function ¢(+) defined there, namely,

o (1-v1i=2)/2, for0<t<1/2
o(t) = (1 vE=T)/2 forifz<t<l. (81) <H(Y;|Yi—2Yi_1) = 1.87764. (87)

All of the quantities are in bits per use. Becalibg'| X1 X5) =
1 and because both users have the same directed information
rates, we have

H (Y [V 'S_2) =1.87758 < Hoo(Y)

In [41], it is shown that the composite functidtié(-)) is sym-
metrical around = 1/2 and convexd in ¢t for 0 < ¢ < 1.

Following the same steps as in [41, eq. (8)] we arrive at
Io(X1 = Y||X2V) >1.43879 — 1 = 0.43879

R<h(9(1)/2 (62) Io(X; = Y| X,V) >1.43879 — 1 = 0.43879
wheret = > P(v)t,. Combining (82) and (80), we find that Io(X1X5 — V) > 1.87758 — 1 = 0.43879 - 2.
R satisfies
Thus,R; = Ry = 0.43879 is approachable. This is beyond the
R< 0<r£1<1111/2{h(¢(t))/27 h((1—1)/2)/2} (83) ratce pointR; = R, = 0.43621 that lies on the boundary of
- RCE,

or, by setting; = ¢(¢) so thatt = 2¢(1 — ¢), we have
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which is the same as the bounds (78). Thus, the rate point
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