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Multi-User Information Theory October 19th, 2009

Lecture 1

Lecturer: Haim Permuter Scribe: Noa Zuaretz

I. NOTATION

• X - random variable

• X - alphabet

• |X | - cardinality of the alphabet. Unless it is said otherwise, we assume that the alphabet is finite,

i.e., |X | < ∞.

• x - an observation or a specific value. Clearly, x ∈ X .

• PX(x) - the probability that the random variable X gets the value x, i.e., PX(x) = Pr{X = x}.
• PX - denotes the whole vector of probabilities. One may also use the notation PX(·).
• P (x) - this is a short notation for PX(x).

• xn - is the vector (x1, x2, ..., xn) for n ≥ 1. If n = 0 then the vector is empty.

• xj
i - is the vector (xi, xi+1, ..., xj), for j > i. If j = i, then the vector has only one element xi and

if j < i, the vector is empty.

II. ENTROPY RATES OF A STOCHASTIC PROCESS

A. Entropy Rate

If we have a sequence of n random variables, how does the entropy of the sequence grow with n?

Definition 1 We define the entropy rate as this rate of growth. The entropy of a stochastic process {Xi}
is defined by

H(X̄) , lim
n→∞

1
n

H(Xn) (1)

if the limits exists.

If X is i.i.d. then 1
nH(Xn) = H(X).

We can also define a related quantity for entropy rate by

H ′(X̄) , lim
n→∞

1
n

H(Xn|Xn−1) (2)

if the limits exists.

H(X̄) and H ′(X̄) correspond to two different notions of entropy rate. The first (1) is the per symbol

entropy of the n random variables, and the second (2) is the conditional entropy of the last random variable

given the past.

Administrator
Note
emphasis terms that you define: {\it entropy rate}

Administrator
Note
The notation of entropy rate as in the book is H\mathcal X)



1-2

Example 1

Xn =





000...0 p = 1
2

111...1 p = 1
2

(3)

1
n

H(Xn) =
1
n
→ 0 when n →∞ (4)

Definition 2 A process {Xi}i≥1 is stationary if P(Xi+n
i ) = P(Xn

0 ) ∀i, n

Theorem 1 For any stationary process {Xi}i≥1 the limits in (1) and (2) exist and are equal

H(X̄) = H ′(X̄) (5)

Proof:

H(Xn+1|Xn)
(a)

≤ H(Xn+1|Xn
2 ) (6)

(b)
= H(Xn|Xn−1

1 ) (7)

(a) Conditioning reduces entropy

(b) Stationarity properties

The sequence H(Xn|Xn−1) is decreasing and positive, hence the limit exists.

Lemma 1 (Cesaro mean) Let {an}n≥1 be a sequence such that limn→∞ an = a then the limit of the

sequence {bn}n≥1 where bn = 1
n

∑n
i=1 an is limn→∞ bn = a.

Proof: Let ε > 0. Since an → a, there exists a number N(ε) such that |an−a| ≤ ε for all n ≥ N(ε).

Furthermore,

|bn − a| = | 1
n

n∑

i=1

(ai − a)| (8)

≤ 1
n

n∑

i=1

|(ai − a)| (9)

≤ 1
n

N(ε)∑

i=1

|(ai − a)|+ n−N(ε)
n

ε (10)

≤ 1
n

N(ε)∑

i=1

|(ai − a)|+ ε (11)

for all n ≥ N(ε). Since the first term goes to 0 as n →∞, we can make |bn − a| ≤ 2ε by taking n large

enough. Hence, bn → a as n →∞.
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III. DIRECTED INFORMATION AND CAUSAL CONDITIONING

A. Causal Conditioning

Introduced and employed by Kramer [4], [3] and by Massey [2], Causal Conditioning (notation (·||·))
is defined as the probability mass function of the sequence Xn causally conditioned on the sequence Y n.

Definition 3

P (Xn||Y n) ,
n∏

i=1

P (Xi|Xi−1, Y i) (12)

In addition, we introduce the following notation:

P (Xn||Y n−1) ,
n∏

i=1

P (Xi|Xi−1, Y i−1) (13)

The definition given in (13) can be considered to be a particular case of the definition given in (12) where

X0 is set to a dummy zero. This concept was captured by a notation of Massey in [2] via a concatenation

at the beginning of the sequence Xi−1 with a dummy zero.

Since, we define the causal conditioning P (Xn||Y n) as a product of P (Xi|Xi−1, Y i), then whenever

we use P (Xn||Y n), we implicitly assume that there exists a set of that satisfies the equality in (12). We

can call P (Xn||Y n) and P (Xn||Y n−1) a causal conditional distribution since they are nonnegative for

all Xn, Y n and since they sum to one.

Lemma 2

∑

Xn

P (Xn||Y n) = 1 (14)

∑

Xn

P (Xn||Y n−1) = 1 (15)

Proof:

∑

Xn

P (Xn||Y n) =
∑

Xn

∑

Xn−1

P (Xn−1||Y n−1)P (Xn|Xn−1, Y n) (16)

=
∑

Xn

∑

Xn−1

P (Xn−1||Y n−1)P (Xn|Xn−1, Y n) (17)

=
∑

Xn−1

{P (Xn−1||Y n−1)(
∑

Xn

P (Xn|Xn−1, Y n))} (18)

=
∑

Xn−1

P (Xn−1||Y n−1) (19)

Lemma 3 Chain Rule for Causal Conditioning. Using the chain rule, we can easily verify that

P (Xn, Y n) = P (Xn||Y n)P (Xn||Y n−1).

Administrator
Note
Please do not use capital letter in pmf.
P(X) is wrong,

Use P(x) or P_X or P_X(x) but not P(X)



1-4

Proof:

P (Xn||Y n−1)P (Y n||Xn) = P (Y n, Xn) (20)

=
n∏

i=1

P (Xi|Xi−1, Y i−1)P (Yi|Y i−1, Xi−1, Xi) (21)

=
n∏

i=1

P (Xi, Yi|Xi−1, Y i−1) (22)

= P (Xn, Y n) (23)

Lemma 4 The causal conditioning distribution P (Xn||Y n) uniquely determines the value of

P (Xi|Xi−1, Y i−1) for all i ≤ N and all the arguments (Xi−1, Y i−1), for which P (Xi−1, Y i−1) > 0.

Proof: First we note that if P (Xi−1, Y −1) > 0, then according to Lemma 3, it also implies that

P (Xi−1||Y i−2) > 0. In addition, we always have equality

P (Xi−1||Y i−2) =
∑

Xn

P (Xn||Y n−1) (24)

hence, P (Xn||Y n−2) is uniquely determined from P (Xn||Y n−1). Furthermore, by induction it can be

shown that the sequence P (Xi||Y i−1)n

i=1 is uniquely derived from P (Xi||Y n−1). Since P (Xi||Y i−2) > 0,

we can use the equality

P (Xi|Xi−1, Y i−1) =
P (Xi||Y i−1)

P (Xi−1||Y i−2)
(25)

B. Causal Conditioning Entropy

Definition 4 The entropy of the sequence Xn causally conditioned on the sequence Y n is

H(Xn||Y n) , E[− log P (Xn||Y n)] (26)

= −
∑

Xn,Y n

P (Xi, Y i) log P (Xi||Y i) (27)

C. Directed Information

The directed information flowing from a sequence Xn to a sequence Y n was introduced by Massey [1]

and can be written as

Definition 5

I(Xn → Y n) = H(Y n)−H(Y n||Xn) (28)
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=
n∑

i=1

H(Yi|Y i−1)−H(Yi|Y i−1, Xi) (29)

=
n∑

i=1

I(Yi, X
i|Y i−1) (30)

which hints, in a rough analogy to mutual information, a possible interpretation of directed information

I(Xn → Y n) as the amount of information causally available side information Y n can provide about Xn.

D. Memoryless Channel

A discrete channel with finite input alphabet x and finite output alphabet y is the specification of the

conditional probability P (yn|xn, yn−1) for all n ≥ 1, all Xnεxn and all Y nεyn. The discrete channel is

memoryless if this conditional probability satisfies

Definition 6

P (Yn|Xn, Y n−1) = P (Y n|Xn) (31)

Lemma 5 For the memoryless channel maxPXn||Y n−1
1
nI(Xn → Y n) = maxPX

I(X;Y ), the capacity is

defined as the supremum over all achievable rates [7].

C = max{I(Xn → Y n)} (32)

= max{H(Y n)−H(Y n||Xn)} (33)

= max{
n∑

i=1

H(Yi|Y i−1)−H(Yi|Y i−1, Xi)} (34)

(a)

≤ max{
n∑

i=1

H(Yi)−H(Yi|Xi)} (35)

= max{
n∑

i=1

I(Yi, Xi)} (36)

(a) Conditioning reduces entropy

Note: max { 1
nI(Xn → Y n)} = max {I(X;Y )}

E. Conservation law

Massey [2] showed the following Conservation Law

I(Xn;Y n) = I(Xn → Y n) + I(Y n−1 → Xn) (37)

Proof:

I(Xn → Y n) = H(Y n)−H(Y n||Xn) (38)

= E

(
log

P (Y n||Xn)
P (Y n)

)
(39)
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I(Y n−1 → Xn)
(a)
= I(ØY n−1 → Xn) (40)

= H(Xn)−H(Xn||Y n−1) (41)

= E

(
log

P (Xn||Y n−1)
P (Xn)

)
(42)

(a) Øis added in order to achieve same length on both sides lengthØY n−1 = lengthXn.

I(Xn → Y n) + I(Y n−1 → Xn) = E

(
log

P (Y n||Xn)
P (Y n)

P (Xn||Y n−1)
P (Xn)

)
(43)

= E

(
log

P (Xn, Y n)
P (Y n)P (Xn)

)
(44)

= I(Xn|Y n) (45)
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