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In this article, we consider the problem of sending message via discrete channel with
noiseless feedback as shown below.

Message X _ Y
W_g’ Encoder Ky p(yk‘yg 1,x1k) %y Decoder —>
A + W
N
Yk—l

At time k, the encoder produce X, from W, the previous encoder outputs X, ™, and
the fed-back channel outputs Y,*. The encoder can be a deterministic function; that
is X, = f, (X}, Y,). We also allow random encoder; thatis X, may be governed

by the conditional distribution p(xk ‘xlk‘l, y('j‘l). This X, is put into channel. The
channel output Y, is generated according to the conditional distribution
p(yk ‘xl" yg‘l) which not only depends on the current channel input X, but may also

depend on past channel inputs X, and outputs Y, .

We modify the classical Shannon’s information measures (entropy, mutual
information, and their conditional versions) so that they explicitly incorporate

feedback. In particular, we shall focus on | (X N yN ) a notation introduced by

Massey [1990] to capture the directed information flowing from the length N
sequence of random variables X" to the length N sequence of random variables X" .

In fact, the idea of given direction to information has already been thought of by
Marko [Marko 1973] whose paper define a quantity called directed transinformation.
The direct information in [Massey 1990] refines this directed transinformation.

Equivalent System Models

In this section, we show three general models of the system we are interested in. We
then prove that they are all equivalent in the sense that we can convert one into
another. Hence, in some sense, it is sufficient to analyze only one of them. As usual, k
is the time index. Xy and Y represent the channel input and output at time k
respectively. Sy denotes the channel state at time k. In model 2, we use V instead of Yy
to represent the channel output. This notational difference is used so that the proof can
be done more smoothly. Model 3 is introduced as an intermediate model to bridge
model 1 and model 2. The definitions and proof are almost the same as those in
[Chen, Suksompong, and Berger 2004]. What follows is conditioned on the initial
state S; = ss.
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e Theorem: Model 1, 2, and 3 are equivalent.
Proof Let M. be the set of systems that can be represented by Model i. Then,

(1) M, c M, because we can let P(Yk 'S
X/ S5).

Xlk,Ylk—l’Slk):
B (Y [Xt 8! )Py (i

(2) M, = M, because we can let V, =(Y,,S,.,). Then, V" =(Y,s}).
Set Q(Vy [ X/ Vi) = P(Y,, S, | XL VIS ).

(3) M, c M, because we canset S, =V, ,,
PZ(Sk+l Xlk,Slk) :Q<Vk‘Xlk,Vlk‘1), and Y, =c as. (Equivalently, 3c
v(xst) R(Y =c|xi =x.s¢ =sf)=1)

Henceforth, we shall focus on Model 2.

Discrete Channel

In this section, we consider the channel part of the system. Special cases of which are
also defined.



Discrete channel: (p(yn

N
n n-1
X))
[Tatikonda 2000] calls this nonanticipative channel.

Definition: [Cover Thomas 1991] A channel is memoryless if

p(¥,

XY= p(Yal%,)-

Simple equivalent statements are

Given x,, (X%, y/™*) and y, are independent;
—%, = (X%, yi*) forms a Markov chain;
M) =H%GIX):

Vi |(Yj;(xli—1,vli—1)\xj)=

H (Y, |[X]

Definition [Massey 1990]: The channel is used without feedback if

o)

Ly =n(x,

Equivalent statements are

H(xn

XY ) = H(X

Xln‘l) :

n

(XY

Xln’l) =0;
Y, = X/ = X, forms a Markov chain;

[Ash 1965] for YN >n, p(y,[|x", yi )= p(y,[x. )

(Note that this gives exactly the same condition as the definition above when
N=2)

(Y | XY 1) (Y ESAANT

i+1

Vi (Y X

X\,Y ) =0;

XN forms a Markov chain.

i+1

ViY (XY - X

I (Xi;YJ. ‘Xli‘l,Yl"‘l) =0 forany j<i.

We shall show later that these are also equivalent to:

|(x1N;Y1N)=|(xlN —>Y1N)
1(0*Y,"* > X')=0.

Interpretation: The choice of the next channel input digit, given all previous input

digits, is not further related to the previous channel output digits.

Joint distribution:

(') =TT (% b5 v0™) =T Lo () p (a0

n=1 n=1

Discrete memoryless channel: p(xlN,le)zﬁ (XX ) p(YalX,)-

n=1



e Discrete channel used without feedback:
N N N
p(x" v ) =TT e (% ™) p(val v ) =TT o (% ™ )T T o (ol v ™)
n=1

n=1 n=1
N
=p(x" ) Tr(v.x. v

n=1

or equivalently,

p(v! \X1N)=lj JEARSAR

N

o Used [Ash], p(yo[x", )= p(ys| X,y ), we have

N N
POy )= p ()T e(val X v ) = p (4 )T T p(¥al 91
n=1 n=1
hence equivalent to Massey’s.
e Discrete memoryless channel used without feedback:
N N
p(x" v )= p(x )T T P(va|x,), or equivalently p(y," [x)=TTp(¥alx,)-
n=1

n=1

This is DMC used without feedback.

In this case,

. H(xlN,YlN):H(xlN)+_N H(Y;]X,).
) i=1

o H(Y'|X')=DH(Y]X)
i=1



As an introduction to directed information, we present here one way to look at it. First
we shall decompose mutual information into several conditional mutual information
using chain rules. We associated each part with an arrow going between X; and Y;j in a
diagram representing the general channel in figure 1. The above specialized channels
are then just the general channel with some of the arrows missing. Directed
information takes only some of these parts and hence it is a part of mutual
information. This idea was presented to Prof. T. Berger and L. Tong during the
author’s Q exam in June, 2005. This representation of directed information trivializes
several of its properties.

e The definitions defined above can be represented using the diagrams.

Figure 1 Discrete Channel

Figure 1 shows the discrete channel in its full generality. We can, in fact,
decompose it into three parts which are shown in black, blue, and red. Consider,
first, the part in black as shown in figure 2.

X, Y,
® >0
X n-1 Yn—l
® >0

X, Y,
® >0
X n+1 Yn+1

»>®
Figure 2 Discrete Memoryless Channel without Feedback

Figure 2 represents the discrete memoryless channel without feedback. We can
add memory to channel by adding the blue part, as shown in figure 3. This allows

yi to depends on (x;,y; "), not just X, .



Figure 3 Discrete Channel without Feedback

The last part, with red color in figure 1, represents the feedback. Adding it to
figure 3 leads us back the general discrete channel in figure 1.

The mutual information | (XlN ;YlN) delivered via the discrete channel described
above can also be partitioned into three parts.
First, by applying the chain rule for mutual information twice, we have

(X, ZI(XI,Y |X/™)= ZZI(XI,Y‘X”YH)

Now, we separate the terms inside the sum above into three groups by asking
whether i is equal to, less than, or grater than j. This gives

(Y, X, Y, 7%, X, ™) . This quantity will be defined as 1( X' <>Y,").
() I )

We want to say that it relates to the “direct” paths in black above.

ZZI(X,,Y X)) = il(x;’-l;\/j [¥,/™*). This quantity will be
j=1

j=1i=1

defined as 1(0*X,'* —Y," ) . We want to say that it relates to the channel
memory paths in blue above.

3) j<i:ZN:ii|( Y[y =

i=1 j=1 i

Mz

(X%, X)), This quantity will be

1]
=

defined as 1(0*Y,"™ — X,"). We want to say that it captures the feedback
paths in red above.

The directed information only adds up the terms that has i < j (all arrows that
point from X to Y), that is

LX) YY) =1(XN oY)+ 10X YY)
=X ) =10y, > X))
For the familiar DMC without feedback, we will show that

(X, —>Y1N):I(XlN;YlN)sil(Yi;Xi)SnC.
i=1



Directed Information and its properties

e [Kramer 1998] Assume that the sequences X,' and Y," are “synchronized”, i.e.,

that the n™ terms in the sequences occur “at the same time”, and that the n™ terms
occur “before” the (n+1)™ terms.

e [Massey 1990] The directed information I(XlN —>Y1N) from a sequence X' to

asequence Y," is defined by 1(X}' —>Y,")= il (Xli;Yi ‘Yli’l).

i=1

e Remarks:

o 1(XMYY)= il (XlN Y, ‘Yli‘l) by chain rule. We add the information that
i=1

Y, tells about X," which Y, haven’t already told.

e For directed information, we use | (Xf;Yn Yln’l) : To eliminate feedback

information, we ignore the information that Y, may be giving about the

future X, .
< p(XJi’Yi ‘Yli_l)
P =2 s p(Xi)p(v %)
To(v]xiv)
— i=1
E| log p(YlN)

N
o (Y o XM =DV X
i=1

o (XYM )<1(X":y,") with equality iff channel is used without feedback
proo. 1 (x5 %)= H (1 2) - (v x 0
> H (Yi \Yl”) “H (Yi \xl‘,Ylifl)

= L(X{Y ]y
Hence,
N N
LX) = DY) 2 D (XY ) = 1 (X %),
i=1 n=1

Equality occurs iff Vi H (Yi ‘Xl’“ ,Yli’l) =H (Yi ‘Xl“,Yli’l). This is Ash’s

condition which is equivalent to the “used without feedback” condition.
Alternative Proof.

Use I(X,, X,:Y|Z)=1(X;:Y)+1(X,Y]X,,Z). Then,

LX) = XYY ) = (XY X4 Y ) = 0



This proof give us the next property.
N
(X5 ) = (X —>Y1N)=ZI( NV X1.Y ) in fact, the last term is 0; s
N-1

LX) =1 (XY Y ) = 2o (XN XY,

i=1

So, 1(X;' > Y, )< 1(X,%;Y,") with equality iff Vi Y, —(X,Y,™")- X}, formsa
Markov chain.
If X, — X, =Y, isaMarkov chain (i.e. p( NXLY, ) p(Xi'i1 XI‘)),then

(X5 ) =X > YY),

e The Markov chain condition above says that the future X’s are not influenced
by the past and current Y’s when conditioned on the past and current X’s. In
the context of channels this state that if there is no feedback, then the two
different mutual information measures are equal. [Tatikonda 2000, p. 81]

e Pearl [1988] call this the “weak union” property of conditional independence.
PrOOf' p( i+1 X Y ) p(xlr\il XI) = p( i+1 X Y ) p(X|+l X YI l)
Y= (XY ™) = X, Markov.

(Recall that p(Z|V,U,,U,)=p(ZV) =
p(Z|V.U,U,)=p(ZN,U,)=p(ZV.U,)=p(Z]))

N
ZI Wlth equality iff Y, are independent.

i=1

Y-\Yl' 1) H( xin7)
)—H(

Y;| X; ); memoryless

For DMC, I (X, —>Y,"

)<
Proof. I(X[Y,[¥/")=H
Y
H

Recall that H (YlN ) = ZN: H (Yi ‘Yli’l) < ZN: H (Y;) with equality iff Y; are
i= i=1
independent.

Definition: Denote the sequence (0,Y,,...,Y,_;) by DY," [Kramer 1998], or
0*Y,"* [Massey 1990].

e The letter D represent delay by one time step (with discard of the last
component).

> 1(0*Y, 75X i\xl”):il(vjl;xi\x;l)

i=1

|(0*Y1N*l N xlN)

M= 1M-

Il
N

| (Y;-l; X, \x;-l)



e Define I(XlN <_>le): I (YlN PN XP)Z&' (Yi;xi‘Yli—l’Xlifl).
i=1
* I(XlN _)YlN): | (O*XlN_l _)YlN)+ I (XlN <_>Y1N)
LYY = X )=1(0%Y" = X )+ (Y o X[Y)
Proof. (Yli; Xi ‘Xli_l)_ ! (Yli_li X ‘xli_l) = (Yi; X ‘Yli_l’ Xli_l)

(Y = XY )=1(0*y " - XY

= il (x| xi) —il (Y% x4

- 1

-

(Yo XY %0

e Conservation I:aw:
(X =1 (K107 o )
=1, o> X1+ 1(0* X, > YY)

N N-1
e Equivalently, Z | (Ylifl; Xi ‘ Xlifl) — Z I (Xiﬂl;Yi ‘ Xli’Yli,l).
i=2 i=1

e Interpretation: By putting a O in the front,
e We shift the delay position from the feedback to the channel. Before, X,
and Y, are treated as if they happened during the same time step.

e Now, the formula doesn’t include the “middle” part which is
(X' oY),

o (XM =X oY)+ 5 XY )-1(X) oY)
o Ingeneral, (XY )= (X} > )+ (V" > X[').
e This is obvious when N = 1 because
LX) =X YY) =1 > X)),



Example: (I-measure) N = 2

1( X, X5 Y,Y,) (X, X, > VY,Y,) 1(0*Y, > X, X,)
X, X, Xy
— — —
|(Yz X, )(ZlYl) I(Yz X1v><2|Y1)
Y, Y, Y,
Y1{ I( X vz) Yl{ HY 1) Y1{ L] )
XZ XZ X2
1(Y,,Y, = X, X,) (X2 o Y?) (0% X, > Y?)
(X5 Y, |X0Y,)
I(Xz 1Y2|X1) ) |(X1Y2‘Y1
Y, Y, Y,
X2 XZ XZ

* DMC: 1(¥%;i(X,1,)[X, ) =0 which equivalent to 1 (¥,; X,|X,.Y,)=0,

L(Y,Y, X, X, ) =0, and 1(X;;Y;;Y,]X,)=0

DMC: 1(Y,:(X,.Y,)|X,)=0 No feedback: I (X,,;Y,|X,)=0

X, X,
— —
0
Y, Y,
0 0
Y, Y, 0
- T}
2

XZ
We can clearly see now that when there is no feedback, I(X7;Y,?)=1(X} >Y/).
We summarize the definitions and properties involving the directed information

[ ]
below:

(XY )

(XY ) =H (") -

-

1]
[N

o I(XMYY)=

(efxiv)

.MZ
Mz

o (X' oY")=

- N . NlI:1
. I(O*Y1N1—>X1N):;I(Y1'l \x‘l)zzzl:l( RPN A
= (XY X))+ 1 (X Y2 [ X )+

10



O*XN‘1—>Y )+I(O*Y1N - xlN)+|(x1N oY)

e [Tatikonda 2000] If the process {p(xlN A )}Zzl is information stable [p. 89],

then fim | (X} >Y,") exists and we can work directly with 1(X," >Y,")

N —>w N

(instead of liminf in probability as defined in [Tatikonda 2000 p. 89] and [Verdd
1994].

e Definition: [Kramer’s] causal conditioning
e \We see above that the channel outputs are given by

P(y1N HXP ) = ﬁ p(yn|x1“, yl“). This lead us to define
n=1

(6 ) = )= S .67,
e Again, H (YlN HXlN) differs from the conditional entropy H (YlN ‘XlN) only
inthat X' replaces X,'.

e The term “causal” reflect the conditioning on past and present values of
the sequence X,' only.

o It differs from “free information” [Marko 1973] only in that X is
included in the conditioning.

. p(><1“H°yl”)=lﬁ_!p( Xy
H(X %)= —E[Iog p(X, ] v, )} :ZN_;H (X, Xy,

Note the asymmetry in the definitions above.

o o0y ) =p(x vt )y k).
H(XlN,YlN):H(XlNH"YlN)+H(YlNHX1N).

o By )=p(x' v ) ()= (yl)l_[p( APV

=

11



. p(&“Hyl“)=lﬁ_!p( V)
H(X,' W)= —E[log p(X,* " )} = iH (X, X0,

n=1
ROt < B ()
Proof. Conditioning only reduces entropy.
HOG Y )= H (XN ) = 1% o v
Proof. H (X[ '¥")-H (XM |\")= i(H (X X7 ) = H (X, [ XT5Y)

n=1
N

Z(l(x Y

= |_(xlN oY)

()= )

Proo1(x ) =S (x4 =) B (v
= H(YlN)—H(YlN HxlN)

Alternative Proof. More directly,

N .
e f st

(X' >Y,")=E| log-= ST

I(XlNaYlN)—E{Iog p<:1;JJNX)1N)}E[|og p(xlN’YlN) ]

ol o)

=D(p(x1”,y1
H(O*Y" > X[') = i X X ) = H (X ) = H (X )
i=1

Proof. 1(0*Y,"" - X')= ZN:I(Y' XX

X1 -1 Yo 1))

©
—
=<
=z
~
|

LY X X0 ) = H O X) = H XY X)),
N

(
=H () =(H OG- H (YY)
(

Xt - H (X



Definition: 1(X;' >Y,"[2}')=H(Y]|2')-H(%"[x.".2").

o 1(X} oY Hzl“)=i|(vn;xl"

n=1

‘AR )

Proof. 1(X;' >V,"|

ZlN ) - H (Yn|Yln_l’ Zln ) —H (Yn|Y1n_l, Xln ) Zln)

H (Y %20 )= H (YY" X, 2))

Il
M= 1DM= 1M

(Y, X

AR )

Il
JUN

n

o LetZ'=0%X"" then I(X, > Y Jo* X ) =1(X oY),

Proof. 1(X," > Y [0* X} )= (¥, X!

‘AR xffl)

=]
b= |\MZ
-

=D 1Y X,

‘AR xl”—l)

N

e Similarly, by symmetry, we have | (YlN — X HO*YlN’l) =1(X' oY)

We conclude this section with diagrams. All the diagrams below are the same
diagram. First, we have the familiar diagram:

H(X)')

Next, the mutual information | (XlN ;YlN) is partitioned into three subsets:

LX) =10 X YY)+ 1 (0% 5 X))+ 1(X) « YY),

|(0*Y1hH - xlN)

|(X1N <—>Y1N) I(O*Xlel_)YlN)

(X' > YY) and 1(Y," — X'} are parts of 1(X,*;Y,"):

13



(Y, — X))

(X' >YY)
Finally, H (X, Y“): (XNH°YN)+H(YNHXN)

HY +H \x“ +| XN oy

HS&

Converse Channel Coding Theorem

Message X
W_g’ Encoder K (yk‘yk o k) Yy Decoder —=>
W
A +

=

[A e

<

Yk 1

e Assume that the system is causal; that is p(yi‘xli, yli‘l,w) = p(yi‘xii,yli‘l).
The idea is that the source output sequence should be thought of a specified prior

to the process of sending sequences over channels and the channel should be
aware of such sequences only via its past inputs and outputs and its current input.

e So, p(w.x' y')= p(W)ﬁ p(X%| Xy w) p(ya X i)
n=1
o (WY )<I(X) > YMYy) whichis < 1(X,';Y,"]Y; ).
Proof. 1(W;Y,")=H(Y")-H (Y, "W )= i(H (YY) = H (¥, \Yokfl,w)).
k=1

Because X, is produced by (Yok‘l,W) , we have X/ is produced by
f (Y, W), and therefore

(a)
H (Y VoW ) = H Y[V X W) = H(Y Y X)),
where (a) comes from the causality assumption.
A more general X, gives

14



H (Y, VW) 2 H (Y Y X W )(i) H (Y, v X)),

In any case,

L(W;Y') < ﬁ:(H (\(k ‘Yok—l) ~H (Yk Ve, )) i| (Y X4 ‘Yok_l)'

1 k=1

e Remark: Let’s reconsider the equality of H (Yk ‘YOH,W) and
H (Yk ‘YOH, XS ,W) using functional dependence graphs as in [Kramer 1998].

Suppose k = 2, then the relevant graph is shown below:

X, Y,

W

We then remove the arrows coming out of (W ,Yl). The resulted graph shows
that (W,Y,) does not d-separate Y, from X?. Since all secondary random
variables have incoming branches, we also know that (W,Y,) does not fd-
separate Y, from X7.

Now, instead of generating X, by conditional distribution p(xn

Xf—l, yln—l),
we use deterministic encoder; thatis X, = fn(xl”’l,Yl”’l). Then, after

removing the arrows coming out of (W ,Yl), the secondary random variables
X, and X, have no incoming branches.

g Ve
w e X2 Y2
®

Hence, we can further delete the arrows coming out of X, and X, .
X Y,
‘ s
®
W Xg \2/-

We conclude that (W,Y,) fd-separate Y, from X} in the case of deterministic

encoder.
Feedback does not increase the capacity of DMC.

Proof. For DMC, we know that I(XlN —>Y1N‘Yo)s D H(X:Yi]Y, ). Hence,

N
i=1

15



N
I (XlN _>Y1N ‘YO) < ZI (XHYl)S NCDMCwlofeedback '

i=1

e This first result in the information theory of feedback channel is due to
Shannon [1948].

In fact, if we replace W by U and replace W by V,'.

X, \f

p(yk ‘ ye, xlk) k5| Decoder —>V,
*

U, — Encoder

A

L

\ 4

NP
v, 1AM
Then,
e For any discrete channel, we have I(U};Y," )< I(X]' > Y,"|Y,).

e Furthermore, if the channel is memoryless, we have

(X eYlN‘YO)siI(Xi;YJYO).
i=1
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