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Capacity Results for the Discrete
Memoryless Network

Gerhard Kramer, Member, IEEE

Abstract—A discrete memoryless network (DMN) is a memory-
less multiterminal channel with discrete inputs and outputs. A se-
quence of inner bounds to the DMN capacity region is derived by
using code trees. Capacity expressions are given for three classes
of DMNs: 1) a single-letter expression for a class with a common
output, 2) a two-letter expression for a binary-symmetric broad-
cast channel (BC) with partial feedback, and 3) a finite-letter ex-
pression for push-to-talk DMNs. The first result is a consequence
of a new capacity outer bound for common output DMNs. The
third result demonstrates that the common practice of using a time-
sharing random variable does not include all time-sharing possi-
bilities, namely, time sharing of channels. Several techniques for
improving the bounds are developed: 1) causally conditioned en-
tropy and directed information simplify the inner bounds, 2) code
trellises serve as simple code trees, 3) superposition coding and bin-
ning with code trees improves rates. Numerical computations show
that the last technique enlarges the best known rate regions for a
multiple-access channel (MAC) and a BC, both with feedback. In
addition to the rate bounds, a sequence of inner bounds to the DMN
reliability function is derived. A numerical example for a two-way
channel illustrates the behavior of the error exponents.

Index Terms—Capacity, causality, feedback, multiuser chan-
nels, random coding.

I. INTRODUCTION

SHANNON created the area of network information theory
by introducing the two-way channel. In a sense, Shannon

solved the two-way channel problem by giving a sequence
of inner bound regions that becomes the

capacity region in the limit [1, Secs. 1 and 15]. However, the
sequence is often considered to have little value because the
boundary of its th term can usually not be computed—see,
e.g., the discussion in [2, p. 259]. One is usually satisfied only
with a single-lettercapacity expression, i.e., one that includes
only those channel input and output random variables involved
in oneuse of the channel, plus perhaps a few auxiliary random
variables.

Shannon describes the shortcomings of hislimiting expres-
sion by calling its evaluation “impractical” [1, Sec. 16]. How-
ever, hissequence of inner boundscan be useful. For instance,
we find examples where has capacity points that are not in
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(see Sections V-F and VI-B). The sequence further gives a
general approach for improving communication systems. Codes
designed to attain rate points in will be better than codes de-
signed for , and they will give hints on the structure of the
best codes.

Such reasons motivate following Shannon’s example. Sev-
eral authors have done just that, e.g., for the relay channel [3],
multiple-access channels (MACs) without memory [4], [5] and
with memory [6]–[8], the interference channel [9], [10], and the
broadcast channel (BC) [11] (see also [12] and [13]). Rather
than dealing with these cases separately, we will treat the most
general memoryless channel directly. We call this channel and
its associated system of random variables theDiscrete Memory-
less Network(DMN). The DMN seems to have been considered
first in [14, Sec. 1.6] (see also [12, Sec. X]). Special cases of this
model are discussed in [2, Ch. 3] and [15, Sec. 14.10]. Some net-
work models for source coding are described in [64] and [65].
However, we do not consider multiterminal source coding.

The DMN subsumes a wide variety of network models
including, e.g., networks of discrete memoryless channels
(DMCs), MACs, BCs, relay channels, and so forth. As in
[1] we derive a sequence of inner bounds to the capacity
region. Much of the derivation is a straightforward extension
of [1] and [16, Ch. 5] but there are subtle issues involving
feedback, broadcasting, and interference that require changes.
Furthermore, along the way we present several new concepts
and results such as causal conditioning, code trellises, a new
capacity outer bound, and new capacity regions.

This paper is organized as follows. We begin by introducing
the concept of causal conditioning in Section II. Section III dis-
cusses the DMN model and code trees, and gives the DMN ca-
pacity in terms of a limiting process. Section IV shows how to
simplify the capacity expression and gives a new capacity outer
bound for common-output DMNs. Section V discusses exam-
ples and presents new single-letter and finite-letter capacity re-
gions. Section VI describes how to adapt superposition coding
[17] and binning [18] techniques to include feedback. This sec-
tion contains numerical examples showing that code trees en-
large some of the best known rate regions. Section VII gives
proofs and a numerical example showing the behavior of error
exponents for a two-way channel. Finally, Section VIII con-
cludes the paper.

II. PRELIMINARIES

A. Notation

Throughout the paper, random variables are written with
upper case letters and values they take on with the corre-
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sponding lower case letters. Probability distributions are often
denoted by only when the arguments of specify the
distribution, e.g., . We consider only
discrete and finite random variables.

Subscripts on a symbol are used to denote the symbol’s
source and/or to denote the symbol’s position in a sequence.
For example, could mean “the output sequence of the
22nd encoder,” “the22nd random variable in the sequence

,” or the “the2ndoutput of the2ndencoder.”
The context will make clear which of these interpretations is
in use. We also sometimes add commas to separate subscripts,
e.g., for the last case above. Superscripts denote fi-
nite-length sequences of symbols, e.g., .

A DMN can have many terminals and we will need to ma-
nipulate the inputs and outputs of several of them simultane-
ously. To do this, we choose a similar notation to [15, Ch. 14]
and denote sets of random variables with subscripts in brackets.
For instance, if then denotes ;

denotes ; and denotes . Set subscripts
without brackets often denote sums, e.g., . The
cardinality of a set is denoted by .

The notation of [16, Ch. 2] for entropy and mutual informa-
tion is used. All logarithms are to the baseso that our units are
bits.

B. Functional Dependence Graphs (FDGs) and-Separation

The random variables of most DMNs are related to each other
in a complicated manner. We use graphs to ease the under-
standing of these relationships and to prove conditional inde-
pendence results.

A graphical technique for establishing conditional indepen-
dence in so-called Bayesian networks was introduced in [19].
These results were generalized to other types of graphs by var-
ious authors (see, e.g., [20], [21]) and we wish to considerfunc-
tional dependence graphs(FDGs). Suppose we have random
variables that are defined by independentrandom variables
by functions. An FDG is a directed graph (a set of vertices
and a set of ordered pairs of these vertices called edges) having

vertices representing the random variables, and in which
edges are drawn from one vertex to another if the random vari-
able of the former vertex is an argument of the function defining
the random variable of the latter vertex. For example, Fig. 1 de-
picts the FDG for the first three uses of a channel with feedback.
In this graph, the channel input symbol is a function of the
message and the past channel outputs . We have drawn
the feedback links using dashed lines to emphasize the role that
feedback plays. The output is a function of and thenoise
random variable . The graph has random variables
defined by independent random variables. Thever-
tices representing the independent and are dis-
tinguished by drawing them with a hollow circle.

We are interested in establishing conditional independence
results by using FDGs. For example, for the above channel one
can show that by using the functionalequa-
tions. Alternatively, agraphical criterion called -separation
proves the same result. By-separation we mean the following.

Fig. 1. The FDG for the first three uses of a memoryless channel with
feedback.

Definition 1: Let , , and be disjoint subsets of the ver-
tices of an FDG . is said to -separate from if there is
no path between a vertex in and a vertex in after the fol-
lowing manipulations of the graph have been performed.

1) Consider the subgraph of consisting of the ver-
tices in , , and , as well as the edges and vertices encoun-
tered when movingbackwardone or more edges starting from
any of the vertices in or or .

2) In delete all edges comingoutof the vertices in .
Call the resulting graph .

3) Remove the arrows on the remaining edges of to
obtain the undirected graph .

The above is a reformulation of a definition in [22, p. 117],
and in Appendix A we prove that the definitions are equiva-
lent. The motivation for the reformulation is that it clearly dis-
tinguishes between the independence due to causality (step 1)
and due to conditioning (step 2). A fundamental result of [22,
Sec. 3.3] is that -separation establishes conditional indepen-
dence in FDGs having no directed cycles. That is, if -sepa-
rates from in and we collect the random variables of the
vertices in , , and in the respective vectors , , and
then .

C. Causal Conditioning and Directed Information

Coding for the DMN is restricted bycausality, i.e., the trans-
mitting terminals cannot use theirth-channel outputs to code
until time and later. We introduce the concept ofcausal
conditioningthat captures the essential aspects of such coding.
Our approach is an extension of Marko’s [23] and Massey’s
[24]. Several properties of the defined quantities are developed
in Appendix B.

Definition 2: The probability distribution of the sequence
causally conditionedon the sequence is

(1)

This definition differs from only in that re-
places in each term on the right-hand side of (1). It differs
from Marko’s only in that is included in the con-
ditioning [23, Sec. IV]. The name “causal” refers to the condi-
tioning onpast and presentvalues of only.
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Definition 3: The entropy of the sequence causally con-
ditionedon the sequence is

(2)

This definition differs from only in that
replaces in each term on the right-hand side of (2).

is similar to Marko’s free information [23,
eq. (8)].

Thedirected informationflowing from a sequence to a
sequence was introduced by Massey [24] and can be written
as

(3)

Directed information is similar to Marko’sdirected transinfor-
mation[23, eqs. (15) and (16)]. Note that whereas

in general we have

Definition 4: The directed information flowing from to
whencausally conditionedon the sequence is

(4)

This definition naturally extends directed information to in-
clude causal conditioning.

For most of the paper we will be interested in information
rates. We use the following notation for per-letter entropies and
informations:

(5)

Similarly, for causally conditioned entropy and informations we
write

(6)

In some cases of interest the terms in (5) and (6) have limits as
tends to infinity. We denote these limits by , ,
and so on. The first of these limits, , is the usual infor-
mation rate orentropy rateof the source producing the sequence

Fig. 2. A four-terminal DMN.

, , . If the source isstationary, then we have (see
[15, p. 64])

(7)

Similar results hold for the other limits of (5) and (6), and are
developed in Appendix B.

III. M ODEL AND CAPACITY

A. Model

We consider the setup of [14, Sec. 1.6] with a small change to
the DMN channel (defined below). This setup is somewhat more
general than the model treated in [15, Sec. 14.10] because there
are more messages at each terminal. An example of a DMN is
shown in Fig. 2, and we use this example to clarify our notation.

A -terminal DMN is defined by four types of random vari-
ables: messages , channel inputs , channel outputs ,
and message estimates . We impose four restrictions on the
random variables. First, we require that the arestatistically
independent. Without loss of essential generality, we assume
that is a string of bits whose rate is
bits per use, where is the number of times we use the DMN
channel.

Next, suppose that terminal transmits messages
. In general, ranges from to

since terminal might want to send a different message to each
nonempty subset of the other terminals. We can simplify
notation by writing that terminal transmits , where

is terminal ’s encoding index set. For
example, in Fig. 2 we have and . As
we have done here, we will continue to write rather than
when . We assume that every message is encoded and
decoded as a whole, so we often drop the superscripts and write
that terminal encodes . Our second restriction on the
DMN random variables is that at time, terminal encodes by
using only its messages and the available feedback , i.e.,

(8)

for some functions , . The random vari-
ables and take on values in the respective finite alpha-
bets and .

For the third restriction, we define theDMN channelby the
input alphabets , the output alphabets , ,
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Fig. 3. A code with two code trees.

and the conditional probability distribution
. We use the DMN channel times so

that we must consider properties of the joint distribution
. By a memorylesschannel we

mean that the following is true for all (see also [24]):

(9)

This condition is a little different than that given in [14, eq.
(1.6.1)]. Observe that a DMN channel is the same as a DMC
with vector-valued inputs and outputs.

For the fourth restriction, let thedecoding index set be the
set of subscripts of the messages to be decoded at terminal. For
example, in Fig. 2 we have , , and

. We require that

(10)

for some functions , . In summary, the four
restrictions on the DMN random variables are: the messages
are statistically independent, property (8), property (9), and
property (10).These restrictions define the problem under
consideration.

B. Code Trees

We borrow terminology from [25, p. 349] and interpret the
functions in (8) as acode tree(also called
a strategy[1]). By a code tree we mean a rooted tree of depth

having one branch leaving the root vertex and branches
leaving the other vertices, and whose branches are labeled with
a symbol from . Each message combination is assigned
one code tree and each path through the tree cor-
responds to one of the channel output sequences . If there
is no feedback we may write simply as .

A DMN codeis a list of code trees. For example, a code with
two code trees is shown in Fig. 3. The encoder of Terminal 1
maps into the code tree and into

. Thus, is a random code tree that is a function of
. To explain how the code works, suppose that so

that is chosen. Terminal 1 then sends , and if
it would next send , and so on. We will some-

times denote code trees in the manner

(11)

Fig. 4. The FDG for three uses of the DMN of Fig. 2. To simplify the graph,
all channel input symbols at timen go through a common unlabeled vertex.

The meaning is that is the symbol on the branch
leaving the root of the tree , that is the or-
dered list of symbols leaving the vertex at depth, and that

is the ordered list of symbols
leaving the vertices at depth. The DMN code trees are selected
beforethe channel is used and they are known by all terminals.

The FDG of the DMN of Fig. 2 is depicted in Fig. 4, and
it demonstrates the complexity of the system of random vari-
ables under consideration. The code treesand code tree lists

are random variables that are functions of the random vari-
ables . The random variables , , represent
noise, i.e.,

(12)

for some functions , (see [26, Sec. 11]).

C. Merging Functions

Terminal 2 in Fig. 2 broadcasts to terminals 1 and 3 and
to Terminal 3simultaneously. We treat such situations by

usingmerging functions(or merging channels) as described in
[11, Sec. II-C] (see also [27]). By a merging function we mean
the function obtained by rewriting (8) as

(13)

where the are appropriate code trees. Terminal 2 now has
the form given in Fig. 5, where the alphabets and of

and are chosen to satisfy (13). Note that this type of
“decomposition” of the encoders is always possible because the
alphabets and can bechosen freely. For instance, we
can choose and . The effect
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Fig. 5. The encoder of terminal 2 with merging functions.

Fig. 6. The FDG for terminal 2’s encoder with merging functions.

of merging functions on the FDG is depicted in Fig. 6, where
has been split into and , and new vertices have

been introduced to represent the merging function inputs
and . The code trees and have the same tree struc-
ture as the code tree but might have different alphabets for
the branch labels.

The point of introducing merging functions is essentially
to simplify notation. We have transformed the DMN into a
new network where every terminal has at mostonemessage to
transmit. This network will be memoryless but time varying
because the can be chosen freely and will normally change
with . The time-varying nature of the does not play an
important role, however, because they are known ahead of time
to all terminals in the network.

We emphasize that terminal’s encoding functions remain
unchanged by choosing appropriate code trees and
merging functions . Moreover, the code trees
will be independent because they are functions of independent
messages. This observation is important for deriving ourouter
bound to the DMN capacity region. For theinner bound, the
independence of the motivates random coding with inde-
pendent code trees. This restriction is not necessary, though,
and will be dropped when we consider more sophisticated
coding techniques in Section VI-B.

D. Capacity

Let be terminal ’s estimate of . The average
bit error probability of terminal is

(14)

where . The capacity region is the
set of rate-tuples which one can ap-
proach with arbitrarily small positive for all . Alternatively,

is the set of rate points which one can approach while
making the following sum ofblockerror probabilities small for
all :

(15)
where is the complement of in and is the empty set.
Note that (15) is a sum of probabilities of mutually exclusive
events.

The equivalence of thebit error andblockerror capacity re-
gions can be demonstrated as in [16, p. 119]. If a block error oc-
curs at terminal then at least one bit error has occurred there,
but not more than bit errors, so that .
This implies that if the block error probability is small so is the
bit error probability, and hence the block error capacity region
is inside the bit error capacity region. It, thus, suffices to find an
outer bound to the bit error capacity region and an inner bound
to the block error capacity region that are the same, and this we
proceed to do.

We prove the following two theorems in Section VII. Both
theorems have bounds for each, and each bound
corresponds to one of the terms in the sum of (15).

Theorem 1 (Inner Bounds to ): The convex hull of
the rate-tuples satisfying

(16)

for all and all is contained within ,
where is the complement of in and the are statis-
tically independent.

For example, the two-way channel is a terminal
channel with and so that is the convex
hull of the rate regions

(17)

where and are independent. We emphasize that one
cannotin general replace the code trees with the channel
input sequences , as might be expected. The bounds (17)
are an explicit characterization of a rate region described by
Shannon in [1, Sec. 15].

Theorem 2 (Outer Bound to ): is con-
tained within the closure of the set of rate points

satisfying

(18)

where , is the complement of in , is any
positive integer, the are statistically independent, and

.

We denote by the set of limit points of the con-
vergent sequences whoseth term is in . The following the-
orem gives the capacity region.

Theorem 3: .
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Proof: The region , being theclosure of the set
finite , is (see [28, p. 743])

finite (19)

From Theorem 1, all points in finite are in , and
so are all points in by definition. This establishes
that .

It remains to show that finite , i.e.,
that for any point in one can generate a
sequence in finite whose limit is .
A trick used in [1, Sec. 15] is to write for some
integers and , and then to randomize the code
by repeating times the distributions for ,
and by sending no information in the lastuses of the channel.
This means that lies
in . Moreover, the limit of these points as is

.

IV. DISCUSSION ANDSIMPLIFICATIONS

A. Time Sharing

Theorem 1 uses aconvex hulloperation to allow for time
sharing. A better approach is to introduce a time-sharing
random variable , replace with

in (16), and make the con-
ditionally independent given (see, e.g., [15, p. 397]). The
choice of technique is not critical here because one may include
the time sharing in the code trees. However, for a fixed,
the latter approach can give larger regions [2, p. 289], [29]. A
time-sharing random variable is also useful for improving error
exponents, as discussed at the end of Section VII-B. At the
same time, we show in Section V-F that a time-sharing random
variable does not capture all time-sharing possibilities.

B. Max-Flow, Min-Cut Outer Bound

The outer bound of Theorem 2 is usually not computable. A
simpler, but generally loose, outer bound was derived in [15,
Sec. 14.10] and also applies to DMNs.

Proposition 1: is contained within the set of rate
points satisfying

(20)

for some joint distribution , where
and is the complement of in .

This bound can be proved by dividing the network termi-
nals into two sets and , letting the terminals in each set
cooperate with each other to get a two-way channel between
the sets, and applying Shannon’s two-way channel outer bound
[1, Sec. 9].

C. Codes With Code Trellises

The number of branches of a code tree grows exponentially
with . A natural way to curb this growth is to use a special
type of code tree called a codetrellis. By a code trellis we mean
a code tree that collapses into a bounded number of states for all

Fig. 7. A code trellis for the code tree on the left in Fig. 3.

depths. For example, the code tree on the left in Fig. 3 could be
extended by using the code trellis of Fig. 7 whose states corre-
spond to the past received symbols . A potential advan-
tage of code trellises is that they will be easier to decode than
general code trees.

D. No Feedback

We use the approach of [24] and say that terminalis used
without feedbackif, for all and

(21)

Without feedback, the code trees collapse to codewords, i.e., one
can replace by .

E. Rate Regions in Terms of Directed Information

We are interested in expressing (16) with as few random vari-
ables as possible. We have

(22)

The first equality follows by the causal nature of the en-
coding. The second equality follows because is a function
of and , and because and

-separate from . The third
equality follows by definition.

Note that some code trees can be replaced by the
channel input sequences when using causally conditioned
directed information. For example, for the two-way channel,

becomes the convex hull of the rate regions

(23)

where and are independent. Moreover, for some chan-
nels, one can further replace the remaining code treesby



10 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 1, JANUARY 2003

the channel input sequences . In such cases, the random
coding becomes simpler, as shown next.

F. Common Outputs

A simplification in the capacity expression is possible when
a transmitting terminal and a receiving terminal have the
same channel output . This means that terminalknows
given and , and one can replace the code trees
by the codewords in the bounds corresponding to the errors
terminal can make when estimating the messages of terminal.

Another simplification is possible if terminalsees the out-
puts ofall terminals to which it is sending messages. Terminal

can then restrict attention to random coding distributions that
are based only on its channel input and output symbols. For ex-
ample, for the common output two-way channel, becomes
the convex hull of the rate regions

(24)

where factors as

(25)

for . The factorization (25) follows from-sep-
aration and implies that one can label theth branches of the
code treesindependentlyfor each vertex at depth by using

rather than having to label themjointly via
.

Finally, we give the following outer bound on the capacity of
a common-output DMN. This bound uses thedependence bal-
anceideas of [30] and will be shown to give capacity for a class
of DMNs in Section V-E. For the following theorem we write

for .

Theorem 4: of a common-output DMN is contained
within the set of rate-tuples satisfying

(26)

for all and all , where is the common
output, is the complement of in , is the complement
of in , and the satisfy

(27)

for some auxiliary random variable that takes on at most
values.

This theorem is proved in Appendix C. One can further ex-
tend many of the other results in [30] to common output DMNs.
For example, the parallel channel extensions of [30, Secs. 5
and 6] will improve on Theorem 4.

V. EXAMPLES

We give several examples to show how the theory applies to
specific DMNs. We begin by reviewing known results.

A. The DMC

The DMC is a two-terminal DMN for which terminal 1 trans-
mits the message to terminal 2, possibly with noisy feedback

[26]. It is, of course, known that is the capacity region
[31], [32]. Proposition 1 serves as an outer bound.

B. The Two-Way Channel

The two-way channel was introduced in [1] and is given
by (23). Another capacity inner bound was developed in [33]
but this region can be improved by using directed information
rates [34, Ch. 4].

C. The MAC

The MAC is a -terminal DMN for which the messages,
, are transmitted to terminal [1, Sec. 17].

If there is no feedback then is known to be [9], [10],
[12], [35] (see also the limiting characterization of [4]). Con-
sider next the case with full feedback, i.e.,

. is then the convex hull of the regions

(28)

The discussion in Section IV-F shows that we may restrict
our attention to those random coding distributions for which

factors as in (25). A particular
MAC of this type is considered in more detail in Section VI-A.

D. The BC

The BC [17] is a -terminal DMN for which terminal 1 trans-
mits up to messages , to
the other terminals. We will write that is transmitted
to terminal if the binary representation of contains a in the

th position. For instance, since is in binary
digits, the message is transmitted to terminals 3 and 4 (see
[27] for a different choice of notation).

Consider the case for which terminal 1 transmits
to terminal 2, to terminal 3, and to both terminals 2 and
3. is then the convex hull of the satisfying

terminal

terminal

(29)

where , , and are independent. Without feedback,
we can replace the with . The resulting characteriza-
tion of is the same as that in [11].
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One is often interested in the case for which our
coding technique makes a constant. The region (29) thus
simplifies to

(30)

However, as shown in [36], the region (29) includes a potentially
larger region if . It is straightforward to generalize the
derivation of [36, Appendix A] to take into account code trees.
The result is that the following region is a capacity inner bound:

(31)

where , , and are independent. Observe that setting
in (31) gives the capacity of the degraded BC [17].

E. DMNs With a Special Common Output

Consider the class of common-output DMNs having the spe-
cial property that for every there are termi-
nals whose channel inputs are known (cf. the example in
[30, p. 47]). The right-hand side of (27) is thus zero so that in
Theorem 4 the are independent given.

Suppose additionally that each terminal either has no message
destined for it or decodes all messages, i.e., or

. The reason for this restriction is so that either is
known to all terminals or Theorem 1 gives MAC-like
inner bounds .

For DMNs satisfying these two constraints all points inside
the region of Theorem 4 are in if we use a time-sharing
random variable (see Section IV-A). Consider, e.g., the fol-
lowing common-output three-way channel:

if
if
if
if

(32)

where and . It is easy to check
that every determines at least two of , , or .
Suppose that each terminal sends a common message to both
other terminals, i.e., for all . The capacity
region is thus with the addition of a time-sharing random
variable . However, it turns out that is not needed here. We
choose , , and

. Let and . We find that
is the set of satisfying

(33)

where , , and

Fig. 8. A network of three DMCs.

is the binary entropy function. The best sum rate is
bits per use and is achieved by .

F. Push-to-Talk DMC Networks

A network of DMCs is a -terminal DMN channel with
point-to-point links. For example, Fig. 8 shows a network of

three DMCs. The DMCs are assumed to be independent in the
sense that (9) factors as

(34)

where the collection (and ) can
be partitioned into subsets such that each (and ) is a
vector whose entries are the elements of one of the subsets.
As in Fig. 8, a graph of such a network hasvertices rep-
resenting the terminals and directed edges representing the
DMCs , where an edge goes from the vertexto the
vertex if and are entries of the respective and .

We modify the problem slightly by making the DMCsde-
pendentas follows: to each DMC we add an input symbol
such that the other DMCs can transmit information only if this
symbol is used. Formally, (9) factors into a product of distribu-
tions such that unless
for all in which case . We call such
a DMN channel apush-to-talk DMC networkbecause of its re-
lation to Shannon’s push-to-talk two-way channel [1, Sec. 1].

The best coding for these networks obviously involves time
sharing. However, it turns out that neither the convex-hull op-
eration nor the addition of a time-sharing random variable
makes the capacity. The reason is that, although the DMN
is memoryless, there aredelaysbecause the terminals can be
separated from each other by more than one DMC. At the same
time, one might expect that thereshouldbe a single-letter ca-
pacity expression for push-to-talk networks. In fact, the region
of Proposition 1 is the capacity.

Consider, for example, the network of DMCs with

(35)

and suppose that the capacity of the DMC with input is
. Such a network is shown in Fig. 8 for . We now

add the symbols described previously to get a push-to-talk
DMC network. These networks are similar to a token ring [37,
p. 320] because only one link can send at a time; however, there
is no random accessing going on here. We will consider the case
where each terminal is trying to send a common message to all
other terminals.
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Fig. 9. The capacity regionR of the push-to-talk counterpart of the DMN
in Fig. 8 withC = 1, C = 2, andC = 3.

Suppose first that for all . The regions can be
computed to be the convex hull of the extreme points

, , , ,
where

(36)

and is the smallest integer less than or equal to. We thus
have but

for

For example, the capacity of the push-to-talk version of the net-
work in Fig. 8 with is . The outer bound of
Proposition 1 is also .

Consider next different capacities with . Let be
the set excluding if and excluding if

. We define

and

For example, the network of Fig. 8 has and
. One can show that the capacity is the convex hull

of the extreme points , ,
, , where

(37)

In general, one needs to get this result. However, if
the are integers then need be at most the least common
multiple of the . For example, suppose Fig. 8 has ,

, and . The maximal individual rates are then
, , and which are all achieved if

. The capacity of this DMN is depicted in Fig. 9.

VI. SUPERPOSITIONCODING AND BINNING

The tools we used to derive the capacity results were
code trees (to exploit feedback), merging functions (for
broadcasting), and an appropriate maximum-likelihood (ML)
decoding rule (56) (to deal with interference). A natural next
step is to addsuperposition coding[17] and binning [18],
[38]. Superposition coding with two codes can be interpreted
as follows: the codewords of the first (coarse) code serve
as “cloud centers” while the codewords of the second (fine)
code are the “cloud” that refines the first code. Binning, on

the other hand, is a technique invented for source coding and
involves assigning source sequences to bins. The number of
bins is smaller than the number of sequences, and one achieves
compression by sending the indexes of the bins rather than
those of the sequences.

The motivation for using superposition coding and binning
is that these sophisticated techniques often give larger regions
for the same than Theorem 1. Furthermore, the generalization
of Theorem 1 is often straightforward: one takes an existing
region, replaces the codewords by code trees, adds a subscript

to the information symbol , and the resulting region is a
capacity inner bound. We demonstrate the above procedure for
two DMNs: a MAC with full feedback and a BC with feedback
from one terminal. Improvements over existing rate regions are
found for both networks, and for the second network we even
find new capacity points.

A. The Two-Transmitter MAC With Full Feedback

Cover and Leung [39] derived a capacity inner bound
for the two-transmitter MAC with full feedback. A natural gen-
eralization of their region is the following lemma whose proof is
basically the same as the proof in [39] with codewords replaced
by code trees. An alternative proof using ML decoding is given
in [34, p. 93].

Lemma 1: The set of rate pairs satisfying

(38)

is contained within the capacity region of the MAC with full
feedback, where is a discrete random variable and

(39)

We emphasize that onecannotwrite

as might be expected. Observe that and that
is the capacity region because . For

, one can limit the cardinality of to

[40], [41]. However, for large , there does not seem to be a
point in finding cardinality limits because the rate regions are
computable only for very symmetric distributions anyway. As
explained in Section IV-F, one can simplify the informations in
this lemma because the three terminals have a common output.
A further simplification results by replacing with and by
choosing the coding distributions as shown later in (41).

Corollary 1: The set of rate pairs satisfying
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(40)

is contained within , where is a sequence of discrete
random variables such that

factors as

(41)

for .

The region of this corollary is strictly larger than for
several channels [34, Ch. 4]. For example, consider the MAC
with where , , and are binary ( and
) random variables and . Theorem 4

gives an equal-rate upper bound of 0.45915 bit
per use. In Appendix D, we show that the point with

0.43621 bit per use lies on the boundary of , while
0.43879 bit per use is achievable with Corollary

1. Although the improvement is small, this is the first example
of a discrete MAC with full feedback for which could be
shown to be strictly inside . Improvements over had
previously been shown only for the power-constrained Gaussian
MAC with full feedback [42].

B. The Two-Receiver BC With Partial Feedback

Consider the BC with two receivers and (see
Section V-D). For simplicity, we drop certain indexes and write
that the transmitter sends and the receivers see and .
The best known single-letter rate region for this DMN is that of
Marton [43], and this region can be derived by using binning
[44]. A natural generalization of her region is given in the
following lemma. Note that this lemma allows the transmitter
to see noisy feedback.

Lemma 2: The set of rate pairs satisfying

(42)

is contained within the capacity region of the BC with feedback,
where factors as

(43)

Note that and that is the ca-
pacity region. Also, if the , , and are independent then
(42) collapses to (31).

Lemma 2 can be proved by observing that nothing prevents
the auxiliary random variables, , and in [43] from being
the respective , , and . Once the length code trees
(consisting of concatenated code trees of length) have been

chosen, one channel input sequenceis generated for every
possible by using the distribution

(44)

for each of the subblocks of length . An alternative code
construction could proceed along the lines of [45].

Consider, e.g., the binary-symmetric BC (BSBC). This
channel has a binary (and ) input and binary outputs

, , where and are independent
binary random variables taking on the valuewith probability

and , respectively. Suppose that and are destined
for receivers 1 and 2, respectively. is then given by (31)
with , or by [15, p. 457] (see also [46]–[48]). If

, the boundary of can be approached by setting
, making a constant, making a coin-flipping

random variable, and setting . The resulting
rate region is

(45)

where . The capacity region
boundary is plotted for and in Fig. 10 as the
curve labeled . Observe that is slightly larger than
the time-sharing region (see also [15, p. 426]).

Suppose next that is destined forboth receivers. It turns
out that remains unchanged because the BSBC is de-
graded (see also [49]). Furthermore, an outer bound on the sum
rate is clearly the capacity of the to channel, i.e.,

.
Suppose now that is destined for both receiversand that

there is full feedback from receiving terminal 1, i.e., .
We consider code trees of depth and choose from the
branch labels of . We further make a constant and a
codeword. The bounds (42) become

(46)

We choose to be a binary codeword that takes on all four
possible values with probability , and set

and

(47)

Optimizing over , , and we find that the region labeled
in Fig. 10 is a capacity inner bound. Observe that feed-

back enlarges the capacity region. Moreover, for some distribu-
tions we have and

so that the curve lies on the sum rate bound
for an interval of . This means that two-letter coding gives ca-
pacity points that single-letter coding does not. For example, by
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Fig. 10. Rate regions for a binary-symmetric BC with crossover probabilities� = 0:15 and� = 0:2. Note thex-axis range.

using , , and the point
with sum rate is in

. In contrast, the point lies
on the boundary of . Enlargements over the no-feedback ca-
pacity region of other BCs had already been discovered in [50],
[51].

VII. PROOFS ANDRANDOM CODING EXPONENTS

A. A Capacity Outer Bound

Consider terminal and define the average bit error proba-
bility as (cf. (14))

(48)

where and is terminal ’s estimate of
. We can bound by using a generalization of Fano’s

inequality to bit sequences [16, p. 79]

(49)

We can further bound

(50)

where is the complement of in . The reason for using
(50) is that we want a bound that includes conditioning on the

event that is decoded correctly.
From here on, we no longer consider individual message bits

so we write in place of . We have

and note that for some function
. We thus have

(51)

where the first step follows by the data processing theorem [16,
p. 80], and the second because the code trees are functions of
the messages and because of-separation in the FDG. We can
rewrite (51) as

(52)

where . We use (52) to prove the following
proposition.

Proposition 2: Consider a DMN that is used times, and
let and . If there is some

such that

(53)

for all and all then the average bit error probability

satisfies

(54)

where is the “inverse” binary entropy function taking on
values between and .
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Proof: The condition (53) forall implies that

for some . We now manipulate (52) as

(55)

Since is increasing with for and
, we have

for . Furthermore, we have

and from a basic bound on entropy we have
(see [15, p. 27]). Combining these results yields

(54).

Proposition 2 allows the number of channel usesto be
any positive integer, which lets us prove Theorem 2. For this
theorem we need to add aclosureoperation because the def-
inition of the capacity region includes those rate-tuples
which one gets arbitrarily close to. For example, the information
rates may approach, but never reach,
a limit as the block length increases.

Proof of Theorem 2:Any rate point lying outside
must satisfy (53) for some, some with , some

, and all . For such a rate point, Proposition 2 guarantees
that no codes can achieve an error probability below that
specified by (54), which is positive for and . Thus,
this rate point is not in .

Note that is convex because allowingto be any pos-
itive integer implicitly allows time sharing [1, Sec. 8].

B. Capacity Inner Bounds

The transmission of message at rate re-
quires code trees. The code trees are generated by
concatenating randomly chosen code trees of length, so
that . We denote by the probability of se-
lecting whenrandom codingto distinguish it from the prob-
ability that the code tree is chosen for transmission.
The merging functions can be any functions with appropriate
domains and ranges, and they do not play an important role in
what follows.

We simplify notation by writing in place of .
We define as the set of indexes of all transmitted messages
(see Proposition 2). We further denote bythe set of encoding
indexesnot in , i.e., those indexes corresponding to the
messages that are not encoded or decoded at terminal. For
example, in Fig. 2, we have , , ,
and .

We will decode with ML decoders. There are several possible
ML rules to choose from and we adopt the following one [48,
Sec. 4]: terminal chooses the messages if the are
any of the messages that maximize

(56)

where the sum is over those constructed by concatenating

code trees of length , and where we have abused the nota-
tion by not including the appropriate subscripts for the distribu-
tions. Note that this rule isnot a maximuma posteriori(MAP)
decoding rule because therandom codingdistribution is used
for averaging and not the distribution . This means that
terminal ’s decoding regions are independent of the , a
fact that we make use of.

Our approach to bounding the decoding error probability fol-
lows closely that of [16, Ch. 5]. We define the event

Error (57)

and the block error probability

Error (58)

where and is the complement of in . The
average of this error probability over the ensemble of all codes
generated with is

Error (59)

where the notation for the event and the random vari-
able is used as a shorthand for .

Continuing as in [16, Sec. 5.6] we have, for

(60)

where is defined as

(61)

and is defined as in (56). We further
define therandom-coding exponentsby

(62)

At this point, we prefer not to maximize over because,

given , this must be done for all terminals and exponents
simultaneously. As in [16, p. 139], we would denote the distri-
bution-optimized exponents by .
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Fig. 11. Random coding exponents for the binary multiplying channel.

Next, we have

(63)
where means approaches zero from above. Thus, if

is less than (63) then the exponent

will increase with from , i.e.,

is positive for these . Combining

these results we have the following generalization of part of
[16, Theorem 5.6.4, p. 143] (see also [52] for random-coding
exponents for the MAC).

Theorem 5: The exponent is a positive

function of if

(64)

where and is the complement of in .

This theorem gives a sequence of inner bounds to the re-
liability function [16, p. 160] of a DMN. One can addition-
ally prove other generalizations of results known for the DMC
(see [16, Secs. 5.6 and 5.7]). Theorem 5 implies Theorem 1 by
fixing and letting become large. Theorem 5 also implies the
achievability of certain steady-state directed information rates
(see Section II-C) by setting and letting become large.

One can, in fact, improve the error exponents in several ways
[53, p. 129]. First, one can include a time-sharing random vari-
able as discussed in Section IV-A (see [53, eq. (2.25)]). Second,
one can use the method of types with an appropriate decoder
to get universal error bounds [54]. Third, for low rates, one can
use expurgated random coding ensembles [16, Sec. 5.7]. Fourth,
one can derive random coding bounds for tree and convolutional
codes [55]. It would also be useful to havelowerbounds on the
error probability which are similar to the bounds for the DMC
[16, Sec. 5.8], [54, eq. (7)].

As an example, consider the binary multiplying two-way
channel [1, Sec. 13]. This channel has binary (and ) inputs
and outputs where

(65)

It has long been known that is strictly interior to
the capacity region of this channel [1, Secs. 9 and 13]
(see also [50], [56]–[58]). Consider the symmetric rates

and choose . The exponents
for are then (see (61) and (62))

(66)

where . For , we generate the code trees
with and .
Equivalently

...
...

.
(67)

See (11) for the interpretation of the code tree notation.
We consider the exponents as a function of the common rate
. Optimizing over , , , , and we obtain the curves

shown in Fig. 11.1 These curves are, however,not the best ones
for or . For example, one can achieve zero error
probability for by time sharing. One would notice this
if one used a time-sharing random variableand the expurgated
ensemble of codes described in [16, Sec. 5.7]. In any case, the
curves in Fig. 11 give a flavor of what happens for largeas
increases.

Finally, consider the rate at which the error exponents go
to zero. The best for is . The best for

1These curves are traditionally plotted with a linearly scaledy-axis rather
than a logarithmic one. However, a logarithmic scale more clearly shows what
happens near capacity.



KRAMER: CAPACITY RESULTS FOR THE DISCRETE MEMORYLESS NETWORK 17

is again for the distributions in (67), so that no rate
increase is achieved. Thus, code trees can improve therelia-
bility of communication even if they do not increase therate.
For , we obtain a rate increase with . The
best equal-rate inner bound we are aware of is
[59]. The best equal-rateouterbound to date is
[30], [60].

VIII. C ONCLUDING REMARKS

The main ingredient to getting the capacity results for DMNs,
namely, random coding with strategies/code trees, can already
be found in [1, Sec. 15]. The strength of the code tree approach
is its generality—two obvious shortcomings are the complicated
codes it describes and the difficulty in computing rate regions.

There are several extensions of the theory presented here.
First, extensions to certain continuous-alphabet networks and
networks with memory can be found in [61]. Second, an open
issue is how to build codes having practical encoders and de-
coders. Code trellises might prove useful in this respect. Fi-
nally, we point out that an interesting achievable rate region for
DMNs was put forward in [62]. This region combines and gen-
eralizes several superposition coding and binning regions. Some
improvements on [62] can be found in [63].

APPENDIX A
EQUIVALENCE OF -SEPARATION RULES

We begin with the -separation rule of [19, p. 117] which
considers an undirected path (a sequence of edges)between
certain vertices. The path is assumed to be cycle free so that if
the vertex lies along , then has exactly two edges of
touching it.

Definition 5: Let , , and be disjoint subsets of the ver-
tices of an FDG. Then -separates from if along every
cycle-free path between a vertex in and a vertex in there
is a vertex such that either

1. has two incoming edges alongandneither nor its
descendants are in, or

2. has at most one incoming edge alongand is in .

The requirement that be cycle free is needed to avoid paths
such as the following one in Fig. 1:

Lemma 3: The -separation rules of Definitions 1 and 5 are
equivalent.

Proof: Suppose that does not -separate from ac-
cording to Definition 1. Then after Step 2 there must be a path
between and . Suppose that this path has no intermediate
vertices. Then clearly does not -separate from ac-
cording to Definition 5. Next, consider the two cases for which
there is at least one vertexalong the path between and .

1. If neither nor its descendants are in, then the two edges
touching must have been retained in Step 1 by moving back-
ward from or . But then one of these edges must go out of.

2. If is in , then it cannot have an outgoing edge because
these edges were cut in Step 2.

Thus, -separation according to Definition 5 implies-sep-
aration according to Definition 1. Conversely, suppose that
-separates from according to Definition 1. Then along

any path between and one edge must have been cut in
Step 1 or Step 2.

1. Suppose that is cut in Step 1. Then there is a vertex
along this path which is not in and has no descendants in,

, or . If has no outgoing edges, then we have-separation
according to Definition 5. If has an outgoing edge, then the
vertex to which this edge goes is a descendant of, and hence

is not in and cannot have descendants in, , or . We
can now perform the same steps for vertexas for vertex until
we arrive at a vertex that has an edge going to a vertexin

or in . However, this contradicts the result thatcannot
have descendants in or . Hence, must have two incoming
edges and we have-separation according to Definition 5.

2. Suppose that was not cut in Step 1 but was cut in Step
2. Then the vertex out of which the cut edge came must be in

. Furthermore, this edge is outgoing so thathas at most one
incoming edge.

Thus, -separation according to Definition 1 implies-sepa-
ration according to Definition 5.

APPENDIX B
PROPERTIES OFCAUSALLY CONDITIONED ENTROPY

We begin with two bounds whose proofs are omitted because
they are rather easy (see [34, Ch. 3]).

Property 1 (Bounds on Causally Conditioned Entropy):

(68)

with equality on the left if and only if

for all , and with equality on the right if and
only if for all .

Property 2 (Bounds on Directed Information [24]):

(69)

with equality on the left if and only if
for all , and with equality on the right if
and only if for all

.

One might be tempted to guess that equality holds on the right
in both cases only if and are independent. However,
this is not true, as the following example demonstrates. Let
and be independent with
and and let and

, where denotes addition modulo. Then we
have but bit.

Property 3 (Chain Rules):

(70)

(71)
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where is thedelayof by
one time instant (with discard of the last digit).

Recall that is possible.
However, it would be intuitively pleasing if

as suggested by a result of Marko [23, eq. (14)]. However, this
relation does not hold in general.

Property 4 (Oppositely Directed Informations):

(72)

We next consider stationarity properties. Adiscrete sta-
tionary source (DSS) is a device that emits a sequence

of discrete random variables such that, for
every and , the random vectors
and have the same probability distribu-
tion. This means that for every window length along the
DSS output sequences one sees the same statistical behavior
regardless of where the window is placed along the output
sequences [16, p. 56]. We will consider the case where

, i.e., the sequences, , and are the
outputs of a DSS.

Property 5 (Entropy Rates of a DSS):If the sequences ,
, , and , , , are the output sequences of a

DSS, then

1. for all ,

2. is nonincreasing with ,

3. is nonincreasing with ,

4. , i.e., both of

these limits exist and have the same value .

These four properties are known if the DSS has a single output
or, equivalently, if the sequence is independent of these-
quence. The proof of the more general Property 5 follows the
same steps as the proof in [16, p. 57] and is omitted. Property 5
can be applied to prove the following.

Property 6 (Directed Information Rates of a DSS):If and
are output sequences of a DSS, then

exists and is given by

(73)

If is also an output sequence of the DSS, then
exists and is given by

(74)

Proof: Consider (73). By Property 5, and
exist. But the limit of a real sequence whose

elements are the term-by-term differences of the elements of
two real convergent sequences exists. Furthermore, this limit
is the difference of the two limits of the original sequences
[28, p. 223]. Thus, we have

This proves (73); (74) is proved in the same manner.

APPENDIX C
AN OUTER BOUND FORCOMMON-OUTPUT DMNS

We prove Theorem 4. First, we bound the right-hand side of
(16) by using the independence of the

(75)

Expanding (75) and simplifying we obtain

(76)

Next, consider the chain of (in)equalities in [30, eq. (14)]. We
can follow virtually the same steps to find that

(77)

Now let and where
for . We then have (26) and (27) from (76)

and (77), respectively. The cardinality bound onfollows from
[2, p. 310].

APPENDIX D
APPROACHABLE RATES FOR A NOISY BINARY

ADDER CHANNEL WITH FULL FEEDBACK

A. Equal-Rate Point on the Cover-Leung Region Boundary

Consider the channel of Section VI-A
and the rate region . We use a binary with

, and . The rate
is then bounded by

(78)

The bounds meet if , or .
The best rate is thus bits per use.

For general define
Straightforward manipulations of the informations yield

(79)
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where

and

We would like to show that a binary is best for equal-rate
points. We first use the convexity of the entropies and Jensen’s
inequality [15, pp. 25–30] to write

(80)

where .
The informations (79) are virtually identical with the infor-

mations in [41, eqs. (3) and (5)]. We may thus use the same
function defined there, namely,

for

for .
(81)

In [41], it is shown that the composite function is sym-
metrical around and convex- in for .
Following the same steps as in [41, eq. (8)] we arrive at

(82)

where . Combining (82) and (80), we find that
satisfies

(83)

or, by setting so that , we have

(84)

which is the same as the bounds (78). Thus, the rate point

bits per use lies on the boundary of .

B. Equal-Rate Point With Directed Informations

Consider the rate region of Corollary 1. We use a memory 1
random coding technique with for all

, and

(85)

The random coding can thus be described by a Markov chain
having six states. We call the states and
the random variable corresponding to these states. The state
diagram of the entire system can be shown to have eight states

.
The best we found were

The resulting steady-state distribution of the system is

where . We bound the steady-state
entropies as follows (see Appendix B and [15, p. 71]):

(86)

where denotes , and similarly for
and . Furthermore, we have

(87)

All of the quantities are in bits per use. Because
and because both users have the same directed information

rates, we have

Thus, is approachable. This is beyond the
rate point that lies on the boundary of

.
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