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Multi-User Information Theory October 19th, 2009

Lecture 1

Lecturer: Haim Permuter Scribe: Noa Zuaretz

I. NOTATION

e X - random variable

o X - alphabet

« |X| - cardinality of the alphabet. Unless it is said otherwise, assume that the alphabet is finite,
ie.,|X| < .

e x - an observation or a specific value. Cleanyc X.

o Px(z) - the probability that the random variabé gets the value;, i.e., Px(x) = Pr{X = z}.

» Px - denotes the whole vector of probabilities. One may alsothsenotationPx (-).

e P(x) - this is a short notation foPx ().

e 2" - is the vector(xy, xo, ..., x,) for n > 1. If n = 0 then the vector is empty.

. :c{ - is the vector(z;, zit1, ..., z;), for j > 4. If j =i, then the vector has only one elementand

if j <1, the vector is empty.

Il. ENTROPY RATES OF ASTOCHASTIC PROCESS

A. Entropy Rate

If we have a sequence of random variables, how does the entropy of the sequence gittwn® The

following definition answer this question.
Definition 1 We define theentropy rateas this rate of growth. The entropy of a stochastic pro¢ess
is defined by

H(X) 2 Tim LH(X,) )

n—oo N

if the limit exists.
Exercise 1Show that if X is i.i.d. theni H(X") = H(X).

We can also define a related quantity for entropy rate by

H'(X) £ lim lH(an(”*l) 2)

n—oo N

if the limit exists.
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H(X) and H'(X) correspond to two different notions of entropy rate. The i3 is the per symbol
entropy of then random variables, and the second (2) is the conditionabpntof the last random variable

given the past.

Example 1Find the entropy rate of the following process which has mgmo

000..0 p=1
"= : 3)
111.1p=1.
Answer:
1 1
—H(X")=— — 0whenn — (4)
n n
Definition 2 A process{X;};>1 is stationary if PX;™") = P(X}) Vi, n
Theorem 1For any stationary proceds¥;};>1 the limits in (1) and (2) exist and are equal, i.e.,
H(X)=H'(X) (5)
Proof:
n (a) n
H(Xnn|X") < H(Xnp|X3) (6)
(®) n—
= H(Xn|X1 1)) (7)
where

(a) follows from the fact that conditioning reduces entropy

(b) follows from the Stationarity properties

The sequencél (X,,| X"~ 1) is decreasing and positive, hence the limit exists. Finatlyconclude that
lim L H(X™) = lim H(X,|X""!), using Cesaro mean lemma which is proved below. [ |
Lemma 1(Cesaro mean.)Let {a,},>1 be a sequence such thin,, .. a, = a then the limit of the

sequenceb, }n>1 whereb, = 237 | a,, is limy o0 by = a.

Proof: Lete > 0. Sincea,, — a, there exists a numbéY (¢) such thata,, —a| < e for all n > N(e).

Furthermore,
1 n
ba—al = = (@ —a) ®)
=1
1 n
< gZKGi_aN 9)
=1
N (e)
1 n— N(e)
N (10)
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N(a)
Z [(ai —a)| +¢ (11)
for all n > N(e). Since the first term goes to 0 as— oo, we can makeb,, — a| < 2e by taking n large

enough. Hence),, — a asn — oc. [ |

IIl. DIRECTEDINFORMATION AND CAUSAL CONDITIONING
A. Causal Conditioning

Introduced and employed by Kramer [4], [3] and by Massey #usal Conditioningnotation ¢||-))

is defined as the probability mass function of the sequericeausally conditioned on the sequenge

Definition 3
P(z"(ly") & [ P(ail="", ) (12)

In addition, we introduce the following notation:
(a"|ly"~ HP zila™ !y (13)

The definition given in (13) can be considered to be a padiatdse of the definition given in (12) where
xo is set to a dummy zero. This concept was captured by a notafidassey in [2] via a concatenation
at the beginning of the sequengée ! with a dummy zero.

Since, we define the causal conditionifgz"||y™) as a product of?(z;|z*~ 1, y*), then whenever we
use P(z"||y™), we implicitly assume that there exists a set of that sasidfie equality in (12). We can
call P(z"||y") and P(z"||y"~!) a causal conditional distribution since they are nonnegdtr all 2",

y™ and since they sum to one.

Lemma 2
> Plamly") =1 (14)
> Py =1 (15)
Proof: I

YoP@E"lly) = YD Pyt P(aala " y")

(16)
= > ) PE My P (ala" y")
™ gn—1
(17)

Y {PE My ZPﬂcnlw" Ly}

gn—1
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(18)
= Y P (19)
a1

Now, by iterating equation (16) times we obtain (14). Similarly, we obtain (15) ]

Lemma 3Chain Rule for Causal Conditionind\ny joint distribution can be decompose as
P(a",y") = P(z"[ly")P(a"|ly" ™), (20)

and any producP(z"||y")P(z"||y"~!) results in a joint distribution.
Proof:
P(z"[ly" ) P(y"[[«") = P(y",a") (21)
= ﬁP($i|xi_1,yi_l)P(yi|yi_1,xi_l,xi) (22)
i=1

= ﬂP(wi,mﬂ-l,yi-l) (23)
= ;jlx", y") (24)
[ |

Lemma4The causal conditioning distributionP(z"||y™) uniquely determines the value of
P(z;]z"=1,y*~1) for all i < N and all the argument&’=1, 1), for which P(z*=1,y*~1) > 0.
Proof: First we note that ifP(z'~1,y~!) > 0, then according to Lemma 3, it also implies that

P(x1]|y*=2) > 0. In addition, we always have equality
P My"?) =Y Py (25)

hence,P(z"||y"~2) is uniquely determined fron®(z"||y™~1). Furthermore, by induction it can be shown
that the sequenc®(z’||y*~!);_, is uniquely derived fromP(z?||y*~!). Since P(z'||y*~2) > 0, we can

use the equality

1 e P(xilly*)
P(aga™1 i)y = =118~ 26
( | Y ) P($171||y172) ( )
]
B. Causal Conditioning Entropy
Definition 4 The entropy of the sequencé™ causally conditioned on the sequericeé is
H(X"|[Y") £ E[-log P(X"[[Y")] (27)
= =Y P@".y")log P(a"|]y") (28)

T yn
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C. Directed Information

The directed information flowing from a sequenk® to a sequenc&™ was introduced by Massey [1]

and can be written as

Definition 5
(X" =YY" = H{Y") - H{Y"[|X") (29)
= Z H(Y;[Y'™) — H(Y;|[y"™!, X7) (30)
=1
— i[(yi,xﬂyi—l), (31)
i=1

which hints, in a rough analogy to mutual information, a fassinterpretation of directed information

I(X™ — Y™) as the amount of information causally available side infation Y™ can provide abouk™.

D. Memoryless Channel

A discrete channel with finite input alphah&t and finite output alphabéY is the specification of the

conditional probabilityP(y,,|z",y~!) for all n > 1, all 2™ € X™ and ally™ € Y.

Definition 6 The discrete channel imemorylessf

P(yn|z™,y" ") = Pynlz,)Vn,a" € X", y" € Y, (32)

or equivalently
P(y™||z") = HP(yi|xi)Vn,x" exX”, y" e Y, (33)
Example 2Show that for the memoryless channehxp ,, ., LI(X™ - Y") = nmaxp, I(X;Y).

(Later in the course we will see that for channels with mees®&nd feedbackaxp Lrxn —

xn||lyn—1 n

Y™) characterize the capacity.

Answer
max I(X"—Y") =  max H(Y")—HY"[|X") (34)
Pyn|jyn—1 Pyn|jyn-1

=  max HY; Y™ — Hy; Y=L X! (35)
p % SSHOGY'™) - HOIY X

(a) i ;

< max ZH(E‘)—H(K‘|XZ) (36)
PX”HY"71i21

= H;)%fEI(E,Xi), (37)

= nmaxI(Y,X), (38)

Px
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where,

(a) follows from the memoryless property and because ciomility reduces entropy

Note: max{I(X" — Y™)} = max{[(X;Y)}

E. Conservation law

Massey [1] showed the following Conservation Law

Lemma5
(XY™ =I(X" = Y") +I(Y" ! — X") (39)

Proof:
(X" —Y") = HY") - HY"|X") (40)
B (1og %) (41)
vt = xn @ py - X0 “2)
= H(X")—H(X"||y") (43)

(@) @ is added in order to achieve same length on both sidegth{@Y "1} = length{X"}.

(X" YY)+ (Y™ - X") = E (10g Pg{;ﬂg") P();’E!(i:_l)) (45)
_ P(X™Y™)

- & e o

= J(X™Y™" 47

m
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