Multi-User Information Theory October 19th, 2009

Lecture 1

Lecturer: Haim Permuter Scribe: Noa Zuaretz

I. NOTATION

e X - random variable
o X - alphabet
e |X| - cardinality of the alphabet. Unless it is said otherwise, we assume that the alphabet is finite,
ie., |X| < oo.
e x - an observation or a specific value. Clearly, x € X.
o Px(x) - the probability that the random variable X gets the value z, i.e., Px(x) = Pr{X = z}.
e Px - denotes the whole vector of probabilities. One may also use the notation Px (-).
e P(x) - this is a short notation for Px ().
e 2" - is the vector (x1,x2,...,x,) for n > 1. If n = 0 then the vector is empty.
J

o x] - is the vector (2;, Zit1,...,x;), for j > i. If j = i, then the vector has only one element x; and
A + J

if j < 1, the vector is empty.

II. ENTROPY RATES OF A STOCHASTIC PROCESS
A. Entropy Rate

If we have a sequence of n random variables, how does the entropy of the sequence grow with n?

Definition I We define the @py rate as this rate of growth. The entropy of a stochastic process {X;}

is defined by
1
H@é lim —H(X,) (1)
n—oo N

if the limits exists.
If X isii.d. then %H(X”) = H(X).

We can also define a related quantity for entropy rate by

H'(X) % lim lH(Xn|X"—1) (2)

n—oo N
if the limits exists.
H(X) and H'(X) correspond to two different notions of entropy rate. The first (1) is the per symbol
entropy of the n random variables, and the second (2) is the conditional entropy of the last random variable

given the past.
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Example 1

Definition 2 A process {X;};>1 is stationary if P(Xf’”) = P(X{) Vi,n

Theorem 1 For any stationary process {X;};>1 the limits in (1) and (2) exist and are equal

Proof:

1

n

(a) Conditioning reduces entropy

(b) Stationarity properties

The sequence H (X, |X"~!) is decreasing and positive, hence the limit exists. @

000...0 p =

N[ =

111l.1p=

N[

1
H(X")=— —0when n — oo
n

H(X) = H'(X)

(@)
H(Xpa|X™) < H(Xpp|X3)

®)

= H(X.|XT™)

3)

4)

®)

(6)
)

Lemma 1 (Cesaro mean) Let {a,},>1 be a sequence such that lim,, .. a, = a then the limit of the

sequence {by, },,>1 where b, = 37" | a, is lim, o by = a.

Proof: Let € > 0. Since a,, — a, there exists a number N (¢) such that |a,, —a| < ¢ for all n > N(e).

Furthermore,

|bn, — a

IN I

SI= 3~
M= 1M
G
L=

i=1
N(e)
1 n— N(e
R
1N(E)
< I3 ja-a)lte
ni=1

(®)

€))

(10)

(1)

for all n > N(e). Since the first term goes to 0 as n — oo, we can make |b, — a| < 2¢ by taking n large

enough. Hence, b,, — a as n — oo.
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III. DIRECTED INFORMATION AND CAUSAL CONDITIONING

A. Causal Conditioning

Introduced and employed by Kramer [4], [3] and by Massey [2], Causal Conditioning (notation (:||-))

is defined as the probability mass function of the sequence X" causally conditioned on the sequence Y.

Definition 3

n

PRI & [T Pexx vy (12)

In addition, we introduce the following notation:

px"yrh & [P x =ty (13)
=1

The definition given in (13) can be considered to be a particular case of the definition given in (12) where
X is set to a dummy zero. This concept was captured by a notation of Massey in [2] via a concatenation
at the beginning of the sequence X*~! with a dummy zero.

Since, we define the causal conditioning P(X"||Y™) as a product of P(X;|X*~! Y?), then whenever
we use P(X"||Y"™), we implicitly assume that there exists a set of that satisfies the equality in (12). We
can call P(X"||Y™) and P(X"||[Y™"!) a causal conditional distribution since they are nonnegative for

all X™, Y™ and since they sum to one.

Lemma 2
Y PX"y") =1 (14)
X’!L
> Pyt =1 (15)
X'IL
Proof:
ZP(XHHY”) — Z Z P(Xn_l||Y"’_1)P(Xn|X”_1,Y”) (16)
Xn Xn xn-1
= 33 Py P(X XL YT (17)
Xn xn-—1
= > APy HO D P(Xa XY ™)) (18)
anl Xn
= Y PxmyY (19)
xn—1
| |

Lemma 3 Chain Rule for Causal Conditioning. Using the chain rule, we can easily verify that

P(X",Y™) = P(X"|[Y™)P(X"]|Y").


Administrator
Note
Please do not use capital letter in pmf.
P(X) is wrong,

Use P(x) or P_X or P_X(x) but not P(X)


Proof:
PX"|Y" HP(Y"||X") = PY".X") (20)
= ﬁP(Xi|Xi‘1,Yi‘l)P(Yi|Yi‘1,Xi_1,Xi) (1)
=1
= ﬁP(Xi,Y;\Xi‘%YH) (22)
:g&mm (23)
|

Lemma 4 The causal conditioning distribution P(X™||Y™) uniquely determines the value of
P(X;| X1 Y1) for all i < N and all the arguments (X~ Y*~1), for which P(X*~!Yi~1) > 0.

Proof: First we note that if P(X*~1 Y ~!) > 0, then according to Lemma 3, it also implies that
P(X*|Y*=2) > 0. In addition, we always have equality

P(XTHY'™?) =) P(X"|ly" ) 24)
=
hence, P(X"||Y™~?) is uniquely determined from P(X"|[Y"~1). Furthermore, by induction it can be
shown that the sequence P(X?||Y*~1)"_, is uniquely derived from P(X?|[Y"~1). Since P(X*||Y?~2) > 0,
we can use the equality
P(Xi||[Y*™h)

PX;|I X lyihy = —2—__~_ 25

B. Causal Conditioning Entropy

Definition 4 The entropy of the sequence X" causally conditioned on the sequence Y " is

H(X"|Y™) £ E[=log P(X"|[Y™)] (26)

= - P(X",Y")log P(X'||Y") 27
X7L7Y7L

C. Directed Information

The directed information flowing from a sequence X" to a sequence Y was introduced by Massey [1]

and can be written as

Definition 5

(X" = Y™ = H(Y™) —HY"||X") (28)
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= ZH(YZ-\Yi_l)—H(Y;\Yi_l,Xi) (29)
=1

= ) IV, X'y (30)
i=1

which hints, in a rough analogy to mutual information, a possible interpretation of directed information

I(X™ — Y™) as the amount of information causally available side information Y™ can provide about X™.

D. Memoryless Channel

A discrete channel with finite input alphabet = and finite output alphabet y is the specification of the
conditional probability P(y,|z™,y" 1) for all n > 1, all X"ex™ and all Y"ey". The discrete channel is

memoryless if this conditional probability satisfies

Definition 6 @

P(Y,| X", Y1) = P(Y"|X™) (31)
Lemma 5 For the memoryless channel MAXP %I (X" - Y™) = maxp, I(X;Y), the capacity is

@ed as the supremum over all achievable rates [7].

C = max{I(X"—->Y")} (32)
= max{H(Y") - HY™|X")} (33)
= wax{Y HYY') - HYY X)) (34)
=1

(%) maz{y H(Y;) — H(Yi|X")} (35)
=1

= max{) I(V;, X,)} (36)

i=1
(a) Conditioning reduces entropy

Note: max {11(X" — Y")} = max {I(X;Y)}

E. Conservation law

@y [2] showed the following Conservation Law
I(X™Y™) =I(X" - Y™") +I(Y" ! - X") 37)
Proof:

I(X" Y™ = HY") - HY"|X") (38)
P(Y”IIX"))

= F P(Y™)

(39)
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rynt - xmy @

IOyt — X™)

H(X") = H(X"[Y"™)

(X"IIY’”))

P
E <1og

P(X™)

(a) Bis added in order to achieve same length on both sides length@Y ™ ! = lengthX™.
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