Semester A 2009/10

Multi Users information theory

Homework Set #5Question 3 may increase your final grade by 10 points.

1. MAC with common information. Consider a DM-MAC $P_{Y|X_1,X_2}$ with three independent uniformly distributed messages $W_0 \in [1, ..., 2^{nR0}]$, $W_1 \in [1, ..., 2^{nR1}]$, and $W_2 \in [1, ..., 2^{nR2}]$. The first encoder maps each pair (w_0, w_1) into a codeword $x_1^n(w_0, w_1)$ and the second maps each pair (w_0, w_2) into a codeword $x_2^n(w_0, w_2)$. The decoder upon receiving y^n , finds an estimate $(\hat{w}_0, \hat{w}_1, \hat{w}_2)$ of the messages sent. The probability of decoding error is:

$$P^{(n)}_{e} = \Pr\left((\hat{W}_{0}, \hat{W}_{1}, \hat{W}_{2}) \neq (W_{0}, W_{1}, W_{2})\right).$$
(1)

Show that the capacity region for this channel is given by the set of rate triples (R_0, R_1, R_2) such that

$$R_{1} \leq I(X_{1}; Y | X_{2}, U),$$

$$R_{2} \leq I(X_{2}; Y | X1, U),$$

$$R_{1} + R_{2} \leq I(X_{1}, X_{2}; Y | U),$$

$$R_{0} + R_{1} + R_{2} \leq I(X_{1}, X_{2}; Y),$$
(2)

for some $p(u)p(x_1|u)p(x_2|u)$. You need to prove achievability and converse. (Hint: In proving the converse you may use the identification $U_i = W_0$.)

2. Strong ϵ -typicality. Achievability proofs involving *covering*, e.g., for the rate distortion theorem, require that we find a good lower bound on the probability that one specific typical sequence x^n is jointly typical with a randomly drawn sequence Y^n . Using strong typicality, the desired lower bound can be established. Let (X_i, Y_i) be drawn i.i.d. $\sim P(x, y)$ and assume that the cardinalities \mathcal{X}, \mathcal{Y} are finite. Let the marginals of X and Y be P(x) and P(y), respectively (you may use ideas and results from methods of types to solve the exercise). We use in this exercise a specific notation $\delta(\epsilon)$ that implies that $\delta(\epsilon) \to 0$ as $\epsilon \to 0$. (a) Show that if $x^n \in T_{\epsilon}^{(n)}(X)$, then

$$p(x^n) \doteq 2^{n(H(X)\pm\delta(\epsilon))}.$$
(3)

- (b) Show that $\Pr(X^n \in T_{\epsilon}^{(n)}(X)) \to 1$, as $n \to \infty$.
- (c) Show that

$$|T_{\epsilon}^{(n)}(X)| \doteq 2^{n(H(X)\pm\delta(\epsilon)}.$$
(4)

(d) Let $x^n \in T_{\epsilon}^{(n)}(X)$, and let $T_{\epsilon}^{(n)}(Y|x^n)$ be the set of y^n sequences such that $(x^n, y^n) \in T_{\epsilon}^{(n)}(X, Y)$. Show that

$$|T_{\epsilon}^{(n)}(Y|x^n)| \doteq 2^{n(H(Y|X)\pm\delta(\epsilon)}.$$
(5)

(e) Let $x^n \in T_{\epsilon}^{(n)}(X)$, and Y^n be drawn independently of x^n i.i.d. $\sim P(y)$. Show that

$$\Pr(x^n, Y^n \in T_{\epsilon}^{(n)}(X, Y)| \doteq 2^{n(I(X,Y)\pm\delta(\epsilon)}.$$
(6)

(Note that in (d) and (e) the bounds do not depend on x^n .)

3. (10 points bonus to the final grade for the first two students who solve the following question)

(5 points.) **MAC with causal state information at the encoder** Find the capacity region of a MAC $P_{Y|X_1,X_2,S}$, where the state information S is known *causally* to both encoders but not to the decoder, as depicted in Fig. 1

(5 points.) MAC with non causal state information at the encoder Find the capacity region of a MAC $P_{Y|X_1,X_2,S}$, where the state information S is known *noncausally* to both encoders but not to both decoder, as depicted in Fig. 1

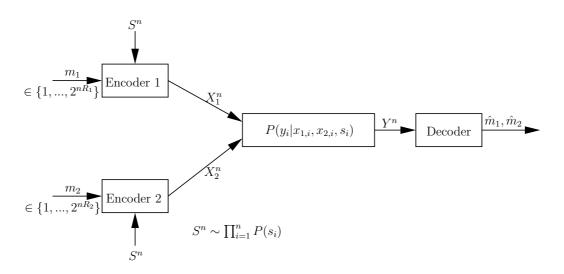


Figure 1: Mac with state information. Find the capacity region of the MAC with state information at the encoder. The state is known causally or non-causally to the encoders.