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Multi Users information theory Semester A 2009/10

Homework Set #5

1) MAC with common information. Consider a DM-MAC PY |X1,X2
with three independent uniformly

distributed messages W0 ∈ [1, ..., 2nR0], W1 ∈ [1, ..., 2nR1], and W2 ∈ [1, ..., 2nR2]. The first encoder

maps each pair (w0, w1) into a codeword xn1 (w0, w1) and the second maps each pair (w0, w2) into a

codeword xn2 (w0, w2). The decoder upon receiving yn, finds an estimate (ŵ0, ŵ1, ŵ2) of the messages

sent. The probability of decoding error is:

P (n)
e = Pr

(
(Ŵ0, Ŵ1, Ŵ2) 6= (W0,W1,W2)

)
. (1)

Show that the capacity region for this channel is given by the set of rate triples (R0, R1, R2) such

that

R1 ≤ I(X1;Y |X2, U),

R2 ≤ I(X2;Y |X1, U),

R1 +R2 ≤ I(X1, X2;Y |U),

R0 +R1 +R2 ≤ I(X1, X2;Y ), (2)

for some p(u)p(x1|u)p(x2|u). You need to prove achievability and converse. (Hint: In proving the

converse you may use the identification Ui =W0.)

MAC with common information solution:

We show that the capacity is given by the set of rate triples (R0, R1, R2) such that

R1 ≤ I(X1;Y |X2, U),

R2 ≤ I(X2;Y |X1, U),

R1 +R2 ≤ I(X1, X2;Y |U),

R0 +R1 +R2 ≤ I(X1, X2;Y ),

for some p(u)p(x1|u)p(x2|u). Note that this set is convex and therefore there is no need for further

convexification.

Proof of achievability: Fix p(u)p(x1|u)p(x2|u). Generate 2nR0 sequences un(w0) according

to p(un) =
∏n
i=1 p(ui). For each sequence un generater 2nR1 sequences xn1 (w0, w1)

according to p(xn1 |un) =
∏n
i=1 p(x1i|ui) and 2nR2 sequences xn2 (w0, w2) according to

p(xn2 |un) =
∏n
i=1 p(x2i|ui). To transmit (w0, w1, w2). the first transmitter sends xn1 (w0, w1)
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and the second transmitter sends xn2 (w0, w2).

The decoder upon receiving yn, looks for the unique (ŵ0, ŵ1, ŵ2) such that

{(un(ŵ0), x
n
1 (ŵ0ŵ1), x

n
2 (ŵ0ŵ2), y

n) ∈ A(n)
ε }.

Probability or error: Assume (1, 1, 1) is sent and define the events

Eijk = {(un(i), xn1 (i, j), xn2 (i, k), yn) ∈ A(n)
ε }.

Then the probability of decoding error is:

P
(n)
e ≤ P (Ec111) +

∑
i 6=1,j,k P (Eijk) +

∑
j 6=1 P (E1j1) +

∑
k 6=1 P (E11k) +

∑
j,k 6=1 P (E1jk).

P (Ec111)→ 0 by AEP. Now consider the third term∑
j 6=1

P (E1j1) ≤ 2nR1

∑
(un,xn1 ,x

n
2 ,y

n)∈A(n)
ε

p(un)p(xn1 |un)p(xn2 |un)p(yn|xn2 , un)

(a)

≤ 2n(R1−I(X1;Y |X2,U)+7ε).

where

(a) follows from the jointly typical set, when u and x2 are known.

Thus if R1 < I(X1;Y |X2, U)− 7ε, the third term in the bound on P (n)
e approaches 0 as n→∞.

The fourth term follows similarly and we obtain the requirement that R2 ≤ I(X2;Y |X1, U) − 7ε.

The last term approaches 0 as n → ∞ if R1 + R2 < I(X1, X2;Y |U) − 7ε. Finally consider the

second term∑
i 6=1,j,k

P (Eijk) ≤ 2n(R0+R1+R2)
∑

(un,xn1 ,x
n
2 ,y

n)∈A(n)
ε

p(un)p(xn1 |un)p(xn2 |un)p(yn)

≤ 2n(R0+R1+R2)2n(H(U,X1,X2,Y )+ε)2−n(H(U)−ε)2−n(H(X1|U)−2ε)2−n(H(X2|U)−2ε)2−n(H(Y )−ε).

Thus if

R0 +R1 +R2 < H(U,X1, X2, Y )−H(U)−H(X1|U)−H(X2|U)−H(Y )− 7ε

= I(X1, X2;Y )− 7ε,

the second sum of the bound Pr(n)e goes to 0 as n→∞.

Proof of converse:

First consider

nR1 = H(W1)

= H(W1|W0,W2)

≤ I(W1;Y
n|W0,W2) + nεn
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=

n∑
i=1

I(W1;Yi|W0,W2, Y
i−1) + nεn

≤
n∑
i=1

H(Yi|W0,W2)−H(Yi|W0,W1,W2, Y
i−1) + nεn

≤
n∑
i=1

H(Yi|X2i,W0,W2)−H(Yi|X1i, X2i,W0,W1,W2, Y
i−1) + nεn

≤
n∑
i=1

H(Yi|W0, X2i)−H(Yi|W0, X1i, X2i) + nεn

=

n∑
i=1

I(X1i;Yi|X2i, Ui) + nεn,

where Ui =W0, so p(ui, x1i, x2i) = p(ui)p(x1i|ui)p(x2i|ui). Similarly it can be shown that nR2 ≤∑n
i=1 I(X2i;Yi|X1i, Ui) + nεn and n(R1 +R2) ≤

∑n
i=1 I(X1i, X2i;Yi|Ui) + nεn.

It is also easy to show that n(R0 + R1 + R2) ≤
∑n
i=1 I(X1i, X2i;Yi) + nεn. Now, introducing a

time-sharing random variable Q, we have

R1 ≤ I(X1Q;YQ|X2Q, UQ, Q) = I(X1;Y |X2, U) + ε,

R1 ≤ I(X2Q;YQ|X1Q, UQ, Q) = I(X2;Y |X1, U) + ε,

R1 +R2 ≤ I(X1Q, X2Q;YQ|UQ, Q) = I(X1, X2;Y |U) + ε,

R0 +R1 +R2 ≤ I(X1Q, X2Q;YQ|Q) = I(X1, X2;Y ) + ε,

where U = (UQ, Q), X1 = X1Q, X2 = X2Q and Y = YQ, and

p(u, x1, x2, y) = p(u)p(x1|u)p(x2|u)p(y|x1, x2).

2) Strong ε-typicality. Achievability proofs involving covering, e.g., for the rate distortion theorem,

require that we find a good lower bound on the probability that one specific typical sequence xn

is jointly typical with a randomly drawn sequence Y n. Using strong typicality, the desired lower

bound can be established. Let (Xi, Yi) be drawn i.i.d. ∼ P (x, y) and assume that the cardinalities

X ,Y are finite. Let the marginals of X and Y be P (x) and P (y), respectively (you may use ideas

and results from methods of types to solve the exercise). We use in this exercise a specific notation

δ(ε) that implies that δ(ε)→ 0 as ε→ 0.

a) Show that if xn ∈ T (n)
ε (X), then

p(xn)
.
= 2n(H(X)±δ(ε)). (3)

b) Show that Pr(Xn ∈ T (n)
ε (X))→ 1, as n→∞.

c) Show that

|T (n)
ε (X)| .= 2n(H(X)±δ(ε). (4)
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d) Let xn ∈ T
(n)
ε (X), and let T (n)

ε (Y |xn) be the set of yn sequences such that (xn, yn) ∈

T
(n)
ε (X,Y ). Show that

|T (n)
ε (Y |xn)| .= 2n(H(Y |X)±δ(ε). (5)

e) Let xn ∈ T (n)
ε (X), and Y n be drawn independently of xn i.i.d. ∼ P (y). Show that

Pr(xn, Y n ∈ T (n)
ε (X,Y )| .= 2n(I(X,Y )±δ(ε). (6)

(Note that in (d) and (e) the bounds do not depend on xn.)

Strong ε-typicality solution:

a) We recall that Tnε (X) = {xn : |Pxn(a)− pX(a)| < ε, pX(a) = 0⇒ Pxn(a) = 0}.

log is a continues function thus |x− y| < ε→ | log(x)− log(y)| = | log x
y | < δ(ε), and so we

obtain-

D(PXn ||p(x)) =
∑
x∈X

PXn log
PXn

p(x)

(a)
<

∑
x∈X

PXnδ(ε)

= |X |δ(ε) = δ

where

(a) follows from the continuity of the log function, as explained above.

From method of types, we have- Qn(xn) .= 2−n(D(p||q)+H(p)), thus for xn ∈ Tnε (X), we have-

p(xn) = 2−n(D(Pxn ||p(x))+H(X)) ≥ 2−n(H(X)+ε).

It is also clear that-

p(xn) ≤ 2−n(H(X)−ε),

thus we obtain p(xn) .= 2−n(H(X)±ε).

b) We consider-

1− Pr(xn ∈ Tnε (X)) = Pr(xn /∈ Tnε (X))

=
∑

p(xn):D(Pxn ||p(x))>ε

p(xn)

(a).
=

∑
p(xn):D(Pxn ||p(x))>ε

2−n(H(X)+ε)

≤ |Pn|2−n(H(X)+ε)

(b)

≤ (n+ 1)|X |2−n(H(X)+ε)
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= 2−n(H(X)+ε− log (n+1)
n |X |) → 0.

where

(a) follows from strong ε typicality.

(b) follows from the fact that there are, as an upper bound, (n+ 1)|X | types.

Thus we obtain Pr(xn ∈ Tnε (X))→ 1 as n→∞.

c) Using the result from (b) we have-

Pr(xn ∈ Tnε (X)) =
∑

xn∈Tnε (X)

p(xn)

.
=

∑
xn∈Tnε (X)

2−n(H(X)±ε)

= |Tnε (X)|2−n(H(X)±ε).

Note that if lim an = 1⇒ an
.
= 1, thus-

1
.
= Pr(xn ∈ Tnε (X))

.
= |Tnε (X)|2−n(H(X)±ε).

Thus we obtain |Tnε (X)| .= 2−n(H(X)±ε).

d) Let xn ∈ Tnε (X), and yn is drawn∼ p(yi|xi), thus (xi, yi) is drawn i.i.d pX,Y , and from (a)

we have Pr((xn, yn) ∈ Tnε (X,Y ))→ 1. Thus-

1
.
= Pr((xn, yn) ∈ Tnε (X,Y ))

(a)
=

∑
xn∈Tnε (X)

p((xn, yn) ∈ Tnε (Y |xn))

(b)
=

∑
xn∈Tnε (X)

∑
yn∈Tnε (Y |xn)

p(xn, yn)

(c).
=

∑
xn∈Tnε (X)

∑
yn∈Tnε (Y |xn)

2−n(H(X,Y )±ε)

=
∑

xn∈Tnε (X)

|Tnε (Y |xn)|2−n(H(X,Y )±ε)

= |Tnε (X)||Tnε (Y |xn)|2−n(H(X,Y )±ε)

.
= |Tnε (Y |xn)|2−n(H(X,Y )−H(X)±ε)

where

(a) follows from the definition of Tnε (X,Y ).

(b) follows from the definition of Tnε (Y |xn).
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(c) follows from the fact that (xn, yn) ∈ Tnε (X,Y ).

Thus we obtain |Tnε (Y |xn)|
.
= 2n(H(X,Y )−H(X)±ε) = 2n(H(Y |X)±ε).

e) Now we have xn ∈ Tnε (X), Y n ∼ p(y) i.i.d, independent of xn.

Pr((xn, Y n) ∈ Tnε (X,Y ))
(a)
=

∑
yn∈Tnε (Y |xn)

p(yn)

(b).
=

∑
yn∈Tnε (Y |xn)

2−n(H(Y )±ε)

= |Tnε (Y |xn)|2−n(H(Y )±ε)

= 2−n(H(Y )±ε−H(Y |X)±ε′)

= 2−n(I(X;Y )±ε).

where

(a) follows from the definition of Tnε (Y |xn).

(b) follows from the fact that yn ∈ Tnε (Y ).


