
Multi Users information theory Semester A 2009/10

Homework Set #3
MAC and Compound Channel

1. Converse for the Gaussian multiple access channel. Prove the
converse for the Gaussian multiple access channel by extending the
converse in the discrete case to take into account the power constraint
on the codewords.

Converse for the Gaussian multiple access channel. The proof of the
converse for the Gaussian case proceeds on very similar lines to the dis-
crete case. However, for the Gaussian case, the two stages of proof that
were required in the discrete case, namely, of finding a new expression
for the capacity region and then proving a converse, can be combined
into one single step.

By the code construction, it is possible to estimate (W1,W2) from the
received sequence Y n with a low probability of error. Hence the condi-
tional entropy of (W1,W2) given Y n must be small. By Fano’s inequal-
ity,

H(W1,W2|Y
n) ≤ n(R1 +R2)P

(n)
e +H(P (n)

e )
△
= nǫn. (1)

It is clear that ǫn → 0 as P
(n)
e → 0.

Then we have

H(W1|Y
n) ≤ H(W1,W2|Y

n) ≤ nǫn, (2)

H(W2|Y
n) ≤ H(W1,W2|Y

n) ≤ nǫn. (3)
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We can now bound the rate R1 as

nR1 = H(W1) (4)

= I(W1; Y
n) +H(W1|Y

n) (5)
(a)

≤ I(W1; Y
n) + nǫn (6)

(b)

≤ I(Xn
1 (W1); Y

n) + nǫn (7)

= H(Xn
1 (W1))−H(Xn

1 (W1)|Y
n) + nǫn (8)

(c)

≤ H(Xn
1 (W1)|X

n
2 (W2))−H(Xn

1 (W1)|Y
n, Xn

2 (W2)) + nǫn(9)

= I(Xn
1 (W1); Y

n|Xn
2 (W2)) + nǫn (10)

= h(Y n|Xn
2 (W2))− h(Y n|Xn

1 (W1), X
n
2 (W2)) + nǫn (11)

(d)
= h(Y n|Xn

2 (W2))− h(Zn|Xn
1 (W1), X

n
2 (W2)) + nǫn (12)

(e)
= h(Y n|Xn

2 (W2))− h(Zn) + nǫn (13)

(f)
= h(Y n|Xn

2 (W2))−

n
∑

i=1

h(Zi) + nǫn (14)

(g)

≤
n

∑

i=1

h(Yi|X
n
2 (W2))−

n
∑

i=1

h(Zi) + nǫn (15)

(h)

≤

n
∑

i=1

h(Yi|X2i)−

n
∑

i=1

h(Zi) + nǫn (16)

(i)
=

n
∑

i=1

h(X1i + Zi|X2i)−

n
∑

i=1

h(Zi) + nǫn (17)

(j)
=

n
∑

i=1

h(X1i + Zi)−
n

∑

i=1

h(Zi) + nǫn (18)

(k)

≤

n
∑

i=1

1

2
log 2πe(P1i +N)−

1

2
log 2πeN + nǫn (19)

=
n

∑

i=1

1

2
log

(

1 +
P1i

N

)

+ nǫn (20)

where
(a) follows from Fano’s inequality,
(b) from the data processing inequality,
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(c) from the fact that since W1 and W2 are independent, so are Xn
1 (W1)

andXn
2 (W2), and hence it follows thatH(Xn

1 (W1)|X
n
2 (W2)) = H(Xn

1 (W1)),
and H(Xn

1 (W1)|Y
n, Xn

2 (W2)) ≤ H(Xn
1 (W1)|Y

n) by conditioning,
(d) from the fact that Y n = Xn

1 +Xn
2 + Zn,

(e) from the fact that Zn is independent of Xn
1 and Xn

2 ,
(f) from the fact that the noise is i.i.d.,
(g) from the chain rule and removing conditioning,
(h) from removing conditioning,
(i) from the fact that Yi = X1i +X2i + Zi,
(j) from the fact that X1i and Zi are independent of X2i, and
(k) from the entropy maximizing property of the normal (Theorem
9.6.5), after defining P1i = EX2

1i.

Hence, we have

R1 ≤
1

n

n
∑

i=1

1

2
log

(

1 +
P1i

N

)

+ ǫn. (21)

Similarly, we have

R2 ≤
1

n

n
∑

i=1

1

2
log

(

1 +
P2i

N

)

+ ǫn. (22)
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To bound the sum of the rates, we have

n(R1 + R2) = H(W1,W2) (23)

= I(W1,W2; Y
n) +H(W1,W2|Y

n) (24)
(a)

≤ I(W1,W2; Y
n) + nǫn (25)

(b)

≤ I(Xn
1 (W1), X

n
2 (W2); Y

n) + nǫn (26)

= h(Y n)− h(Y n|Xn
1 (W1), X

n
2 (W2)) + nǫn (27)

(c)
= h(Y n)− h(Zn) + nǫn (28)

(d)
= h(Y n)−

n
∑

i=1

h(Zi) + nǫn (29)

(e)

≤

n
∑

i=1

h(Yi)−

n
∑

i=1

h(Zi) + nǫn (30)

(f)

≤
n

∑

i=1

1

2
log 2πe(P1i + P2i +N)−

1

2
log 2πeN + nǫn(31)

=
1

2
log

(

1 +
P1i + P2i

N

)

+ nǫn (32)

where
(a) follows from Fano’s inequality,
(b) from the data processing inequality,
(c) from the fact that Y n = Xn

1 +Xn
2 + Zn, and Zn is independent of

Xn
1 and Xn

2 ,
(d) from the fact that Zi are i.i.d., (e) follows from the chain rule and
removing conditioning, and
(f) from the entropy maximizing property of the normal, and the defi-
nitions of P1i and P2i.

Hence we have

R1 +R2 ≤
1

n

n
∑

i=1

1

2
log

(

1 +
P1i + P2i

N

)

+ ǫn. (33)
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The power constraint on the codewords imply that

1

n

n
∑

i=1

P1i ≤ P1, (34)

and
1

n

n
∑

i=1

P2i ≤ P2. (35)

Now since log is concave function, we can apply Jensens inequality to
the expressions in (21), (22) and (33). Thus we obtain

R1 ≤
1

2
log

(

1 +
1
n

∑n

i=1 P1i

N

)

+ ǫn (36)

R2 ≤
1

2
log

(

1 +
1
n

∑n

i=1 P2i

N

)

+ ǫn (37)

R1 +R2 ≤
1

2
log

(

1 +
1
n

∑n

i=1 P1i + P2i

N

)

+ ǫn. (38)

which when combined with the power constraints, and taking the limit
at n → ∞, we obtain the desired converse, i.e.,

R1 <
1

2
log(1 +

P1

N
), (39)

R2 <
1

2
log(1 +

P2

N
), (40)

R1 +R2 <
1

2
log(1 +

P1 + P2

N
). (41)

2. A multiple access identity.
Let C(x) = 1

2
log(1 + x) denote the channel capacity of a Gaussian

channel with signal to noise ratio x. Show

C

(

P1

N

)

+ C

(

P2

P1 +N

)

= C

(

P1 + P2

N

)

.

This suggests that 2 independent users can send information as well as
if they had pooled their power.

Solutions.
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C(
P1 + P2

N
) =

1

2
log(1 +

P1 + P2

N
) (42)

=
1

2
log(

N + P1 + P2

N
) (43)

=
1

2
log(

N + P1 + P2

N + P1
·
N + P1

N
) (44)

=
1

2
log(

N + P1 + P2

N + P1
) +

1

2
log(

N + P1

N
) (45)

= C(
P2

P1 +N
) + C(

P

N1
) (46)

3. Gaussian multiple access.

A group of m users, each with power P , is using a Gaussian multiple
access channel at capacity, so that

m
∑

i=1

Ri = C

(

mP

N

)

, (47)

where C(x) = 1
2
log(1 + x) and N is the receiver noise power.

A new user of power P0 wishes to join in.

(a) At what rate can he send without disturbing the other users?

(b) What should his power P0 be so that the new users rate is equal
to the combined communication rate C(mP/N) of all the other
users?

Solustions Gaussian multiple access.

(a) If the new user can be decoded while treating all the other senders
as part of the noise, then his signal can be subtracted out before
decoding the other senders, and hence will not disturb the rates
of the other senders. Therefore if

R0 <
1

2
log

(

1 +
P0

mP +N

)

, (48)

the new user will not disturb the other senders.
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(b) The new user will have a rate equal to the sum of the existing
senders if

1

2
log

(

1 +
P0

mP +N

)

=
1

2
log

(

1 +
mP

N

)

(49)

or

P0 = (mP +N)
mP

N
(50)

4. Frequency Division Multiple Access (FDMA). Maximize the
throughput R1 +R2 = W1 log(1 +

P1

NW1

) + (W −W1) log(1 +
P2

N(W−W1)
)

over W1 to show that bandwidth should be proportional to transmitted
power for FDMA.

Solustions Frequency Division Multiple Access (FDMA).

Allocating bandwidth W1 and W2 = W − W1 to the two senders, we
can achieve the following rates

R1 = W1 log

(

1 +
P1

NW1

)

, (51)

R2 = W2 log

(

1 +
P2

NW2

)

. (52)

To maximimize the sum of the rates, we write

R = R1+R2 = W1 log

(

1 +
P1

NW1

)

+(W −W1) log

(

1 +
P2

N(W −W1)

)

(53)
and differentiating with respect to W1, we obtain

log

(

1 +
P1

NW1

)

+
W1

1 + P1

NW1

(

−
P1

NW 2
1

)

−log

(

1 +
P2

N(W −W1)

)

+
W −W1

1 + P2

N(W−W1)

(

P2

N(W −W1)2

)

= 0(54)

Instead of solving this equation, we can verify that if we set

W1 =
P1

P1 + P2

W (55)

7



so that
P1

NW1
=

P2

NW2
=

P1 + P2

NW
(56)

that (54) is satisfied, and that using bandwidth proportional to the
power optimizes the total rate for Frequency Division Multiple Access.

5. Compound channel with feedback. In the class we introduced
the memoryless compound channel (X ; p(y|x, s);Y) where s ∈ S is
the state of the channel. Thought this question we assume that the
alphabets X ,Y ,S are all finite. A (2nR, n) code for the compound
channel is defined in the same way as for the DMC (see lecture notes).
The average probability of error is defined as

P (n)
e = sup

s

P
{

Ŵ 6= W, s is the actual channel
}

A rate R is achievable if there exists a sequence of (2nR, n) codes with

P
(n)
e → 0.

(a) What is the capacity of the discrete compound channel with feed-
back? Prove converse and achievability.

(b) Compute the capacity of the compound binary eraser channel with
feedback where the probability of an eraser is one of the four values
(0, 0.1, 0.2, 0.25).

(c) Write an expression and then sort from lower to higher the

(i) Capacity of compound channel with feedback when the state
is not known.

(ii) Capacity of compound channel with no feedback when the
state is not known.

(iii) Capacity of compound channel with feedback when the state
known only at the encoder.

(iv) Capacity of compound channel with no feedback when the
state known at the encoder.

(d) If the probability distribution that achieves the capacity of each
channel is the same, does it imply that the capacity with feedback
and without feedback are equal? If it does, prove it and if it does
not give a counter example.
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(e) If the capacity of the compound channel without feedback is zero,
does it imply that the capacity with feedback is also zero? If it
does, prove it and if it does not give a counter example.

(f) Under what conditions the capacity of the compound channel with
feedback and without feedback has the same capacity.

Solution:

(a) The capacity of the compound channel with feedback is given by

C = min
s

max
p(x)

I(X ; Ys),

where the notation Ys means that we condition on the channel
state S = s.

converse We need to show that if rate R is achievable, then it
satisfies R ≤ C. Achievabilty of rate R for a compound channel
implies that exist a sequence of codes (2nR, n) such that for any
state s the probability of error goes to zero as n → ∞, hence by
using Fano inequality we get

H(W |Y n
s ) ≤ 1 + P (n)

e nR = nǫn, ∀s ∈ S.

The message W is distributed uniformly [1, 2nR] hence,

nR = H(W )

= I(W ; Y n
s ) +H(W |Y n

s )

≤ I(W ; Y n
s ) + nǫn, ∀s ∈ S.
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The equation holds for all s ∈ S and in particular for

nR ≤ min
s

I(W ; Y n
s ) + nǫn

= min
s

n
∑

i=1

H(Ysi|Y
i−1
s )− I(Ysi|W,Y i−1

s ) + nǫn

= min
s

n
∑

i=1

H(Ysi|Y
i−1
s )− I(Ysi|W,Y i−1

s , X i) + nǫn

= min
s

n
∑

i=1

H(Ysi|Y
i−1
s )− I(Ysi|Xi) + nǫn

≤ min
s

n
∑

i=1

H(Ysi)− I(Ysi|Xi) + nǫn

≤ min
s

n
∑

i=1

I(Ysi;Xi) + nǫn

≤ min
s

n
∑

i=1

I(Ysi;Xi) + nǫn

= nC + nǫn

Achievability The achievabilty proof for discrete memoryless com-
pound channel with feedback is based on the achievability of a
DMC. The decoder first send to the encoder the state of the chan-
nel and then the encoder uses the code that is design for this
state.

Under this coding scheme a rateR that satisfies R < maxp(x|s)mins I(X ; Ys)
is achievable for any DMC realization s ∈ S and therefore is
achievable for the compound channel. Now note that,

max
p(x|s)

min
s

I(X ; Ys) = min
s

max
p(x|s)

I(X ; Ys) = min
s

max
p(x)

I(X ; Ys)

(b) The capacity of an binary eraser channel with eraser probability
p is 1− p, hence the capacity is C=0.75.

(c) C1 = C3 = C4 > C2
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(d) yes is the same since

min
s

max
p(x)

I(X ; Ys) = max
p(x)

min
s

I(X ; Ys)

holds.

(e) yes. If the capacity of compound channel without feedback is zero
then

max
p(x)

min
s

I(X ; Ys) = 0,

and this implies that exist a state s∗ that for any input distribution
I(X ; Ys∗) = 0. Hence

Cfeedback = min
s

max
p(x)

I(X ; Ys) ≤ max
p(x)

I(X ; Ys∗) = 0
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