Semester A 2009/10

Homework Set #3 Methods of types

1. Large deviations.

Let X_1, X_2, \ldots be i.i.d. random variables drawn according to the Bernoulli distribution

$$\Pr\{X_i = 1\} = \Pr\{X_i = -1\} = \frac{1}{2}.$$

Let S_n be the random walk defined by

$$S_n = \sum_{i=1}^n X_i.$$

Find the function $f(\alpha)$ such that, for all $\alpha > 0$,

$$\lim_{n \to \infty} -\frac{1}{n} \log \Pr\{S_n \ge n\alpha\} = f(\alpha).$$

Solution: Large deviations.

We wish to look at

$$Pr\left\{\sum_{i=1}^{n} X_i \ge n\alpha\right\}$$

where X_i is generated by a bernoulli distribution P. We define a set

$$E = \left\{ P : \sum_{a \in \{1, -1\}} P(a)a \ge \alpha \right\}$$

Then,

$$Pr\left\{\sum_{i=1}^{n} X_i \ge n\alpha\right\} = Pr(P_{X^n} \in E)$$
$$\doteq 2^{-n\min_{P' \in E} D(P' \parallel P)}$$

Since $D(P'||P) = \sum_{a} P'(a) \log(\frac{P'(a)}{1/2}) = 1 - H(P')$, the minimum of D(P'||P) is achieved when H(P') is maximized. From the constraint, we have $\sum_{a} P'(a)a = P'(0) - (1 - P'(0)) \ge \alpha$, and thus $P'(0) \ge \frac{\alpha+1}{2}$. From $\alpha > 0$, we know that $\frac{\alpha+1}{2} > \frac{1}{2}$, and hence, H(P') is maximized when $P'(0) = \frac{1+\alpha}{2}$. Therefore, we have

$$Pr\left\{\sum_{i=1}^{n} X_{i} \ge n\alpha\right\} \doteq 2^{-n\min_{P' \in E} D(P' \| P)}$$
$$= 2^{-n(1-H(\frac{1+\alpha}{2}))}$$

Then,

$$f(\alpha) = -\frac{1}{n}\log 2^{-n(1-H(\frac{1+\alpha}{2}))} = 1 - H(\frac{1+\alpha}{2})$$

2. Counting.

Let $\mathcal{X} = \{1, 2, ..., m\}$. Show that the number of sequences $x^n \in \mathcal{X}^n$ satisfying $\frac{1}{n} \sum_{i=1}^n g(x_i) \geq \alpha$ is approximately equal to 2^{nH^*} , to first order in the exponent, where

$$H^* = \max_{P:\sum P(i)g(i) \ge \alpha} H(P).$$

Solution: Counting.

We wish to count the number of sequences satisfying a certain property. Instead of directly counting the sequences, we will calculate the probability of the set under a uniform distribution. Since the uniform distribution puts a probability of $\frac{1}{m^n}$ on every sequence of length n, we can count the sequences by multiplying the probability of the set by m^n .

The probability of the set can be calculated easily from Sanov's theorem. Let Q be the uniform distribution, and let E be the set of sequences of length n satisfying $\frac{1}{n} \sum g(x_i) \ge \alpha$. Then by Sanov's theorem, we have

$$Q^n(E) \doteq 2^{-nD(P^*||Q)},$$

where P^* is the type in E that is closest to Q. Since Q is the uniform distribution, $D(P||Q) = \log m - H(P)$, and therefore P^* is the type in E that has maximum entropy. Therefore, if we let

$$H^* = \max_{P:\sum_{i=1}^m P(i)g(i) \ge \alpha} H(P),$$

we have

$$Q^{n}(E) \doteq 2^{-n(\log m - H^{*})}.$$

Multiplying this by m^n to find the number of sequences in this set, we obtain

$$|E| \doteq 2^{-n\log m} 2^{nH^*} m^n = 2^{nH^*}$$

3. The cooperative capacity of a multiple access channel.

Figure 1: Multiple access channel with cooperating senders.

- (a) Suppose X_1 and X_2 have access to *both* indices $W_1 \in \{1, 2^{nR_1}\}, W_2 \in \{1, 2^{nR_2}\}$. Thus the codewords $X_1^n(W_1, W_2), X_2^n(W_1, W_2)$ depend on both indices. Find the capacity region.
- (b) Evaluate this region for the binary erasure multiple access channel $Y = X_1 + X_2, X_i \in \{0, 1\}$. Compare to the non-cooperative region.

Solution: The cooperative capacity of a multiple access channel

(a) When both senders have access to the pair of messages to be transmitted, they can act in concert. The channel is then equivalent to a single user channel with the input $X = (X_1, X_2) \in \mathcal{X}_1 \times \mathcal{X}_2$, and the message $W = (W_1, W_2)$. The capacity of this single user channel is $C = \max_{p(x)} I(X;Y) = \max_{p(x_1,x_2)} I(X_1, X_2;Y)$. The two senders can send at any combination of rates with the total rate

$$R_1 + R_2 \le C.$$

(b) When the two senders cooperate to send a common message, the capacity is

$$C = \max_{p(x_1, x_2)} I(X_1, X_2; Y) = \max H(Y) = \log 3,$$

achieved by (for example) a uniform distribution on the pairs, (0,0), (0,1) and (1,1). The cooperative and non-cooperative regions are illustrated in Figure 2.

4. Capacity of multiple access channels.

Find the capacity region for each of the following multiple access channels:

- (a) Additive modulo 2 multiple access access channel. $X_1 \in \{0, 1\}, X_2 \in \{0, 1\}, Y = X_1 \oplus X_2$.
- (b) Multiplicative multiple access channel. $X_1 \in \{-1, 1\}, X_2 \in \{-1, 1\}, Y = X_1 \cdot X_2$.

Solution: Capacity of multiple access channels.

(a) Additive modulo 2 multiple access channel.

Quite clearly we cannot send at a total rate of more than 1 bit, since $H(Y) \leq 1$. We can achieve a rate of 1 bit from sender 1 by setting $X_2 = 0$, and similarly we can send 1 bit/transmission from sender 2. By simple time sharing we can achieve the entire capacity region which is shown in Figure 3. (b) Multiplicative multiple access channel.

 $X_1, X_2 \in \{-1, 1\}, Y = X_1 \cdot X_2.$

This channel is equivalent to the previous channel with the mapping $-1 \rightarrow 1$ and $1 \rightarrow 0$. Hence the capacity region is the same as the previous channel.

5. Cut-set interpretation of capacity region of multiple access channel.

For the multiple access channel we know that (R_1, R_2) is achievable if

$$R_1 < I(X_1; Y \mid X_2),$$
 (1)

$$R_2 < I(X_2; Y \mid X_1),$$
 (2)

$$R_1 + R_2 < I(X_1, X_2; Y),$$
 (3)

for X_1, X_2 independent. Show, for X_1, X_2 independent, that

$$I(X_1; Y \mid X_2) = I(X_1; Y, X_2).$$

Thus R_1 is less than the mutual information between X_1 and everything else.

Interpret the information bounds as bounds on the rate of flow across cutsets S_1, S_2 and S_3 .

Solution: Cut-set interpretation of capacity region of multiple access channel.

By the chain rule for mutual information and the independence of X_1 and X_2 ,

$$I(X_1; Y, X_2) = I(X_1; X_2) + I(X_1; Y | X_2) = I(X_1; Y | X_2).$$

We can interpret $I(X_1; Y, X_2)$ as the maximum amount of information that could flow across the cutset S_1 . This is an upper bound on the rate R_1 . Similarly, we can interpret the other bounds.

6. Multiple-access channel.

Let the output Y of a multiple-access channel be given by

$$Y = X_1 + \operatorname{sgn}(X_2)$$

where X_1, X_2 are both real and power limited,

$$\begin{array}{ll} E[X_1^2] &\le P_1, \\ E[X_2^2] &\le P_2, \end{array}$$

and $\operatorname{sgn}(x) = \begin{cases} 1, & x > 0 \\ -1, & x \le 0 \end{cases}$.

Note that there is interference but no noise in this channel.

- (a) Find the capacity region.
- (b) Describe a coding scheme that achieves the capacity region.

Solution: Multiple-access channel.

(a) It is easy to see that we can achieve any rate pair (R_1, R_2) satisfying

 $R_2 \leq 1.$

(In other words, R_1 can be arbitrarily large.) Although it can be calculated from the generic capacity formula

$$R_{1} \leq I(X_{1}; Y | X_{2}) = \infty$$
$$R_{2} \leq I(X_{2}; Y | X_{1}) \leq 1$$
$$R_{1} + R_{2} \leq I(X_{1}, X_{2}; Y) = \infty,$$

we can find the capacity region from first principles.

Clearly, we can't get better than $R_1 = \infty$. For the bound on R_2 , for each fixed X_1 , the second user cannot transmit more than 1 bit.

(b) Achieving $R_1 = \infty$, $R_2 = 1$ is also trivial. The first user sends the fractional part of an integer (satisyfing the power constraint) and the second user sends 1 bit per transmission by sending $\pm \sqrt{P_2}$.

7. Csiszar Sum Equality. Let X^n and Y^n be two random vectors with arbitrary joint probability distribution. Show that:

$$\sum_{i=1}^{n} I(X_{i+1}^{n}; Y_i | Y^{i-1}) = \sum_{i=1}^{n} I(Y^{i-1}; X_i | X_{i+1}^{n})$$
(4)

As we shall see this inequality is useful in proving converses to several multiple user channels. (Hint: You can prove this by induction or by expanding the terms on both sides using the chain rule.)

Solution: Csiszar Sum Equality.

$$\begin{split} \sum_{i=1}^{n} I(X_{i+1}^{n};Y_{i}|Y^{i-1}) &= \sum_{i=1}^{n} \sum_{j=i+1}^{n} I(X_{j};Y_{i}|Y^{i-1},X_{j+1}^{n}) \\ &= \sum_{j=2}^{n} \sum_{i=1}^{j-1} I(X_{j};Y_{i}|Y^{i-1},X_{j+1}^{n}) \\ &= \sum_{j=2}^{n} I(X_{j};Y^{j-1}|X_{j+1}^{n}) \\ &= \sum_{j=1}^{n} I(X_{j};Y^{j-1}|X_{j+1}^{n}) \\ &= \sum_{i=1}^{n} I(Y^{i-1};X_{i}|X_{i+1}^{n}) \end{split}$$

where the first and third equalities follow from chain rule, and the second equality follows from switching of the summations.

Figure 2: Cooperative and non-cooperative capacity for a binary erasure multiple access channel.

Figure 3: Capacity region of additive modulo 2 MAC.