
Multi Users information theory Semester A 2009/10

Homework Set #3

Methods of types

1. Large deviations.

Let X1, X2, . . . be i.i.d. random variables drawn according to the Bernoulli
distribution

Pr{Xi = 1} = Pr{Xi = −1} =
1

2
.

Let Sn be the random walk defined by

Sn =

n
∑

i=1

Xi.

Find the function f(α) such that, for all α > 0,

lim
n→∞

−1

n
log Pr{Sn ≥ nα} = f(α).

Solution: Large deviations.

We wish to look at

Pr

{

n
∑

i=1

Xi ≥ nα

}

where Xi is generated by a bernoulli distribution P . We define a set

E =







P :
∑

a∈{1,−1}

P (a)a ≥ α







Then,

Pr

{

n
∑

i=1

Xi ≥ nα

}

=Pr(PXn ∈ E)

.
=2−nmin

P
′
∈E

D(P
′

‖P )

1



Since D(P
′‖P ) =

∑

a P
′

(a) log(P
′

(a)
1/2

) = 1 − H(P
′

), the minimum of

D(P
′‖P ) is achieved when H(P

′

) is maximized. From the constraint,
we have

∑

a P
′

(a)a = P
′

(0) − (1 − P
′

(0)) ≥ α, and thus P
′

(0) ≥ α+1
2

.

From α > 0, we know that α+1
2

> 1
2
, and hence, H(P

′

) is maximized

when P
′

(0) = 1+α
2

. Therefore, we have

Pr

{

n
∑

i=1

Xi ≥ nα

}

.
=2−nmin

P
′
∈E

D(P
′

‖P )

=2−n(1−H( 1+α

2
))

Then,

f(α) = −1

n
log 2−n(1−H( 1+α

2
)) = 1 − H(

1 + α

2
)

2. Counting.

Let X = {1, 2, . . . , m}. Show that the number of sequences xn ∈ X n

satisfying 1
n

∑n
i=1 g(xi) ≥ α is approximately equal to 2nH∗

, to first
order in the exponent, where

H∗ = max
P :

∑

P (i)g(i)≥α
H(P ).

Solution: Counting.

We wish to count the number of sequences satisfying a certain prop-
erty. Instead of directly counting the sequences, we will calculate the
probability of the set under a uniform distribution. Since the uniform
distribution puts a probability of 1

mn on every sequence of length n, we
can count the sequences by multiplying the probability of the set by
mn.

The probability of the set can be calculated easily from Sanov’s the-
orem. Let Q be the uniform distribution, and let E be the set of
sequences of length n satisfying 1

n

∑

g(xi) ≥ α. Then by Sanov’s the-
orem, we have

Qn(E)
.
= 2−nD(P ∗||Q),
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where P ∗ is the type in E that is closest to Q. Since Q is the uniform
distribution, D(P ||Q) = log m−H(P ), and therefore P ∗ is the type in
E that has maximum entropy. Therefore, if we let

H∗ = max
P :

∑

m

i=1
P (i)g(i)≥α

H(P ),

we have
Qn(E)

.
= 2−n(log m−H∗).

Multiplying this by mn to find the number of sequences in this set, we
obtain

|E| .
= 2−n log m2nH∗

mn = 2nH∗

.

3. The cooperative capacity of a multiple access channel.

p(y|x1, x2)

-

-

-�����*

HHHHHj

-

Xn
1

Xn
2

(W1, W2) (Ŵ1, Ŵ2)Y n

Figure 1: Multiple access channel with cooperating senders.

(a) Suppose X1 and X2 have access to both indices W1 ∈ {1, 2nR1}, W2 ∈
{1, 2nR2}. Thus the codewords Xn

1 (W1, W2), X
n
2 (W1, W2) depend

on both indices. Find the capacity region.

(b) Evaluate this region for the binary erasure multiple access channel
Y = X1+X2, Xi ∈ {0, 1}. Compare to the non-cooperative region.
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Solution: The cooperative capacity of a multiple access chan-

nel

(a) When both senders have access to the pair of messages to be trans-
mitted, they can act in concert. The channel is then equivalent
to a single user channel with the input X = (X1, X2) ∈ X1 × X2,
and the message W = (W1, W2). The capacity of this single user
channel is C = maxp(x) I(X; Y ) = maxp(x1,x2) I(X1, X2; Y ). The
two senders can send at any combination of rates with the total
rate

R1 + R2 ≤ C.

(b) When the two senders cooperate to send a common message, the
capacity is

C = max
p(x1,x2)

I(X1, X2; Y ) = maxH(Y ) = log 3,

achieved by (for example) a uniform distribution on the pairs,
(0,0), (0,1) and (1,1). The cooperative and non-cooperative re-
gions are illustrated in Figure 2.

4. Capacity of multiple access channels.

Find the capacity region for each of the following multiple access chan-
nels:

(a) Additive modulo 2 multiple access access channel. X1 ∈ {0, 1}, X2 ∈
{0, 1}, Y = X1 ⊕ X2.

(b) Multiplicative multiple access channel. X1 ∈ {−1, 1}, X2 ∈ {−1, 1}, Y =
X1 · X2.

Solution: Capacity of multiple access channels.

(a) Additive modulo 2 multiple access channel.

Quite clearly we cannot send at a total rate of more than 1 bit,
since H(Y ) ≤ 1. We can achieve a rate of 1 bit from sender 1
by setting X2 = 0, and similarly we can send 1 bit/transmission
from sender 2. By simple time sharing we can achieve the entire
capacity region which is shown in Figure 3.
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(b) Multiplicative multiple access channel.

X1, X2 ∈ {−1, 1}, Y = X1 · X2.

This channel is equivalent to the previous channel with the map-
ping −1 → 1 and 1 → 0. Hence the capacity region is the same
as the previous channel.

5. Cut-set interpretation of capacity region of multiple access

channel.

For the multiple access channel we know that (R1, R2) is achievable if

R1 < I(X1; Y | X2), (1)

R2 < I(X2; Y | X1), (2)

R1 + R2 < I(X1, X2; Y ), (3)

for X1, X2 independent. Show, for X1, X2 independent, that

I(X1; Y | X2) = I(X1; Y, X2).

Thus R1 is less than the mutual information between X1 and everything
else.

P
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S3

X2

X1

Y

Interpret the information bounds as bounds on the rate of flow across
cutsets S1, S2 and S3.

Solution: Cut-set interpretation of capacity region of multiple

access channel.

By the chain rule for mutual information and the independence of X1

and X2,

I(X1; Y, X2) = I(X1; X2) + I(X1; Y |X2) = I(X1; Y |X2).

We can interpret I(X1; Y, X2) as the maximum amount of information
that could flow across the cutset S1. This is an upper bound on the
rate R1. Similarly, we can interpret the other bounds.
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6. Multiple-access channel.

Let the output Y of a multiple-access channel be given by

Y = X1 + sgn(X2)

where X1, X2 are both real and power limited,

E[X2
1 ] ≤ P1,

E[X2
2 ] ≤ P2,

and sgn(x) =

{

1, x > 0
−1, x ≤ 0

.

Note that there is interference but no noise in this channel.

(a) Find the capacity region.

(b) Describe a coding scheme that achieves the capacity region.

Solution: Multiple-access channel.

(a) It is easy to see that we can achieve any rate pair (R1, R2) satis-
fying

R2 ≤ 1.

(In other words, R1 can be arbitrarily large.) Although it can be
calculated from the generic capacity formula

R1 ≤ I(X1; Y |X2) = ∞
R2 ≤ I(X2; Y |X1) ≤ 1

R1 + R2 ≤ I(X1, X2; Y ) = ∞,

we can find the capacity region from first principles.

Clearly, we can’t get better than R1 = ∞. For the bound on R2,
for each fixed X1, the second user cannot transmit more than 1
bit.

(b) Achieving R1 = ∞, R2 = 1 is also trivial. The first user sends the
fractional part of an integer (satisyfing the power constraint) and
the second user sends 1 bit per transmission by sending ±

√
P2.
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7. Csiszar Sum Equality. Let Xn and Y n be two random vectors with
arbitrary joint probability distribution. Show that:

n
∑

i=1

I(Xn
i+1; Yi|Y i−1) =

n
∑

i=1

I(Y i−1; Xi|Xn
i+1) (4)

As we shall see this inequality is useful in proving converses to several
multiple user channels. (Hint: You can prove this by induction or by
expanding the terms on both sides using the chain rule.)

Solution: Csiszar Sum Equality.

n
∑

i=1

I(Xn
i+1; Yi|Y i−1) =

n
∑

i=1

n
∑

j=i+1

I(Xj ; Yi|Y i−1, Xn
j+1)

=

n
∑

j=2

j−1
∑

i=1

I(Xj; Yi|Y i−1, Xn
j+1)

=

n
∑

j=2

I(Xj ; Y
j−1|Xn

j+1)

=

n
∑

j=1

I(Xj ; Y
j−1|Xn

j+1)

=

n
∑

i=1

I(Y i−1; Xi|Xn
i+1)

where the first and third equalities follow from chain rule, and the
second equality follows from switching of the summations.
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Figure 2: Cooperative and non-cooperative capacity for a binary erasure
multiple access channel.
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Figure 3: Capacity region of additive modulo 2 MAC.
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