Multi Users information theory

Semester A 2009/10

Homework Set #3Methods of types, MAC, and Csiszar Sum

1. Large deviations.

Let X_1, X_2, \ldots be i.i.d. random variables drawn according to the Bernoulli distribution

$$\Pr\{X_i = 1\} = \Pr\{X_i = -1\} = \frac{1}{2}$$

Let S_n be the random walk defined by

$$S_n = \sum_{i=1}^n X_i.$$

Find the function $f(\alpha)$ such that, for all $\alpha > 0$,

$$\lim_{n \to \infty} -\frac{1}{n} \log \Pr\{S_n \ge n\alpha\} = f(\alpha).$$

2. Counting.

Let $\mathcal{X} = \{1, 2, \dots, m\}$. Show that the number of sequences $x^n \in \mathcal{X}^n$ satisfying $\frac{1}{n} \sum_{i=1}^n g(x_i) \geq \alpha$ is approximately equal to 2^{nH^*} , to first order in the exponent, where

$$H^* = \max_{P:\sum P(i)g(i) \ge \alpha} H(P).$$

3. The cooperative capacity of a multiple access channel.

- (a) Suppose X_1 and X_2 have access to both indices $W_1 \in \{1, 2^{nR_1}\}, W_2 \in \{1, 2^{nR_2}\}$. Thus the codewords $X_1^n(W_1, W_2), X_2^n(W_1, W_2)$ depend on both indices. Find the capacity region.
- (b) Evaluate this region for the binary erasure multiple access channel $Y = X_1 + X_2, X_i \in \{0, 1\}$. Compare to the non-cooperative region.

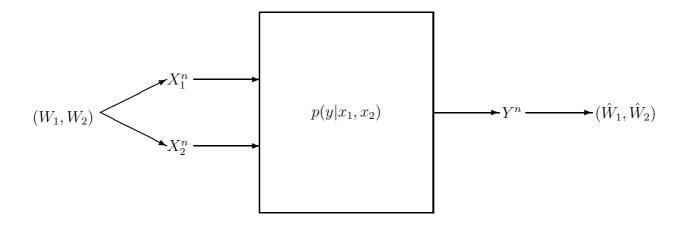


Figure 1: Multiple access channel with cooperating senders.

4. Capacity of multiple access channels.

Find the capacity region for each of the following multiple access channels:

- (a) Additive modulo 2 multiple access access channel. $X_1 \in \{0, 1\}, X_2 \in \{0, 1\}, Y = X_1 \oplus X_2$.
- (b) Multiplicative multiple access channel. $X_1 \in \{-1, 1\}, X_2 \in \{-1, 1\}, Y = X_1 \cdot X_2$.
- 5. Cut-set interpretation of capacity region of multiple access channel.

For the multiple access channel we know that (R_1, R_2) is achievable if

$$R_1 < I(X_1; Y \mid X_2),$$
 (1)

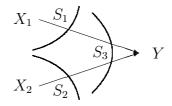
$$R_2 < I(X_2; Y \mid X_1),$$
 (2)

$$R_1 + R_2 < I(X_1, X_2; Y),$$
 (3)

for X_1, X_2 independent. Show, for X_1, X_2 independent, that

$$I(X_1; Y \mid X_2) = I(X_1; Y, X_2).$$

Thus R_1 is less than the mutual information between X_1 and everything else.



Interpret the information bounds as bounds on the rate of flow across cutsets S_1, S_2 and S_3 .

6. Multiple-access channel.

Let the output Y of a multiple-access channel be given by

$$Y = X_1 + \operatorname{sgn}(X_2)$$

where X_1, X_2 are both real and power limited,

$$\begin{array}{ll} E[X_1^2] &\le P_1, \\ E[X_2^2] &\le P_2, \end{array}$$

and $\operatorname{sgn}(x) = \begin{cases} 1, & x > 0 \\ -1, & x \le 0 \end{cases}$.

Note that there is interference but no noise in this channel.

- (a) Find the capacity region.
- (b) Describe a coding scheme that achieves the capacity region.
- 7. Csiszar Sum Equality. Let X^n and Y^n be two random vectors with arbitrary joint probability distribution. Show that:

$$\sum_{i=1}^{n} I(X_{i+1}^{n}; Y_i | Y^{i-1}) = \sum_{i=1}^{n} I(Y^{i-1}; X_i | X_{i+1}^{n})$$
(4)

As we shall see this inequality is useful in proving converses to several multiple user channels. (Hint: You can prove this by induction or by expanding the terms on both sides using the chain rule.)