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Machine Learning

Lecture 10

Lecturer:Haim Permuter Scribe: Omer Luxembourg

I. INTRODUCTION

In this lecture we introduce the f-Divergence definition which generalizes the Kullback-
Leibler Divergence, and the data processing inequality theorem. Parts of this lecture are
guided by the work of T. Cover’s book [1], Y. Polyanskiy’s lecture notes [3] and Z.
Goldfeld’s lecture 6 about f-Divergences [2]. This lecture assumes the student is familiar
with basic probability theory. The notations here are similar to those of the previous

lectures.

II. f-Divergence

Definition 1 (Kullback-Leibler Divergence) Recall the Kullback-Leibler Divergence
(a.k.a. KL-Divergence) definition:

Dy (Px||Qx) = Ep {log (g(“”))} . (1)

For discrete probabilities eq. (1) becomes:

Dir(Px||Qx) 2 > P(a) ((@)7 o)

TeEX <I>

and for continuous probabilities:

Drn(Prllex) 2 [ Ployios () an ®)

for P, such that if Q(x) =0 then P(x) = 0 for the same z.
There are two main properties for Divergence, which were proved in previous lectures.
a. Dir(Px||@Qx) > 0, and equality hold if and only if P = Q.
b. Dk (Px||Qx) is convex in (Px,Qx).



10-2

Definition 2 (f-Divergence) For two distributions P and (), the f~-Divergence is defined

as:

D;(Px]1Qx) £ Eq [f (gg;)] 7 )

for P, @, such that if Q(z) = 0 then P(z) = 0 for the same z, and for f that satisfies
the following:

o [ is convex for R*.
The following are special cases of f-Divergences:

a. Kullback-Leibler Divergence: aXk.a. relative entropy, f(z) = zlogz ,

DAPsllQx) £ Bo|f ()] ®

= Drr(Px||Qx),
where (a) follows from the definition of f. Note that f(1) = 0 and f is convex for
all t > 0. (f"(t) = 7).
b. Negative Log: f(x) = —log(x),

>

Dy (Px||@x)

“|7(ae7). ®

: oo (53)

reX

D(@x||Px),

—
S

>

where (a) is the definition of divergence, which is non-negative, and 0 if P = ().
Note that f(1) = 0 and f is convex for all ¢ > 0. It is worth noting that, in general,
D(P||Q) # D(Q||P).

c. Total Variation: f(x) = 3|l — 1],

Dry(P,Q) = Dy, (Px||Qx) (7)
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Note that f(1) = 0 and f is convex for all ¢ > 0. In addition Dry(P,Q) =

D7y (Q, P) means that the total variation is a metric on the space of probability
distributions. That is because it is a divergence function and a symmetric function
of P and Q) .
d. Jensen-Shannon divergence (symmetrized KL): f(z) = zlog 2% Gt log -2~ ot
Dys(PIQ) = Dys(Pxl|lQx

()

P(x) 2
= > Qlx ( Ex +log—P($)+1>

reX Q(z)

P(x)
x)log P@)+Q) )+Q ) Q(z) log (P(x)m(x))
J:EX 2

0 . (PHP+Q) (QHP+Q)

where (a) is the definition of divergence.

®)

—

f(1) =0 and f is a convex function. (f"(z) = x21+
Theorem 1 (Properties of f~-Divergence).

« Non-negativity: For a f function that is strictly convex around 1, D¢(P||Q) > 0
The equality holds if and only if P = Q.
Proof:

DAPIQ) = Eq|f (5] ©)
P
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where (a) is from Jensen’s inequality for a convex function f, (b) is due to the fact

that ggg is fixed Vx because P = (), (c) is from the definition of f. Note that if f

is not strictly convex around 1, the equality can hold from Jensen’s inequality and

not from P = Q).

o Joint convexity: (P,Q)) — D¢(P||Q) is a jointly convex function. Consequently,
P —— D¢(P||Q) for fixed Q and QQ — D¢(P||Q) are also convex functions.
Proof: From the Perspective Transform Preserve Convexity lemma we learned that
if f(x) is convex =t - f (%) is convex in (z,1).

Di(PlIQ) = Y Qx)f <ggg) , (10)

f 1s a convex function; thus, from the Perspective Transform Preserve Convexity

Lemma, Q(x) - f (ggg) is convex in (z,t). Therefore D(P||Q) is the sum of

convex functions in (P, Q) by eq. (10); thus it is a convex function in (P, Q).

Theorem 2 Conditioning Increases f-Divergence: Define the conditional f-Divergence

Df(PY|X||QY\X|PX) = EPX,Y [Df (PY\XHQY\X)] : (11)

Let Py be the output of the system Py |x for input Py, and )y be the output of the

system Qy|x for input Py, see figure 1.

Py|X —>Py

e
AN

Qvix| — Qy

Fig. 1. Channel transition matrices
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Then
D¢ (Py||Qy) < Dy (Pyx]|Qyix|Px) - (12)
One can view Py and (Qy as the output distributions after passing Px through the channel
transition matrices Py x and Qy‘ x, respectively. The above relation tells us that the
average f-Divergence between the corresponding channel transition rows is at least the

f-Divergence between the output distributions.

Proof:

Dy(Pyixl|Qvix|Px) £ > Px ) Q|X)f (%) (13)

@ > PxD; (PY|X = 2)[|Q(V]X = z))

2 Dy ((Z PxP(Y|X = x)) | (Z PxQY|X = m)>)

Dy (Epy [PY[X)][[Epy [QY]X)])

Dy (PY)[|Q(Y)),

—
8}
=

—~
S
=

where (a) follows from the definition of f-Divergence, (b) follows from Jensen’s
inequality, because Dy is convex in P, (), (c) is the definition of expectation, and (d)

follows from the Law of Total Expectation.

Remark 1 (equality for D;(Py x||Qy|x|Px)): We can notice the following equality
holds:

Dy(Pyx|lQvx) £ Eg, f% (14)
_ Py, z)
- L 7 (5)
- Sr@Xeur (gl
a P(ylx)P(x
: oo ()
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S S aur (o)
= Df(Py|XHQY|X’PX)a

where (a) follows from the definition of conditional probability, and Q(y,x) £

P(x)Q(y|x), and (b) is from the definition of divergence.

III. DATA PROCESSING INEQUALITY

The data processing inequality for KL divergence extends to all f-Divergences.

P(x) P(y)

Q(x) Qy)

Fig. 2. One channel transition [3]

The intuition behind the following inequality is that processing the observation z by a
channel Wy x makes it more difficult to determine whether it came from Py or (Jx. In
neural networks, for instance, the divergence of the system output will decrease as we
move to the next layer.

Theorem 3 (Data Processing Inequality): Consider a channel that produces Y given
X based on the law Wy x. If Py and @)y are distributions of Y when X is generated

by Px and (), respectively, then for any f-Divergence,
Dy(Px||@x) = Dy(Py[|Qy), (15)

as for the KL divergence.

Proof:
D;(Px||Qx) = D(PxWyx||QxWyx) (16)
_ P(x,y))
- S (G




10-7

I
<[]
@
M
@

()
g

Zley 0 >)

- Q(z]y)

Sl
Q(y)

= PYHQY ;

S
kﬁ
/N
(]
@

I
kh
R

where (a) follows from conditioning, (b) is Jensen’s inequality for convex f in P, (), and

(c) is from Law Of Total Probabllzty Note that PX,Y = Pwa‘X and Q)Qy = way|x.
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