
4 - Neural Networks-1

Machine learning

Lecture 4 - Neural Networks

Lecturer: Haim Permuter Scribe: Nave Algarici

Throughout this lecture we introduce Neural Netwoks, starting from a single neuron,

and ending with the Backpropagation method. Most of the material for this lecture is

based on the online book of Michael Nielsen [1].

I. NEURAL NETWORKS

Neural networks are limited imitations of how our own brains work. They’ve had a big

recent resurgence because of advances in computer hardware. There is evidence that the

brain uses only one ”learning algorithm” for all its different functions. At a very simple

level, neurons are basically computational units that take input (dendrites) as electrical

input (called ”spikes”) that are channeled to outputs (axons).

Neural neworks are typically organized in layers. Layers are made up of a number of

interconnected ’nodes’ which contain an ’activation function’. Patterns are presented to

the network via the ’input layer’, which communicates to one or more ’hidden layers’

where the actual processing is done via a system of weighted ’connections’. The hidden

layers then link to an ’output layer’, which is the output of the network.

Neural Networks can be applied to many problems, such as: function approximation,

classification, regression, data processing, etc. We will start by looking at a single neuron,

define it’s model, and combine neurons to a complete network.

A. Single Neuron Model

A neuron is depicted in Fig. 1. The Neuron has k inputs, x1, x2, ..., xk, a set of weights

w1, w2, ..., wk corresponding to the inputs, a bias b and an activation function σ(z) that

produces a single output y. The output of the neuron y is determined by

y = σ(z),



4 - Neural Networks-2

z =

k
∑

i=1

wixi + b. (1)

⠇

x1

x2

xk

w1

w2

wk

σ(z) y

Figure 1. Scheme of a single neuron.

There are many different options for the choice of the activation function σ(z). A few

of them are given below and a depicted in Fig. 2.

• σ(z) = 1

1+e−z - sigmoid function

• σ(z) = sign(z) - sign function

• σ(z) = tanh(z) = ez−e−z

ez+e−z - hyperbolic tangent

• σ(z) = max(0, z) - rectified linear unit (RLU)

-5 -4 -3 -2 -1 0 1 2 3 4 5
-1.5

-1

-0.5

0

0.5

1

1.5

Logistic function
Sign function

tanh
RLU

z

σ
(z
)

Figure 2. Plot of the activation functions mentioned above.



4 - Neural Networks-3

B. Neural Network Model

As we mentioned before, a Neural Network is organized in layers, where the first layer

contains the inputs of the network, the last layer is the output of the network, and the

layers in between are called hidden layers. Each layer gets it’s inputs from the layer

before, and passes it’s outputs to the next. We call this step forward propagation. Fig. 3

depicts a fully connected neural network with input layer, hidden layer and output layer.

The reason its called fully connected since the neural in each layer are connected to all

the neural in the next layer.

⠇ ⠇ ⠇ ⠇

layer 1 (input) layer 2 hidden layer L− 1 layer L (output)

x1

x2

xK1

a21

a22

a2K2

aL−1

1

aL−1

2

aL−1

KL−1

aL1

aL2

aLKL

w2
11

w2
21

w2
12

w2
22

w2
2K1

w2
K2K1

wL
11

wL
21

wL
12

wL
22

wL
2KL−1

wL
KLKL−1

Figure 3. Structure of a general Neural Network

The parameters and variables that define a neural network are the following:

• wl
jk - the weight for the connection from the kth neuron in the (l− 1)th layer to the

jth neuron in the lth layer.

• blj - the coefficient we add to the jth neuron in the lth layer.

• Kl - the number of neurons in the lth layer.

• zlj =
∑Kl−1

k=1
wl

jka
l−1

k + blj

• alj = σ(zlj)



4 - Neural Networks-4

By organizing our parameters in matrices and using matrix-vector operations, we can take

advantage of fast linear algebra routines to quickly perform calculations in our network.

• zl =
[

zl1, z
l
2, . . . , z

l
Kl

]T

• bl =
[

bl1, b
l
2, . . . , b

l
Kl

]T

• wl =















wl
11 wl

12 . . . wl
1Kl−1

wl
21 wl

22 . . . wl
2Kl−1

...
...

. . .
...

wl
Kl1

wl
Kl1

. . . wl
KlKl−1















• al =
[

al1, a
l
2, . . . , a

l
Kl

]T

• zl = wlal−1 + bl

• al = σ(zl)

• σ([x1, . . . , xn]
T ) = [σ(x1), . . . , σ(xn)]

T

0

0

1

1
1

1

0

0

x1

x2

Figure 4. XOR function - illustration of output for binary inputs x1, x2

Example 1 (XOR function) One neuron is able to separate two sets only by a linear

separation. Now consider the XOR function that we are all familiar with and it is depicted

in Fig. 4. It is easy to see, that the XOR function cannot be approximated using a linear



4 - Neural Networks-5

function (there is no line that could separate the two groups of answers). But now we

will show, that it is possible to approximate the XOR function using a Neural Network.

We build a Network as depicted in Fig. 5 with three inputs, x1, x2, and the third set to

’1’, a hidden layer of two neurons, and a single neuron output layer. All biases are set

to zero. And the set the weights that we choose is given in Fig. 5.

x1

x2

1

a21

a22

a311

1

1

1

1

0

−1

−2

Figure 5. Example: XOR function Neural Network

We choose the activation function to be the RLU function. Let’s take the input

[x1, x2] = [0, 0] and insert it to the network:

a21 = max(0, 1 ∗ x1 + 1 ∗ x2 + 0 ∗ 1) = 0

a22 = max(0, 1 ∗ x1 + 1 ∗ x2 +−1 ∗ 1) = 0

a31 = max(0, 1 ∗ a21 − 2 ∗ a22) = 0

The same goes for the other options for the inputs: [0, 1], [1, 0], [1, 1]:

x1 x2 a
2

1
a
2

2
a
3

1

0 0 0 0 0

0 1 1 0 1

1 0 1 0 1

1 1 2 1 0



4 - Neural Networks-6

We can see that the output a31 fits the XOR function perfectly. Note that the output of

each layer is not dependant pof previous layers, only it’s own inputs and weights.

C. Cost Function

A very important part of defining the Neural Network is the goal that it is designed

to achieve. Hence, one need to define a cost function that quantify how close we’re to

achieving the goal. The cost function is a measure of how close is the output of the neural

network to the desired label. For instance a mean square error function (or a quadratic

cost function) is define as a cost function as follows:

C(w, b) =
1

2N

N
∑

i=1

‖a(xi)− yi‖
2, (2)

where x are the input vectors and y are the corresponding labels. The input and the label

are determined by the problem setting, hence are fixed. The parameters w and biases b

are determined by the neural network, hence we can consider that the cost function is a

function of the weights w and biases b.

Our main goal is to minimize the cost function, so that the the output from the network

will be close to the desired output as possible. To minimize the cost function, we will use

a method called Gradient Decent. Gradient descent is a iterative optimization algorithm.

It says that to find a local minimum of a function, one should takes steps proportional

to the negative of the gradient (or of the approximate gradient) of the function at the

current point.

D. Backpropagation

Backpropagation is about understanding how changing the weights and biases in

a network changes the cost function. Ultimately, this means computing the partial

derivatives ∂C

∂wl
jk

and ∂C

∂blj
. The main idea of the backpropagation is using the chain-rule

of derivative. To compute the derivative, we first introduce an intermediate quantity, δlj ,

which we call the error in the jth neuron in the lth layer. Backpropagation provide a

procedure to compute the error δlj , and then will relate δlj to ∂C

∂wl
jk

and ∂C

∂blj
.



4 - Neural Networks-7

Our goal is to minimize C as a function of w and b. To train our neural network, we

initialize each parameter wl
jk and each blj to a small random value near zero, and then

apply an optimization algorithm such as batch gradient descent. Since C is a non-convex

function, gradient descent is susceptible to local optima. However, in practice gradient

descent usually works fairly well. Note that it is important to initialize the parameters

randomly, rather than to all 0’s. If all the parameters start off at identical values, then all

the hidden layer units will end up learning the same function of the input. The random

initialization serves the purpose of symmetry breaking.

One iteration of gradient descent updates the parameters w, b as follows:

wl
jk = wl

jk − α
∂C

∂wl
jk

, (3)

blj = blj − α
∂C

∂blj
, (4)

where α is the learning rate. The key step is computing the partial derivatives above.

We will now describe the backpropagation algorithm, which gives an efficient way to

compute these partial derivatives.

We define the error δlj of neuron j in layer l by

δlj =
∂C

∂zlj
, (5)

starting with the Lth layer, we get

δLj =
∂C

∂zLj
. (6)

Applying the chain rule, we can re-express the partial derivative above in terms of partial

derivatives with respect to the output activations

δLj =
∑

k

∂C

∂aLk

∂aLk
∂zLj

, (7)

where the sum is over all neurons k in the output layer. Of course, the output activation

aLk of the kth neuron depends only on the input weight zLj for the jth neuron when k = j.

And so
∂aL

k

∂zLj
vanishes when k 6= j. As a result we can simplify the previous equation to

δLj =
∂C

∂aLj

∂aLj

∂zLj
. (8)



4 - Neural Networks-8

Recalling that aLj = σ(zLj ), the second term on the right can be written as σ′(zLj ), and

the equation becomes

δLj =
∂C

∂aLj
σ′(zLj ). (9)

We can rewrite the equation in a matrix-based form, as

δL = ∇aC ⊙ σ′(zL). (10)

Here, ∇aC is defined to be a vector whose components are the partial derivatives ∂C

∂aLj
.

We use ⊙ to denote the elementwise product of the two vectors.

Next, we’ll develop the equation for the error δl in terms of the error in the next layer,

δl+1. To do this, we want to rewrite δlj =
∂C

∂zlj
in terms of δl+1

k = ∂C

∂zl+1

k

. We can do this

using the chain rule:

δlj =
∂C

∂zlj
(11)

=
∑

k

∂C

∂zl+1

k

∂zl+1

k

∂zlj
(12)

=
∑

k

∂zl+1

k

∂zlj
δl+1

k , (13)

where in the last line we have interchanged the two terms on the right-hand side, and

substituted the definition of δl+1

k . To evaluate the first term on the last line, note that

zl+1

k =
∑

j

wl+1

kj alj + bl+1

k =
∑

j

wl+1

kj σ(zlj) + bl+1

k . (14)

Differentiating, we obtain

∂zl+1

k

∂zlj
= wl+1

kj σ′(zlj). (15)

Substituting back into (13) we obtain

δlj =
∑

k

wl+1

kj δl+1

k σ′(zlj). (16)

In a matrix-based form,

δl =
(

(

wl+1
)T

δl+1

)

⊙ σ′(zl), (17)

where
(

wl+1
)T

is the transpose of the weight matrix wl+1 for the (l + 1)th layer.



4 - Neural Networks-9

By combining (17) with (10) we can copmute the error δl for any layer in the network.

We start by using (10) to compute δL, then apply Equation (17) to compute δL−1, then

Equation (17) again to compute δL−1, and so on, all the way back through the network.

Now that we have the errors δlj of all the layers of the network, we can compute the

partial derivatives ∂C

∂wl
jk

and ∂C

∂blj
as a function of δlj:

∂C

∂wl
jk

=
∂C

∂zlj

∂zlj

∂wl
jk

= δlja
l−1

k , (18)

∂C

∂blj
=

∂C

∂zlj

∂zlj

∂blj
= δlj . (19)

For each iteration we use (3) and (4) and compute the new values of the parameters.

To summerize the backpropagation algorithm:

1) Perform a feedforward pass, computing the activations for layers 2,3, and so on up

to the output layer L.

2) For each output unit j in layer L (the output layer), set

δLj =
∂C

∂aLj
σ′(zLj ). (20)

3) For layers l = L− 1, L− 1, ..., 2, for each node j in layer l, set

δlj =
∑

k

wl+1

kj δl+1

k σ′(zlj). (21)

4) Compute the desired partial derivatives, which are given as:

∂C

∂wl
jk

= δlja
l−1

k , (22)

∂C

∂blj
= δlj. (23)

5) Update the weights and biases of the network:

wl
jk = wl

jk − α
∂C

∂wl
jk

, (24)

blj = blj − α
∂C

∂blj
, (25)

REFERENCES

[1] Michael A. Nielsen. Neural Networks and Deep Learning. Determination Press, 2015.


	Neural Networks
	Single Neuron Model
	Neural Network Model
	Cost Function
	Backpropagation

	References

