
Training process for mastering in speaker recognition
Version1 – Bar Madar, 19.11.19

Part	1	-	Theoretical	knowledge	
Read	the	following	articles	and	tutorials	above.	Make	sure	you	understand	every	
component,	algorithm	and	methodological	approach	that	used	as	a	part	of	the	
speaker	recognition	system	and	process.	this	is	a	necessary	part	before	the	practical	
training.	
	

• Task	1.1	-	Basic	knowledge	of	speaker	recognition	
1. Speaker	recognition	by	machine	and	human	-	

https://www.researchgate.net/publication/282940395_Speaker_Recognition_by
_Machines_and_Humans_A_tutorial_review	

2. Nave	Thesis	–	sending	you	by	mail	

• Task	1.2	-	Frontend	steps	
1. Features	extraction	(MFCC)	-			

http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-
frequency-cepstral-coefficients-mfccs/	

2. Voice	Activity	Detection	(VAD)	-	
http://practicalcryptography.com/miscellaneous/machine-learning/voice-
activity-detection-vad-tutorial/	

3. Data	augmentation	techniques	–	RIR	and	MUSAN	corporates	-	
https://danielpovey.com/files/2017_icassp_reverberation.pdf	
https://arxiv.org/pdf/1510.08484.pdf	

4. X-VECTOR		and	TDNN	architecture-	
https://www.danielpovey.com/files/2015_interspeech_multisplice.pdf	
https://www.danielpovey.com/files/2018_icassp_xvectors.pdf	
https://www.youtube.com/watch?v=8nZjiXEdMH0		

• Task	1.3	-	Backend	steps	

1. Linear	Discriminant	Analysis(LDA)	-	
http://www.music.mcgill.ca/~ich/classes/mumt611_07/classifiers/lda_theory.pd
f	

2. Probabilistic	Linear	Discriminant	Analysis(PLDA)	-	
http://people.irisa.fr/Guillaume.Gravier/ADM/articles2018/Probabilistic_Linear_
Discriminant_Analysis.pdf	

3. PLDA	adaptation	for	mismatch	domain	-	
http://danielpovey.com/files/2014_slt_dnn.pdf	
https://arxiv.org/pdf/1812.10260.pdf	

4. Scoring	Normalization	-	
https://www.sciencedirect.com/science/article/pii/S1051200499903603	

5. Measuring	performances	with	DET	curve	-	
https://pdfs.semanticscholar.org/ae28/6f0d7fe2555ed16f405c59ac81eb94a9aec
2.pdf	

• Task	1.4	–	Presentation	of	what	you	learned	so	far	

1. Create	a	presentation	that	include	the	following	subjects-	
a. Basically	explanation	of	the	speaker	recognition	task	
b. Block	diagram	of	the	automatic	speaker	recognition	system	based	on	x-

vector	speaker	representation	and	PLDA	classifier.	
c. Explanations	of	each	component	on	the	system	
d. Ways	to	measuring	the	performances	of	the	system	

2. Schedule	a	time	to	represent	it	to	the	research	group	

Part	2	-	Install	support	systems	
There	are	2	ways	working	with	kaldi	software	-	install	it	on	the	private	PC	or	building	
a	Docker	environment	that	support	kaldi	and	running	it	on	the	server.	Both	ways	
have	their	advantages	and	disadvantages.	We	need	to	success	working	on	kaldi	in	
both	ways	to	make	our	work	more	efficient.	
	

• Task	2.1	-	Install	kaldi		on	PC	
1. Ensure	Python3	is	install	on	your	PC	
2. Open	a	github	profile	–	you	will	need	it	to	clone	and	build	the	toolkit	and	keep	it	

updated.	
3. Go	to	the	master branch of the Kaldi project on github -

https://github.com/kaldi-asr/kaldi,	clone	the	project	to	your	PC	and	follow	the	
installation	instructions	on	the	main	page	(you	have	to	work	with	LINUX	
operating	system).	

4. After	you	finished	all	the	installation	steps,	running	the	“yesno”	recipe	to	check	if	
the	KALDI	project	is	successfully	installed	on	your	PC	and	succeed	to	build	the	
code	-	
a. Open	the	terminal	and	go	to	the	main	brunch	of	the	KALDI	project.	
b. Type	“cd	egs/yesno”	to	get	into	the	“yesno”	recipe.	
c. Type	“./run.sh”	to	run	the	recipe.	The	code	should	run,	and	return	0%	error	

(indication	on	the	terminal).		
d. Congratulation	you	have	KALDI	on	your	PC!		

• Task	2.2	-	Install	SOX	on	PC	

SoX	is	a	cross-platform	(Windows,	Linux,	MacOS	X,	etc.)	command	line	utility	that	
can	convert	various	formats	of	computer	audio	files	in	to	other	formats.	It	can	also	
apply	various	effects	to	these	sound	files.	With	sox,	we	will	implement	the	data	
augmentation,	changing	the	format	of	our	audio	files,	down-sample	or	up-sample	
the	data,	and	cutting	audio	files	with	specific	time	steps.	
1. Go to SOX home page - http://sox.sourceforge.net/	
2. Follow	the	installation	instructions	–	you	can	download	the	installation	files	or	

clone	it	using	git.	
3. Open	the	SoX	documentation	file	-	http://sox.sourceforge.net/sox.pdf			
4. Download	a	“.wav”	file,	save	it	on	a	folder	inside	the	sox	path	and	do	the	

following	actions	using	the	sox	(due	to	the	documentation	file):	
a. Change	to	“.sph”	format.	
b. Check	the	sample	rate	of	the	audio	file.	
c. down-sampling	to	8	Khz.	
d. Up-sampling	t	16	Khz.	
e. Choose	a	time	interval	and	generate	a	new	audio	file	between	this	

interval	with	a	different	format	and	sampling.	
f. Congratulation	you	have	SoX	on	your	PC	and	know	how	to	use	it!	

• Task	2.3	–	Building	a	Docker	that	support	KALDI	and	working	on	the	

server	
1. Create	a	user	on	the	group	servers,	been	able	to	access	to	it	via	SSH.	
2. Open	your	own	folder	on	the	main	path	at	the	server.	
3. Read	the	following	tutorial	to	learn	more	about	docker	-																			

https://docker-curriculum.com/	
4. Using	the	following	links	and	command	to	build	your	own	docker	that	support	

the	kaldi	project	(the	image	has	also	Python3	and	SoX)	-	
https://itml.miraheze.org/wiki/Docker																																	
https://github.com/kaldi-asr/kaldi/tree/master/docker	
Sudo	docker	run	–it	–mount	type=bind,	source=/storage/,target=/common_space_docker/	-p	7777:1111	--
name	DOCKER_NAME		--runtime=nvidia	kaldiasr/kaldi:gpu-latest	

5. Follow	the steps	on	the	following	link	to	activate	the	ssh-server	and	how	to	using	
the	ssh	to	run	the	docker	-																															
https://itml.miraheze.org/wiki/Docker																						

6. Run	the	docker	using	the	ssh	and	make	an	alias	for	the	python3	using	-													
$sudo	alias	python=”python3”	

7. Copy	the	KALDI	folder	from	the	main	path	of	the	docker	to	the	mounted	folder	
(common_space_docker).	

8. Run	the	docker,	go	to	the	“yesno”	recipe	path	and	type	“./run.sh”.	ensure	that	
everything	run	like	expected	with	0%	error.	

9. Congratulation	you	have	KALDI	docker	running	on	the	server!	

• Task	2.4	–	Get	access	to	the	docker	using	pycharm	on	your	PC
A	simply	way	to	run	the	kaldi	project	on	the	server	is	to	get	access	to	the	
docker	with	the	pycharm	on	your	pc	(lab’s	PC	or	laptop	using	VPN)	–	add	
deployment	server.	You	can	change	the	code	and	get	access	to	the	files	
in	the	docker	with	the	pycharm	and	run	the	code	with	the	ssh	access	to	
the	server.	
1. Open	the	Pycharm	on	your	PC.	
2. Preferences	>>	build,	execution,	deployment	>>	deployment	
3. Add	new	deployment.	
4. Choose	name	and	type	SFTP.	
5. SFTP	host:	<server	ip>	
6. Port:	7777	(compatible	with	the	initial	run	of	the	docker)	
7. Root	path:	/	
8. Username:	root	(compatible	with	activate	ssh-server)	
9. Password:	XXXXXX	(compatible	with	activate	ssh-server)	
10. Mapping:	map	your	local	path	to	the	deployment	path	on	server	–	the	local	path	

is	where	files	from	the	server	will	download	to.	
11. Push	test	connection	and	verify	that	it	is	working.	
12. Congratulation	you	can	access	your	docker	from	the	pycharm!	

 		
		

	
Part	3	-	Practical	experience	
On	this	step,	we	will	experience	on	using	KALDI	and	it’s	methodology.	First	we	will	
run	a	recipe	and	check	it	performance	with	pretrained	models	of	the	x-vector	
extractor	and	PLDA,	after	we	will	train	those	models.	At	the	end,	we	will	experience	
on	running	a	speaker	diarization	recipe.	

• Task	3.1	–	the	basic	of	KALDI	

1. On	the	the	link	below,	follow	the	kaldi	for	dummies	tutorial	-																						
http://kaldi-asr.org/doc/kaldi_for_dummies.html

2. On	the	link	below,	follow	the	data	preparation	tutorial	-																																
http://kaldi-asr.org/doc/data_prep.html	

3. If	you	have	any	question	about	KALDI,	you	can	search	for	it	in	KALDI	
documentation	-							http://kaldi-asr.org/doc/index.html	

4. Join	to	the	“kaldi-help”	group,	where	you	can	ask	questions	about	kaldi	and	see	
other	problems	and	answers	-																																																																																	
http://kaldi-asr.org/forums.html	

• Task	3.2	–	get	all	the	neccessary	data	bases	to	run	the	sre	recipes	

1. SRE	04,	05,	06,	10,	16,	18,	19	SRE10	–	sharing	on	the	google	drive.	
2. MIXER6	–	sharing	on	the	google	drive.	
3. SWBD	–	sharing	on	google	drive.	
4. MUSAN	–	download	from	https://www.openslr.org/17/	
5. RIR	–	download	directly	from	the	run.sh	script	on	each	recipe.	
6. VOXCELEB	–	download	from	http://www.robots.ox.ac.uk/~vgg/data/voxceleb/	
7. Make	sure	you	have	all	the	data	on	you	PC	or	server.	Take	a	look	on	the	format	

and	sampling	of	each	data	set.	Also,	get	familiar	with	each	data	set	structure	
(divide	to	sections,	test/train,	trial	keys,	etc.).	

• Task	3.3	–	download	the	pretrained	models	(xvector	and	PLDA)	

1. In	order	to	run	the	sre16	recipe	without	training	the	PLDA	and	xvector	extractor,	
we	have	to	download	the	pretrained	models,	and	copy	it	to	the	recipe	path	as	
described	on	-	
https://davidryansnyder.github.io/2017/10/04/model_sre16_v2.html	
	

• Task	3.4	–	run	the	sre16	recipe	without	train	the	xvector	and	PLDA	
1. On	kaldi	path	go	to	egs/sre16/v2.	
2. Go	over	all	the	steps	in	run.sh	except	those	who	train	the	x-vector	extractor	and	

the	PLDA	models.	
3. Look	carefully	on	each	script	you	run	as	a	part	of	the	recipe,	and	follow	its	input	

and	output.	Make	sure	you	understand	each	step	of	the	recipe.	
4. Check	if	your	system	performances	are	matched	to	those	who	written	in	

comment	on	the	run.sh	recipe.	
5. Write	a	Python	code	that	get	the	scoring	of	the	system	as	an	input	and	its	output	

is	a	DET	curve	with	EER	written	to	a	blank	file.	

	
	

• 		Task	3.5	–	run	the	full	sre16	recipe	
1. run	the	same	sre16	recipe.	Now	the	recipe	includes	training	of	the	x-vector	

extractor	and	PLDA	model.	
2. Make	sure	you	run	the	recipe	on	the	docker	so	you	can	use	the	GPU’s	for	the	

training	process.	
	

• Task	3.6	–	run	the	SRE19	recipe	
1. Ask	from	Bar	the	SRE19	recipe	and	run	it.	It	includes	mix	of	SRE	and	Voxceleb		

training	set,	augmentation	for	the	Voxceleb		and	in-domain	data,	and	plda	
adaptation.	

2. Test	the	model	on	SRE18	test	set,	using	NIST	scoring	software.	
a. Normalize	the	scoring	to	get	act_C	close	to	min_C	as	much	as	you	can.	

3. Generate	a	DET	curve	of	the	system	performances.	

• Task	3.7	–	compare	the	SRE19		and	SRE16	recipe	
1. Test	the	2	recipes	both	with	sre18	test	set.		
2. Get	the	scoring	results	of	each	recipe	using	the	sre18	scoring	software.	
3. Compare	the	performances	of	the	systems	using	a	single	DET	graph	with	2	

curves.	

• Task	3.8	–	Speaker	diarization	
1. Read	the	article	below	and	implement	the	speaker	diarization	system	regard	to	

it,	using	the	call_home_v2	recipe	-									
https://towardsdatascience.com/speaker-diarization-with-kaldi-e30301b05cc8

2. Go	to	Nave’s	Thesis	and	read	the	section	of	speaker	diarization.	
3. Run	the	BGU	SRE18	speaker	diarization	recipe	-

https://github.com/navealg/SRE18_BGU
4. check	the	performance	and	compare	to	the	result	on	BGU	SRE18	system	

description.	

