
Homework set - Neural networks - Part 1

March 27, 2020

Guidelines

• For the use of this assignment we use the MNIST dataset from the following link.

• The solution for this homework is to be posted as a .pdf file.

• You may choose the programming language you prefer for the implementations (excluding packages that
enable auto-differentiation, e.g tensorflow, keras etc.).

• It is highly recommended to use object-oriented programming for this assignment.

• All plots must have named axis, grids and title. If more than one plot is on the same figure, provide legend.

1 Self-Reading

Read and solve the exercises in chapter 1 at Michael Neilsen e-book at the following link.

2 Multi-layered network implementation

In this section we implement gradually a multi-layered network with fully connected layers.

• Build a MNIST data reader object:

1. constructor - pre-process the data and divide it into train (first 55K examples), validation (subsequent
5K examples) and test (10K examples).

2. method:get batch - return a batch of examples of train/valid/test.

3. method:shuffle train - shuffle the training set along the batch dimension.

– Test your reader:

∗ Visualize 10 randomly chosen examples with their label.

∗ Why should we implement shuffle train()?

• build model object

1. constructor - define model weights, hyper-parameters and general configuration.

– Here you should initiate the model weights. Think how to do that properly.

2. method:feed forward - input a batch of examples and return the loss over this batch and the model’s
output.

3. method:loss mse - input model’s output and true labels to calculate the mean squared error (MSE).

4. method:loss nll - input model’s output and true labels to calculate the negative log loss (nll).

1

http://yann.lecun.com/exdb/mnist/
http://neuralnetworksanddeeplearning.com/chap1.html

– Show that the negative log loss over a batch (of i.i.d examples) of size n goes to the cross en-
tropy between PY |X and QY |X (the true conditional distribution and the neural network model
respectively) as n → ∞.

– Test your model:

∗ Feed a random batch to the model. What should be the model output? the negative log loss? does
reality match expectation?

3 Self-Reading

Read and solve the exercises in chapter 2 at Michael Neilsen e-book at the following link.

4 Multi-layered network implementation - Cont.

In this section we continue to implement the multi-layered network with fully connected layers.

• build model object - Cont.

1. method:back prop input a batch of examples and return the loss over this batch and the gradient vector
w.r.t the batch.

– Test your back prop:

∗ Perform a numerical gradient check and compare it to your back prop function. You may use the
following link as a guide.

∗ Please attach the average relative error and max relative error over randomly selected subset (say
10%) of the model parameters. For clarity, this means that you should compute the gradient w.r.t
10% of the model parameters with the backprop function and the numerical approximation, and
compare them elementwisely. The relative error between two scalars x, y is defined by

relative error ,=
|x− y|

|x+ y|

• build SGD optimizer object.

1. constructor - define optimizer hyper-parameters and general configuration.

2. method:step input a gradient vector and parameters vector and perform a training step over the pa-
rameters.

• build another optimizer object (Momentum, RMSprop, Adam, AdaDelta etc.). You can use the following
link for further details.

1. constructor - define optimizer hyper-parameters and general configuration.

2. method:step input a gradient vector and parameters vector and perform a training step over the pa-
rameters.

• build predict function

1. Input the current model and data and return the accuracy over the data.

• build train epoch function

1. Input the current model and data and perform a training epoch, that is, update the model parameters
w.r.t all the training data.

2

http://neuralnetworksanddeeplearning.com/chap2.html
http://ufldl.stanford.edu/tutorial/supervised/DebuggingGradientChecking/
http://ruder.io/optimizing-gradient-descent/

5 End-to-end MNIST Classification

Combine the product of the previous section to build a model to classify the MNIST digits. The classification
should be done with the following constraints/documentation:

1. Parameters budget: 5M parameters.

2. Total training time: 1 hour.

3. All training should be done with the train and validation datasets only.

4. Every epoch document:

• negative log loss of train and validation.

• accuracy over train and validation datasets.

• Average, maximum and minimum gradient norm in the epoch.

• Epoch elapsed time.

Submission

The work in this assignment should be summarized into a pdf document, where you present the exercises from
Michael Neilsen book and the exercises/visualization/documentation from the sections 2,4. In addition, summarize
the work in section 5 by the following structure:

1. Model description: the network specification (#of parameters, network architecture, chosen optimizer etc.).

2. Plot: training and validation learning curve (nll w.r.t epoch).

3. Plot: training and validation accuracy curve.

4. Plot: maximum, minimum and average gradient norm curve.

5. Training time.

GOOD LUCK!!!

3

	Self-Reading
	Multi-layered network implementation
	Self-Reading
	Multi-layered network implementation - Cont.
	End-to-end MNIST Classification

