Logistic Regression and Back-Propagation

Exercise

1. Recall the sigmoid function, $\sigma(z)=\frac{1}{1+e^{-z}}$. The logistic regression classifier, that we've learned in class, is a binary classifier. The estimated probability $\hat{p}\left(x^{(i)} ; \theta\right)$ is defined as

$$
\hat{p}\left(y^{(i)}=1 \mid x^{(i)} ; \theta, b\right)=h_{\theta, b}\left(x^{(i)}\right)=f\left(\theta^{T} x^{(i)}+b\right)
$$

where $f(z)$ is usually the sigmoid function $\sigma(z)=\frac{1}{1+e^{-z}}$.
(a) Assume that $\left\{\left(x^{(i)}, y^{(i)}\right)\right\}_{i=1}^{m}$ is a set if i.i.d samples. Write the estimated probability of the entire set. i.e., write $p\left(y^{(1)}, . ., . y^{(m)} \mid x^{(1)}, . ., x^{(m)}\right)$ in terms of $\left\{\left(x^{(i)}, y^{(i)}\right)\right\}_{i=1}^{m}$ and $h_{\theta, b}(\cdot)$.
(b) Is the sigmoid function convex, concave oe none? Prove your claim.
(c) Assume that the sigmoid function is replaced with the following piecewise linear function

$$
f(z)= \begin{cases}0, & \text { if } z<-0.5 \tag{1}\\ 0.5+z, & \text { if }-0.5 \leq z \leq 0.5 \\ 1, & \text { if } z>0.5\end{cases}
$$

Let $x=\left(x_{1}, x_{2}\right)$ be a binary vector, namely, $x_{1} \in\{0,1\}, x_{2} \in\{0,1\}$. can you find θ_{1}, θ_{2} and b such that $f\left(\theta^{T} x+b\right)$ is the logical or between x_{1} and x_{2} ? If yes, do it. If no, prove it doesn't exist.
(d) Can you find θ, b such that $f\left(\theta^{T} x+b\right)$ is the logical exclusive or (XOR) between x_{1}, x_{2} ? If yes, do it. If no, prove it doesn't exist.
2. Let F be the Sigmoid function and the cost function be MSE. Let $X=$ $[0.6,0.1]^{T}$ with label 1 . Do the forward propagation of X, then perform back-propagation of the error.

(a) What will be the weights after a single step with learning rate of 0.1 ?
(b) Do the same as above, but with cross-entropy cost instead of MSE.

