
Homework set on GMM, EM and Kmeans

Guidelines

• The solution for this homework is to be posted as a .pdf file.

• You may choose the programming language you prefer for the implementations.

• All plots must have named axis, grids and title. If more than one plot is on the same figure, provide legend.

GMM implementation

A Gaussian Mixture Model (GMM) is a statistical model. It assumes that the observations were generated from
a distribution of the form:

fX(x) =

K∑
z=1

pZ(z)N (x|µz,ΣZ),

where N (x|µ,Σ) is a Gaussian distribution with expectation µ and covariance matrix Σ. The random variable Z
is called a latent variable.

1. Data Generation: generate synthetic data from a Gaussian mixture model with two Gaussians. Use the
following parameters:

µ1 = [−1,−1]T ,

µ2 = [1, 1]T ,

Σ1 =

0.8 0

0 0.8

 ,

Σ2 =

0.75 −0.2

−0.2 0.6

 ,

PZ(z = 1) = 0.7.

If you are using Python, you can use numpy.random.multivariate normal function. Alternatively, you can
simply draw a uniform random variable in [0, 1] and transform it to Bernoully. Then, based on the outcome,
draw a multi-dimensional normal random variable with the corresponding parameters. Scatter 1000 points
of the generated data, using scatter plots.

2. K-Means implementation:

(a) Generate 50 samples from the distribution above and plot them.

(b) Implement a K-Means algorithm with two centers. You may start the algorithm with 2 random points.
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(c) Plot the results after each iteration (the centers and which points belong to which center)

(d) Repeat the experiment with different initializations.

3. EM implementation:

(a) generate 10000 samples from the distribution you created. This will be used as the realization of the
distribution.

(b) Implement the Expectation Maximization (EM) algorithm to fit a GMM of two Gaussians to the gen-
erated data. Try different initialization methods (Kmeans and random samples).

(c) Plot the log-likelihood function value of each iteration. Set the horizontal axis to iteration number, and
the vertical axis to the log-loss.

(d) Plot the data and both of the Gaussain’s contour* on the same figure.

(e) Repeat (b)-(d) using three Gaussians instead of two.
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