Homework set on GMM, EM and Kmeans

Guidelines

- The solution for this homework is to be posted as a .pdf file.
- You may choose the programming language you prefer for the implementations.
- All plots must have named axis, grids and title. If more than one plot is on the same figure, provide legend.

GMM implementation

A Gaussian Mixture Model (GMM) is a statistical model. It assumes that the observations were generated from a distribution of the form:

$$
f_{X}(x)=\sum_{z=1}^{K} p_{Z}(z) \mathcal{N}\left(x \mid \mu_{z}, \Sigma_{Z}\right)
$$

where $\mathcal{N}(x \mid \mu, \Sigma)$ is a Gaussian distribution with expectation μ and covariance matrix Σ. The random variable Z is called a latent variable.

1. Data Generation: generate synthetic data from a Gaussian mixture model with two Gaussians. Use the following parameters:

$$
\begin{aligned}
\mu_{1} & =[-1,-1]^{T} \\
\mu_{2} & =[1,1]^{T} \\
\Sigma_{1} & =\left(\begin{array}{cc}
0.8 & 0 \\
0 & 0.8
\end{array}\right) \\
\Sigma_{2} & =\left(\begin{array}{cc}
0.75 & -0.2 \\
-0.2 & 0.6
\end{array}\right) \\
P_{Z}(z=1) & =0.7
\end{aligned}
$$

If you are using Python, you can use numpy.random.multivariate_normal function. Alternatively, you can simply draw a uniform random variable in $[0,1]$ and transform it to Bernoully. Then, based on the outcome, draw a multi-dimensional normal random variable with the corresponding parameters. Scatter 1000 points of the generated data, using scatter plots.
2. K-Means implementation:
(a) Generate 50 samples from the distribution above and plot them.
(b) Implement a K-Means algorithm with two centers. You may start the algorithm with 2 random points.
(c) Plot the results after each iteration (the centers and which points belong to which center)
(d) Repeat the experiment with different initializations.
3. EM implementation:
(a) generate 10000 samples from the distribution you created. This will be used as the realization of the distribution.
(b) Implement the Expectation Maximization (EM) algorithm to fit a GMM of two Gaussians to the generated data. Try different initialization methods (Kmeans and random samples).
(c) Plot the log-likelihood function value of each iteration. Set the horizontal axis to iteration number, and the vertical axis to the log-loss.
(d) Plot the data and both of the Gaussain's contour* on the same figure.
(e) Repeat (b)-(d) using three Gaussians instead of two.

