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DeepRx: Fully learned MIMO receiver
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Introduction

Starting point

• What is the best way to take advantage of ML in the physical layer?

• Higher performance

• Higher flexibility

• Reduced algorithm design effort

Our approach:

• Learn the whole receiver
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DeepRx MIMO
Naïve approach does not work in MIMO

• In SIMO cases without spatial multiplexing, good performance was achieved by simply applying a large 
ResNet-type CNN1

• However, such a pure CNN architecture is not sufficient for MIMO detection

• Learning efficient MIMO detection requires some expert knowledge!
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1M. Honkala, D. Korpi, and J. Huttunen, “DeepRx: Fully convolutional deep learning 
receiver,” IEEE Transactions on Wireless Communications, 2021.
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DeepRx MIMO
Version 1: MRC-based transformation

• In order to help the learning task, we 
can utilize maximum ratio combining 
(MRC) as a preprocessing layer

• It performs very coarse equalization

• Performance can be increased by 
utilizing so-called virtual layers

• For subcarrier i at OFDM symbol j:

• Channel estimate: ෡𝐇𝑖𝑗 ∈ ℂ𝑁𝑅×𝑁𝑇 (interpolated 

with nearest neighbor method)

• Received sample: 𝐲𝑖𝑗 ∈ ℂ𝑁𝑅×1

• MRC transformation: 𝐲𝑖𝑗,𝑀𝑅𝐶 = 𝐒෡𝐇𝑖𝑗
𝐻𝐲𝑖𝑗 ∈ ℂ

𝑁𝑇×1

• Where 𝐒 is a 𝑁𝑇 × 𝑁𝑇 diagonal matrix for 

scaling the channel gains, and መ𝐡𝑖𝑗,𝑘 denotes the 

kth column of ෡𝐇𝑖𝑗

Maximum Ratio Combining (MRC)



© 2022 Nokia7

DeepRx MIMO
Version 2: Fully learned multiplicative transformation

• Inspired by the MRC-based processing, we then developed a fully learned multiplicative transformation

• It contains expert knowledge via facilitating multiplication between inputs

• It consists of:

1. Sparse selection of inputs for multiplication (multiplication of the input channels with matrix 𝐖1, regularized to be sparse)

2. Learned scaling of the imaginary component (element wise multiplication of the imaginary part with vector 𝐰2)

3. Element wise multiplication between inputs

• Main principle of operation: learn to select the proper inputs to multiply and complex conjugate
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DeepRx MIMO
Training procedure

• Training is based on weighted cross entropy loss:

• 𝐿𝑞 𝜽 = log2 1 + 𝑠𝑛𝑟𝑞 𝐶𝐸𝑞 𝜽

• This ensures that samples with low SNR do not 
dominate the loss term

• When using the fully learned multiplicative 

transformation, the regularization term 𝛼 𝐖1 𝐿1 is 

added to 𝐿𝑞 𝜽 to ensure that 𝐖1 is sparse

• Training is done with a total batch size of 96, using 

LAMB optimizer with a base learning rate of 3.5 ∙ 10−3
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Simulation Results
Data

• Data is generated using a PUSCH link simulator, 
implemented with Matlab 5G Toolbox

• In total, 500 000 TTIs are generated, 60% of which 
is used for training

• Two different DMRS configurations are present in 
the data

Parameter Training Validation Randomization

Carrier frequency 2.6 GHz None

Channel model TDL-B, TDL-C, 
TDL-D

TDL-A, TDL-E Uniform

Spatial correlation Low Uniform

RMS delay spread 10 ns – 300 ns Uniform

Maximum Doppler shift 0 Hz – 325 Hz None

SNR -4 dB – 32 dB None

Number of PRBs 26 None

Subcarrier spacing 30 kHz None

OFDM symbol duration 35.7 µs None

TTI length 14 OFDM symbols None

Modulation scheme 16-QAM None

Code rate 658/1024 None

No. of RX antennas 16 None

No. of TX antennas 4 None

No. of MIMO layers 4 None

DMRS configuration 1 or 2 pilots with FD-CDM2 Uniform
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Simulation Results

MRC-based transformation Fully learned transformation

• Both architecture variants achieve excellent performance

• On par with LMMSE having perfect channel knowledge
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Simulation Results
Fully learned transformation: TDL-A (NLOS)

• Under NLOS channel conditions, DeepRx MIMO achieves high performance with most SNRs

• When SNR approaches 20 dB, it seems to encounter an error floor

• The gains translate to coded BER, indicating that also the magnitudes of the LLR estimates are accurate
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Simulation Results
Fully learned transformation: TDL-E (LOS)

• No error floor is encountered under LOS conditions, where the BERs are higher

• Again, the performance gains are visible also after LDPC decoding
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Waveform learning for minimizing 
out-of-band emissions
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Background & Idea

• Is it possible to learn a TX waveform that

1. Is more resistant to PA-induced distortion?

2. Results in lower out-of-band emissions?

• Training procedure is the key:

• Reward for low reception error rate

• Penalize for emissions

No restrictions on 
the allocated band

Penalize for out-of-
band emissions
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System Model

• Supervised end-to-end training

• All blocks are differentiable

• Loss has two components:

• Cross-entropy between TX and RX bits

• Energy emitted outside the designated band
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Training

• Loss consists of cross entropy and emissions

• 𝐿 𝜽 = σ𝑞=1
𝑄

log2 1 + 𝑠𝑛𝑟𝑞 𝐶𝐸𝑞 𝜽 + 𝑊𝐸 ln σ𝑞=1
𝑄

𝐸𝑞 𝜽

Binary cross entropy Emission power at PA output

• Supervised learning task

• End-to-end training

• Randomized PA response to prevent fitting to a single PA model

• Adam optimizer with a specific learning rate schedule

• Warm-up period and reducing learning rate to zero at the end
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Simulation Results

• Simulator implemented in TensorFlow

• Relying on Quadriga channel models

• Fully differentiable from end-to-end
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Simulation Results
Snapshot
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Simulation Results
SNR fixed at 24 dB

More linear PA
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Conclusions
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• The proposed approach can limit emissions 
while improving link performance

• Facilitates either higher TX powers or more 
efficient PA modules
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